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Abstract

We analyze the problem of obstacle avoidance from a Bayesian decision-theoretic perspective using an experimental task in
which reaches around a virtual obstacle were made toward targets on an upright monitor. Subjects received monetary
rewards for touching the target and incurred losses for accidentally touching the intervening obstacle. The locations of
target-obstacle pairs within the workspace were varied from trial to trial. We compared human performance to that of a
Bayesian ideal movement planner (who chooses motor strategies maximizing expected gain) using the Dominance Test
employed in Hudson et al. (2007). The ideal movement planner suffers from the same sources of noise as the human, but
selects movement plans that maximize expected gain in the presence of that noise. We find good agreement between the
predictions of the model and actual performance in most but not all experimental conditions.

Citation: Hudson TE, Wolfe U, Maloney LT (2012) Speeded Reaching Movements around Invisible Obstacles. PLoS Comput Biol 8(9): e1002676. doi:10.1371/
journal.pcbi.1002676

Editor: Tim Behrens, University of Oxford, United Kingdom

Received September 23, 2011; Accepted July 23, 2012; Published September 20, 2012

Copyright: � 2012 Hudson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by NIH EY08266 (TEH), NIH NS047178-01A1 (UW), NIH EY019889 (LTM) and the Humboldt Foundation. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hudson@cns.nyu.edu

Introduction

Imagine that you are sitting at your desk with a nice, hot cup of

coffee in front of you and your laptop keyboard roughly behind it.

In reaching out to hit the return key, you plan a trajectory that

takes into account the possibility that you might jostle the cup and

spill your coffee – that is, you plan a movement trajectory that you

would not pick if there were no coffee cup in the way. Whatever

trajectory you pick, however, will typically deviate from the one

that you planned due to noise/uncertainty in the neuro-motor

system. This noise has two important consequences: a risk of

inadvertently spilling your coffee, and a risk of missing the key

altogether. Your choice of plan involves a tradeoff between the

costs and rewards associated with the possible outcomes of your

planned movement.

The motor system, in planning any speeded movement, is

selecting a stochastic ‘‘bundle’’ of possible trajectories [1,2] and the

particular bundle chosen determines the probabilities of favorable

and unfavorable outcomes. There is no basis for selecting one

planned trajectory as ‘‘best’’ without knowing the consequences of

these different outcomes. If you are reaching to prevent your

laptop from deleting your morning’s work, you may be quite

willing to put your coffee in peril and clean up later. In this article,

we consider the problem of obstacle avoidance within the

framework of Bayesian decision theory.

In this first investigation of obstacle avoidance within the

framework of Bayesian decision theory, we translate the above

example to one where there is an explicit reward for touching

targets and an explicit cost for inadvertently intersecting interven-

ing obstacles. We examine human obstacle-avoidance reach

trajectories relative to the benchmark performance of an optimal

Bayesian reach planner that chooses motor strategies to maximize

expected gain as described next.

The Experimental Task
The experimental task illustrated in Figure 1 contains many of

the elements of our coffee-cup example, and is reminiscent of the

kind of obstacle avoidance behavior that has been studied

extensively both in terms of its neurophysiological substrates

[3,4,5] and in identifying sensory/motor factors that influence the

movement trajectory [6,7,8,9,10,11,12,13]. We will describe it in

detail in the next section.

To study obstacle-avoidance reaches within the framework of

Bayesian decision theory, we translated the above example to one

where there is an explicit reward (vz) associated with touching a

target and an explicit cost (v{) associated with inadvertently

intersecting an obstacle that is placed between the starting point of

the hand and the target. Contact with a physical obstacle placed

along the reach path might change the physical character of the

reach and such an obstacle would constitute an intrinsic cost

whose value we could not easily measure or manipulate. To avoid

these issues, we used virtual obstacles that could not impede the

reach.

Although the virtual obstacle is invisible, a visual indication of

its leftmost edge (at Xo) is presented on the monitor prior to each

reach. Figure 1A shows a front view of the experimental apparatus

with the virtual obstacle shown in transparent blue. The blue line

on the monitor marks its edge (at Xo). The subject incurs the cost

v{ if the fingertip passes through the virtual obstacle while

reaching toward the target (centered on Xt, with width w). One

part of training will allow subjects to become familiar with the
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location of the obstacle in depth and how its edge relates to the

visual marker (the blue line). Across experimental conditions we

varied the location of the obstacle Xo and target Xt and the cost

v{ incurred by passing through the obstacle as described in the

next section. In all conditions there was a constant relative distance

between the obstacle edge Xo and the center of the target Xt.

Figure 1B show the same setup but from an overhead viewpoint.

The left and right panels differ in the location of the obstacle-

target pair.

Notation. Reward on each trial is determined by (a) the point

where the fingertip passes through the fronto-parallel plane

containing the obstacle and (b) where it contacts the fronto-

parallel plane containing the target. By making the target a vertical

strip and the obstacle region a half-plane with a vertical edge, we

reduce the analysis of data to observations in the horizontal

dimension. In the horizontal dimension, a pair of points in the

obstacle and target planes is given by the coordinate c~ xo,xt½ �’,
where horizontal coordinates increase from left to right. The same

coordinate given relative to the obstacle edge and target center is

Dc~ Dxo,Dxt½ �’ with Dxo~xo{Xo and Dxt~xt{Xt. We refer to

Dxo as the fingertip excursion around the obstacle; i.e., the extent to

which the fingertip avoids the obstacle edge. When we average

excursions within an experimental condition we refer to the

average Dxo as the average excursion and Dxt as the average

endpoint. The subject incurs a cost if and only if he passes to the

right of the obstacle edge (Dxo§0) and earns the reward if and

only if he hits within the target ( Dxtj jƒw=2).

There are four possible outcomes (illustrated in the Figure 1B,C),

denoted TO (hit target and obstacle), TO (hit target, miss

obstacle), TO (miss target, hit obstacle), and TO (miss target, miss

obstacle). Figure 1B and Figure 1C differ in the placement of the

target (and therefore also the obstacle).

Expected gain. Both c and Dc are 2D coordinates. In

Figure 2A we plot a hypothetical bivariate Gaussian distribution

on Dc and label the region that corresponds to an obstacle in blue

and the region that corresponds to the target in grey. These

regions overlap since it is possible to touch both the obstacle and

target on a single trial. We refer to this plot as the value diagram.

On each trial the subject selects and executes a movement plan

or motor strategy s, and this strategy determines the distribution

w xt,xojsð Þ on Dc. The expected gain associated with a given motor

strategy is

EG sð Þ~p TOjs½ � vzzv{ð Þzp TO
��s� �

vzzp TO
��s� �

v{

~p T js½ �vzzp Ojs½ �v{
ð1Þ

We can induce changes in the distribution shown in Figure 2A by

manipulating the locations and costs of the obstacle (Xo) and target

(Xt). The two unknown terms of (1) are computed as follows:

p T js½ �~
ðXtzw=2

Xt{w=2

dxt

ð?

{?

dxow xt,xojsð Þ

p Ojs½ �~
ð?

Xo

dxo

ð?

{?

dxtw xt,xojsð Þ,

ð2Þ

Figure 1. Planning and reaching with obstacles present. The
subject attempts to touch a target on a computer screen while avoiding
an invisible obstacle placed partway along the trajectory of movement
that the subject would take if the obstacle were not present (shown as
a transparent blue plane in these figures). A. From the subject’s
viewpoint. B. Two examples, seen from above, with possible trajectories
marked. Both target and obstacle are elongated vertically so that only
the horizontal x-coordinates of possible movement trajectories (shown
as colored traces connecting start position and monitor screen) affect
the resulting rewards and costs. The obstacle edge was separated from
the target by 6.6 mm in all conditions (i.e., xo{xt~6:6 mm).
doi:10.1371/journal.pcbi.1002676.g001

Author Summary

In everyday, cluttered environments, moving to reach or
grasp an object can result in unintended collisions with
other objects along the path of movement. Depending on
what we run into (a priceless Ming vase, a crotchety
colleague) we can suffer serious monetary or social
consequences. It makes sense to choose movement
trajectories that trade off the value of reaching a goal
against the consequences of unintended collisions along
the way. In the research described here, subjects made
speeded movements to touch targets while avoiding
obstacles placed along the natural reach trajectory. There
were explicit monetary rewards for hitting the target and
explicit monetary costs for accidentally hitting the inter-
vening obstacle. We varied the cost and location of the
obstacle across conditions. The task was to earn as large a
monetary bonus as possible, which required that reaches
curve around obstacles only to the extent justified by the
location and cost of the obstacle. We compared human
performance in this task to that of a Bayesian movement
planner who maximized expected gain on each trial. In
most conditions, but not all, movement strategies were
close to optimal.

Speeded Reaching around Invisible Obstacles
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where the w distribution is defined by

w xt,xojsð Þ~w cjsð Þ~ 1

2p S sð Þj j
1
2

exp {
1

2
c{m sð Þ½ �’S sð Þ{1

c{m sð Þ½ �
� �

ð3Þ

with exp x½ � denoting ex.

Equation (3) is the probability density function of a bivariate

Gaussian (see Supplemental Figure S1) determined by choice of

motor strategy s. The w xt,xojsð Þ distribution describes deviations

from the planned trajectory as it intersects the two critical planes

defined by our experiment. It is parameterized by the planned

(theoretical) intersection coordinates Dm sð Þ~ Dmo sð Þ,Dmt sð Þ½ �’ and

covariance matrix S sð Þ s2
o rsost

rsost s2
t

� �
, whose elements are

functions of s. To simplify notation, we will sometimes omit s,

writing Dm~ Dmo,Dmt½ �’, S sð Þ~S, etc.

When the subject chooses a planned trajectory he effectively

chooses the planned coordinates Dm at which the planned trajectory

intersects the obstacle and target planes. As suggested in Figures 1

and 2 we expect that the subject will plan excursions Dmov0 to

the left of the obstacle and endpoints Dmt&0 centered on the

target, and as a consequence Dxo will typically but not always be

less than 0 (to the left of the obstacle).

A hypothetical example. In Figure 2B,C we illustrate the

hypothetical effect of increasing the magnitude of v{ from 21 to

25. The ellipses represent the covariance S sð Þ of the bivariate

Gaussian w xt,xojsð Þ. In response to the change in cost, the subject

moves the average excursion point away from the edge of the

obstacle and the covariance ellipse S sð Þ grows. Intuitively, the

hypothetical subject has chosen a larger excursion (i.e., a more

curved trajectory around the obstacle) in response to the increase

in cost and the intersection of the trajectory with the obstacle plane

Dxo becomes more variable. While the example is hypothetical,

we will see similar patterns in human performance.

The Dominance Test. Our goal is to examine human

obstacle-avoidance reach trajectories relative to the benchmark

performance of a Bayesian movement planner that chooses the

movement strategy s maximizing expected gain (Equation 1) for

any choice of target and obstacle location and any choice of cost

and reward. If we knew the full range of possible movement

strategies s we could calculate the strategy (or strategies) s� that

maximized the subject’s expected gain in any given experimental

condition. We could then compare the subject’s average trajectory

in each condition to the theoretical trajectories predicted by the

model. Any discrepancy between measured performance and

predicted would be sufficient to reject the Bayesian model. Of

greatest interest, though, would be evidence of patterned

deviations from optimality. If, for example, the subject consistently

picked excursions Dxo in all conditions farther from the obstacle

plane than the predicted optimal Dm�o for that condition, then we

could interpret the subject’s failure as a kind of loss aversion [14]:

the subject is giving too much weight to avoiding the obstacle.

The key problem in comparing human performance to a

Bayesian model maximizing expected gain is that we have no

theoretical model of the possible trajectory bundles available to the

subject even in the simplest reaching movement. One solution is to

build an empirical model based on observed movement strategies

under a range of experimental conditions; that is, to measure the

possible types of trajectory bundles that might be produced. One

can then determine the optimal movement strategy for each

condition based on that empirical model.

Hudson et al. [15] formalize this approach as a Dominance Test. It

consists of two stages: First, characterize the possible movement

strategies available to the subject under the conditions of the

experiment by analyzing the subject’s performance. Second, test

whether, in each experimental condition, the subject selected the

movement strategy available to him that maximized expected

gain. Suppose, for example, that the subject chose movement

strategy sA in condition A of an experiment, strategy sB in

condition B, and so on through condition D. One can then

calculate the expected gain that the subject could achieve by

applying strategy sA through strategy sD in condition A.

Now suppose that, for example, the gain that would result from

applying sD in condition A is the maximum of the gains expected

from applying sA through sD in condition A. In particular, it is

greater than the expected gain resulting from applying sA in

condition A. We say that sD ‘‘dominates’’ sA, sB and sC in

condition A, and, in this hypothetical example, we can be certain

Figure 2. Value diagrams. A. Probability distribution overlaid on a
value diagram. For any speeded trajectory past the obstacle to the
target, the actual trajectory will differ from the trajectory plan due to
motor noise inherent in speeded movement. There are two critical
points along the actual trajectory that determine the rewards and costs
derived from each movement: the depth planes containing the obstacle
and target. We denote the horizontal excursion of the fingertip from the
edge of the obstacle (Xo) and the center of the target (Xt) within their
respective depth planes as Dxo and Dxt . Value diagrams plot the 2D
space of Dxo,Dxt½ � coordinates, with obstacle and target regions
colored in blue and grey (respectively). Reward and cost regions overlap
when reaches intersect both obstacle and target. We superimpose the
probability distribution induced on Dxo,Dxt½ � when the subject
attempts to execute a particular speeded trajectory. Any planned
trajectory induces such a probability distribution, and the subject in
planning is effectively choosing among possible distributions. The
probability volume over the blue region defines the probability of
hitting the obstacle, and the probability volume over the grey region
defines the probability of hitting the target. B. Value diagram with the
probability distribution representing possible intersection-points at the
two planes schematized as an equal-probability ellipse. When the
obstacle cost is small, a trajectory plan passing relatively near to the
obstacle may be chosen. The choice of trajectory potentially affects the
covariance of Dxo,Dxt½ � and the probabilities of hitting targets and
reward. C. For larger obstacle costs subjects might choose a larger
trajectory excursion to avoid the obstacle. Again, the choice of planned
trajectory potentially affects the covariance of Dxo,Dxt½ �, which we have
here drawn as noisier overall and particularly so in the Dxo dimension.
In the experiment we will model the effect of changing excursion on
covariance and use this model to predict the planned trajectory (and
distribution) that maximizes expected gain for any choice of cost
function.
doi:10.1371/journal.pcbi.1002676.g002

ð3Þ
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that the subject failed to pick the strategy maximizing expected

gain in condition A because a strategy known to actually be

exhibited by the subject (in condition D) would have performed

better in this condition (condition A).

Hudson et al. [15] apply the Dominance Test in each of two

experiments and, in the second, reject the hypothesis that subjects

maximized expected gain. They found that subjects consistently

selected movement strategies that were too ‘‘slow’’. We develop a

similar approach to testing optimality for the conditions of the

experiment reported here.

Modeling assumptions. The evident complexity introduced

by the obstacle is that the covariance term S sð Þ as well as the

desired trajectory Dm sð Þ change as we change motor strategy and

we must develop models of how Dm sð Þ and S sð Þ change, based on

the reach trajectories observed in our experiment. We make two

simplifying assumptions, both of which we will verify in the data.

First, Dmt~0; the subject aims for the center of the target. Second,

for any choice of obstacle location Xo, the choice of planned

excursion Dmoin the obstacle plane determines both the standard

deviation in the obstacle plane (so) and in the target plane (st).

The result is an empirical model of the trajectory bundles (i.e., the

distributions w xt,xojs½ �) available to the subject.

The novelty of our approach is threefold: (1) We are examining

the tradeoff between uncertainty at two points along a reach

trajectory, manipulating this tradeoff by altering the costs

associated with intersecting the obstacle. (2) We are considering

‘‘soft obstacles’’ where, given an appropriate cost structure, the

optimal choice of movement plan may involve a high risk of hitting

the obstacle. (3) We apply a method that allows us to compare

human obstacle avoidance to the predictions of a Bayesian model

even when we have no theoretical model of the possible trajectory

bundles available to the subject (the Dominance Test).

Materials and Methods

Ethics Statement
Seven naive subjects participated in the experiment. Subjects

were paid for their time ($10/hr.) and also received a bonus based

on points earned during the experiment that amounted to $.01 per

point (an additional $5–$10 over the hourly rate). All participants

provided informed consent and research protocols were approved

by the local Institutional Review Board.

Apparatus
Subjects were seated in a dimly lit room 42.5 cm away from a

fronto-parallel transparent polycarbonate screen mounted flush to

the front of a 210 computer monitor (Sony Multiscan G500,

192061440 pixels, 60 Hz). Reach trajectories were recorded using

a Northern Digital Optotrak 3D motion capture system with two

three-camera heads located above-left and above-right of the

subject. Subjects wore a ring over the distal joint of the right index

finger. A small (0.7567 cm) wing, bent 20 deg at the center, was

attached to the ring. Three infrared emitting diodes (IREDs) were

attached to each half of the wing, the 3D locations of which were

tracked by the Optotrak system. Further details of the apparatus

are given in a recent report [16]. The experiment was run using

the Psychophysics Toolbox software [17,18] and the Northern

Digital API (for controlling the Optotrak) on a Pentium III Dell

Precision workstation.

Stimuli
Subjects attempted to touch targets on a computer screen,

represented visually as a vertical [6.5 mm615 cm] strip, whose

locations were chosen randomly and uniformly from a set of three

locations [0, 38, 75 mm] relative to the monitor center. Rewards

and penalties were specified in terms of points. Hits on the target

earned subjects two points, and passing through the obstacle

incurred a cost of one, two or five points. Missing the target earned

no points, and too-slow reaches incurred a cost of ten points.

Task
All reaches. All trials proceeded as follows: subjects brought their

right index finger to a fixed starting position at the front edge of

the table (15 cm to the right of screen center), triggering the start

of the trial. Next, the target (and obstacle) was displayed

(Figure 1A), followed 50 ms later by a brief tone indicating that

subjects could begin their reach when ready. Movement onset was

defined as the moment the fingertip crossed a frontal plane 3 mm

in front of the table edge, itself located 35 cm from the screen; the

fingertip was required to reach the screen within 600 ms of

movement onset. Both the fingertip endpoint, the location where

the fingertip passed through the plane of the obstacle (during

obstacle practice and experimental reaches) and a running total of

points (during experimental reaches) were displayed on-screen at

reach completion.

Procedure
Target practice. Subjects were first given practice making

reaches to targets on the screen. Targets were selected randomly

from the set of three target locations, with 50 of each target

presented. During target practice no points were awarded, and no

obstacles were present.

Obstacle practice. Following practice reaching to the three

target locations, subjects were given an opportunity to learn the

location of the obstacle plane in 3D space along the reach path. The

obstacle always occupied part of the plane at the halfway point

between the reach start and the monitor (parallel to the monitor).

A vertical line representing the obstacle edge and a small circle

near that vertical line were drawn on the screen. The vertical line

represented the leftmost edge of the obstacle, and the circle was

the target to be touched during obstacle practice. Subjects did not

attempt to hit the target by touching the screen. They were

instructed to make a ‘‘poking’’ motion in the air in front of targets

presented onscreen. When the fingertip passed through the obstacle

plane, a ‘click’ was played; a dot at the corresponding screen

location was also drawn – in blue if the fingertip passed through

the obstacle (to the right of the vertical line), and in grey otherwise.

When the fingertip crossed the obstacle plane within the target, the

onscreen representation of the target ‘‘exploded’’, indicating that

the target had been successfully touched. The set of vertical lines

was chosen randomly from a uniform distribution extending over

the set of obstacle edges used in the main experiment (see below),

and target positions were chosen randomly from a second uniform

distribution to fall within 1.5 cm (horizontally) of the vertical line.

After 50 targets in the obstacle plane had been successfully

touched, the main experiment began.

Main experiment. There were two differences between

reaches to onscreen targets during target practice and reaches in

the main experiment. First the virtual obstacle, whose leftmost

edge was always located 6.6 mm to the right of the target, was

present. And second, a running total score, along with feedback

concerning whether target, obstacle or both had been touched,

were given at the end of each movement. The three possible target

locations Xt were 0 mm, 38 mm and 75 mm to the right of the

center of the screen. The three target locations Xt combined with

three obstacle values v{ at each target for a total of nine

experimental conditions. Conditions were blocked, such that each

condition occurred four times during the experiment, and 30

Speeded Reaching around Invisible Obstacles
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reaches were performed in each block, for a total of 1080 reaches.

An instruction screen appeared at the start of each block indicating

the values v{ and vz.

Data Collection
Before each experimental session, subjects (fitted with IREDs)

touched their right index finger (pointing finger) to a metal

calibration nub located to the right of the screen while the

Optotrak recorded the locations of the six IREDs on the finger 150

times. Linear transformations converting a least-squares fit of the

three vectors derived from the 3 IREDs on each wing (left and

right; each defining a coordinate frame) into the fingertip location

at the metal nub were computed.

During each reach we recorded the 3D positions of all IREDs at

200 Hz and converted them into fingertip location using this

transformation. The 3 IREDs on the left and right wings were

used to obtain fingertip location independently, and the two

estimates were averaged when all IRED locations were available

for analysis. This redundancy allowed data to be obtained even if

IREDs on one wing or the other were occluded during some

portion of a reach.

Modeling Optimal Reach Plans
Because we cannot predict the biomechanical costs associated

with reach speed and overall length of reach trajectory that might

accompany the longer and faster reaches necessary to reach targets

within the timeout interval for, e.g., midline vs. right-of-midline

target locations, we restrict the cost function that must be

minimized by an optimal reach planner to the target and obstacle

costs defined by vz and v{. Thus, the only factors entering into

the optimal reach plan are fingertip positional uncertainty (i.e., the

standard deviation of fingertip position in the relevant plane),

average fingertip coordinates at the two critical planes,

c~ Dxo,Dxt

� �’
, and target and obstacle costs. To compute optimal

reach plans, we model the empirical relationship between mean

excursion, Dxo, and the remaining kinematic variables, the two

sample standard deviations, ŝso and ŝst at the obstacle and target

planes, respectively. The relationships were close to linear and we

thus fit three lines relating empirical fingertip standard deviation

ŝso to mean excursion Dxo separately for each of the three obstacle

positions Xo because we allowed for the possibility that fingertip

standard deviations will change differently for excursions around

nearby and further-away obstacles. Similarly we fit three lines

relating empirical fingertip standard deviation ŝst to mean

excursionDxo. These six lines allowed us to predict so and st as

a function of any planned excursion Dmo. While it is plausible that

we could develop a single equation to predict each of the standard

deviations, so and st by incorporating the obstacle location Xo

itself we could only do so at the cost of additional assumptions; the

equations we use are sufficient for our purposes.

After having obtained a function relating excursion size and

fingertip uncertainty (at both the target and obstacle planes, for all

three obstacle positions), it is possible to predict fingertip standard

deviations for theoretical excursions (Dmo) not observed experimen-

tally, around any of our obstacles. This in turn allows one to compute

the expected gain associated with any theoretical excursion.

Maximizing the expected gain function yields the prediction of the

optimal reach planner (i.e., the theoretical excursion maximizing

expected gain, Dm�o) in each of the 9 conditions of the experiment.

Statistical Analysis
In the previous section we outline our method of predicting the

obstacle avoidance behavior of an optimal Bayesian reach planner

based on modeled changes in uncertainty, both at the obstacle

plane and the target plane, of making reaches that deviate from

their natural unobstructed trajectory. Because we parameterize the

expected gain function in terms of obstacle-plane excursion, we

can test the hypothesis that data conform to the predictions of the

optimal Bayesian reach planner by comparing predicted Dm�o and

observed (Dxo) obstacle-plane excursions. Data conforming to the

Bayesian (optimal planning) model will fall along the identity line

of a plot showing observed vs. predicted excursions.

Notice that we manipulated value to get the range of data

needed to predict the standard deviations so and st given the

planned excursion Dmo, and we then use these equations to predict

the optimal excursion Dm�o for each condition. The reader may be

concerned that there is an apparent circularity in our use of the

Dominance Test. The circularity is only apparent, not actual; This

is because, no matter how well the empirical fits (relating planned

excursion to standard deviations so and st) fit the data, there is no

guarantee that the average excursion (Dxo) observed in a

particular condition, of all possible excursions, will produce the

largest possible gain; i.e., that it happened to fall at the theoretical

MEG excursion (Dm�o) for that condition. Suppose, for example,

that the subject consistently chose excursions that are 80% of the

way between the edge of the obstacle and the theoretical MEG

excursion (Dm�o). While the observer has failed to maximize

expected gain in every condition, the fits relating planned

excursions to standard deviations so and st will be little affected.

We refer the reader to the second experiment of Hudson et al.

[15], which used a similar Dominance Test and demonstrated

such a patterned failure.

We compare performance to that predicted by the optimal

planning model using standard Bayesian model comparison

techniques (see Supplemental Text S1). This analysis yields a

measure of evidence [19] (given in decibels) for the optimal planning

model (or conversely, against non-optimal planning models), based

on the odds ratio comparing the probability of the optimal

planning model given the observed data and the probability of any

of the non-optimal models on the same data. For example,

evidence of between 3 and 4.75 dB (or odds of between 2: and 3:1

favoring one model over the alternative[s]) is usually considered a

lower bound for statistically significant evidence [see e.g.,

15,16,19,20,21].

Results

Value Diagrams
Several features of the data can be observed directly in the value

diagrams (Figure 3). First, higher costs lead subjects to avoid the

obstacle region by a greater margin: there is an increasing

deviation between obstacle-plane crossing points and the obstacle

edge as v{ magnitudes increase, across all targets. However, this

change in crossing-point is not accompanied by within-target

changes in average target-relative endpoints: no matter how great

an excursion the finger took around the obstacle, the location of

the distribution of target endpoints was unchanged. This relation

of endpoint error with target position alone (i.e., independent of

excursion) allowed us to model Dmt as the average endpoint error

in each condition (Dxt), regardless of excursion size. In addition,

covariance ellipses consistently increase in size as v{ magnitudes

increase (within each target location). These four functions,

relating changes in positions and standard deviations to v{

magnitude, are plotted in Figure 4.

One can also see a slight positive correlation (‘‘counterclockwise

tilt’’) in value diagram covariance ellipses (Figure 3). That is, a

rightward deviation from the mean in the obstacle plane tends to

Speeded Reaching around Invisible Obstacles

PLOS Computational Biology | www.ploscompbiol.org 5 September 2012 | Volume 8 | Issue 9 | e1002676



be paired with a rightward deviation in the target plane. This

correlation implies that there is a component of the trial-to-trial

variation in trajectories that affects the entire reach, and is

therefore detectable at both obstacle and target planes. This

tendency is quite small, however, and is ignored in our modeling.

Modeling Covariance
We have developed a simple empirical model of the relationship

between horizontal excursion within the obstacle plane and

horizontal variance. While the model allows us to predict optimal

behavior, we make no claims regarding the factors affecting

horizontal variance.

Our study was not designed to determine the origins of

positional uncertainty, a separate and intriguing question. There

are very likely many factors that contribute separately to sensory

and motor uncertainty and we implicitly assume that those factors

(in our task, direction of gaze, body posture, etc.) are selected by

the visuo-motor system so as to provide the best possible tradeoffs

between hitting the target and avoiding the obstacles.

To compute optimal reach plans based on the data available in

the value diagrams, we re-organize the plots in Figure 4 to predict

target- and obstacle-plane fingertip positional uncertainty as

functions of the observed obstacle-relative fingertip excursion

(Figures 5A and 5B, respectively). Fitting straight-line functions to

these data by linear regression (i.e., a line was fit to the data from

each obstacle condition separately; R2 ranged from 0.8 to 0.99), we

can predict target- and obstacle-plane uncertainties at unobserved

fingertip excursions. By varying the theoretical planned excursion

(Dmo), we compute the expected gain (Equations 1–3) at the

obstacle plane (EG{), the target plane (EGz) and overall,

predicted as a function of any possible (i.e., non-positive) planned

obstacle-plane excursion for each obstacle location and v{

magnitude. An illustration of the computation is given in

Figure 5C, corresponding to the middle target location and the

middle obstacle cost. The maximum of the expected gain curve as

a function of theoretical excursion, Dmo, corresponds to the

excursion in the obstacle plane that maximizes expected gain,

denoted Dm�o.

The mean observed excursion Dxo across subjects is plotted

versus the excursion maximizing expected gain Dm�o in Figure 5D.

The confidence intervals are 95% confidence intervals across

subjects. An optimal reach planner would produce data along the

identity line of this plot. Overall, the Bayesian evidence measure

we computed is 12.99 dB (about 20:1 odds) favoring the

hypothesis that data do, in fact, fall along the identity line.

However, there are deviations when the predicted MEG excursion

(Dm�o) is large in magnitude (leftmost point in Figure 5D) where the

mean observed shift is almost a factor of two smaller than the

predicted shift. While human performance for smaller excursions

is not far from optimal, there is a clear failure of optimality for the

largest predicted excursion. Subjects passed too close to the

obstacle in following their trajectory to the target.

Stationarity
The optimal reach planning model described here assumes that

the distribution w xt,xojsð Þ on Dc is stationary (does not change

Figure 3. Value diagrams for three obstacle costs and three obstacle positions. Each value diagram plots the horizontal excursion from the
edge of the obstacle Dxo on the horizontal axis and the horizontal error from the center of the target Dxt on the vertical axis for all subjects.

Individual subject data corresponding to a given condition are plotted centered on the pooled (across subjects) mean, c~ Dxo,Dxt

� �’
. Each column of

value diagrams corresponds to a different obstacle cost (v{), and each row of diagrams corresponds to a different target/obstacle pair (given in terms
of Xt , relative to the center of the monitor).
doi:10.1371/journal.pcbi.1002676.g003
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across time). We considered the possibility that subjects might

employ a within-block ‘‘hill-climbing’’ strategy designed to

discover the MEG excursion by initially making too-large

excursions around the obstacle and reducing their size over the

following few reaches until an appropriate point was found. We

verified that this was not the case in the Supplement (Supplemen-

tal Figure S2). There, we show that the distribution of excursions

Dc does not vary appreciably over the course of each block. To

further investigate the possibility of similar cognitive strategies, we

computed autocorrelations for each subject and block up to lag 15.

No significant autocorrelations were found, suggesting that

cognitive ‘‘contamination’’ was not present in our results.

Discussion

We developed a model of obstacle avoidance within the

framework of Bayesian decision theory and tested that model

experimentally. We considered the possibility that reach trajecto-

ries around an obstacle can be explained quantitatively by a reach

planner that minimizes the overall negative effect of an intervening

obstacle. Such a reach planner would optimize the trade-off that

increases excursion extent to reduce the expected cost of

contacting the obstacle, but also decreases excursion extents so

that the probability of contacting the eventual target is not

drastically reduced.

This work represents a different approach to the problem than

is traditionally taken: We are not attempting to determine how

specific elements of the display determine changes in the details of

the obstacle-avoidance reach or affect the possible covariance

structures at the two points along the trajectory of interest. The

Bayesian decision-theoretic approach [22,23,24,25,26] allows us to

model and consider a wider range of tasks, of which simply hitting

the target or avoiding the obstacle are at the extremes of a

continuum. We frame the problem as a tradeoff among possible

value-weighted outcomes with the motor system able to select

among movement plans that assign probabilities to those outcomes

[15].

We focused on a task where the key tradeoff is between the

uncertainties at two locations (depth planes) along a reach

trajectory, and we examined the covariance structure induced by

a virtual obstacle placed between the subject and the goal. We

employed a method for testing whether subjects maximize

expected gain (the Dominance Test) based on an empirical

characterization of relevant movement strategies available to the

subject followed by a test, in each experimental condition, of

Figure 5. Planned trajectories maximizing expected gain. A.
Plot of ŝst versus Dxo for each obstacle position Xo and cost v{ (grey
level). Error bars are 61 standard error. Lines show weighted least-
squares fits of the variation of ŝst with mean excursion in the obstacle

plane Dxo for each obstacle location across subjects. B. Plot of ŝso versus

Dxo for each obstacle position Xo and each cost v{. Error bars are 61
standard error. Lines show weighted least-squares fits of variation in ŝso

with mean obstacle plane excursion (Dxo) at each obstacle location
across subjects. In panels A and B, increasing cost magnitudes
correspond to darker symbol shading. The fits in these panels represent
our estimates of the linear functions relating excursion size Dmo to
standard deviations so and st in the two critical planes. C. An example
of how expected gain varies as a function of theoretical excursion Dmo

for one experimental condition. Panels A and B form the basis for
predictions of covariance changes as a function of any planned
excursion (Dmo) in each experimental condition, which in turn allows for
prediction of the effect of Dmo on expected gain. As obstacle plane
excursions Dmo decrease (the trajectory moves closer to the obstacle),
the probability of hitting the obstacle increases and the expected cost
(plotted as a blue dot-dashed curve) magnitude increases. At the same
time, the probability of hitting the target increases and the expected
reward incurred by hitting the target increases (grey dashed curve). The
expected gain, the sum of the expected cost and expected reward, is
the solid back curve that attains its maximum (Dm�o) at the location of
the blue dot. For comparison, the mean excursion across subjects for

this condition (Dxo) is plotted as a black diamond. D. A plot of the
observed average excursion (61 standard deviation) in the obstacle

plane Dxo (averaged across subjects) versus the optimal shift that
would maximize expected gain Dm�o at each of the nine experimental
conditions.
doi:10.1371/journal.pcbi.1002676.g005

Figure 4. Summary data. A. Horizontal target-relative endpoint
errors Dxt as a function of obstacle cost. Although cost magnitude has
little effect, average errors vary slightly with target position. B. Average

fingertip excursions Dxo as a function of obstacle cost. Trajectories

move further from the obstacle (larger Dxo magnitudes) with increasing
obstacle costs, and with increasing distance of the obstacle from the
screen center. C. Standard deviation of pooled target plane errors ŝst as
a function of obstacle cost for each target position. Standard deviations
increase with cost magnitude. D. Standard deviation of pooled fingertip
excursions ŝso as a function of obstacle cost for each obstacle location.
Standard deviations increase with cost magnitude. All errors bars are
61 standard error of the mean.
doi:10.1371/journal.pcbi.1002676.g004
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whether the subject has selected the movement strategy that

maximizes expected gain.

Studies aimed at identifying the visual [e.g., 7,11], propriocep-

tive and biomechanical [e.g., 8,27] elements that affect the specific

form of a reach around an obstacle provide valuable contributions

to solving the engineering problem of how these variables interact

to modify reach trajectories planned around an obstacle. Our goal

was different. We asked why, out of all possibilities, reach

trajectories during obstacle avoidance have the form that they do.

Value Manipulation
Reaches have goals. Although particularly obvious when reaching

around an obstacle, this aspect of reach planning in the presence of

an intervening obstacle has previously been ignored. This has

created something of a dilemma for subjects, who must choose how

much ‘weight’ to assign to accidentally contacting an obstacle vs.

successfully touching the target (reminiscent of studies where one is

instructed to perform a task ‘as quickly as possible without sacrificing

accuracy’). Subjects must resolve the conflict created by these

contradictory goals by choosing a relative weighting, a weighting that

cannot generally be inferred from the data alone. Here, we avoid

these problems; obstacles are assigned a cost, giving a clear

indication of the relative ‘importance’ of accidentally contacting an

obstacle and of contacting the reach target.

Not only does our value manipulation allow us to avoid the

uncertainty associated with arbitrary target and obstacle weight-

ings that change by subject (and possibly by experimental

condition), it is also a necessary element of an optimal model of

obstacle-avoidance reach trajectories. The value component of (1)

allows us to quantitatively predict the excursion magnitudes that

form the basis of the comparison shown in Figure 5D. This in turn

allows us to separate the optimal planning model (data on the

unity line of Figure 5D) from other models of trajectory planning

around the virtual obstacle that might make the same qualitative

predictions, but are nevertheless quantitatively sub-optimal

(though not observed, such data would lie along a non-unity-line

in Figure 5D). Such a separation between qualitative and

quantitative optimal performance is demonstrated in Tassinari et

al. [28] and in Hudson et al. [15].

Optimal Feedback Control
Our data have implications for a class of popular models of

obstacle avoidance and reach planning in general based on optimal

linear feedback control [29,30,31]. One important prediction of

these models is that 2D and 3D variance may be partitioned among

the axes to produce the best task performance; for example more

precision may be required along the horizontal than along the

vertical dimension, as in the current experiments. Such a system is

capable of partitioning more variance to the dimension requiring

less precision. Here, for the first time, we are looking at a task where

variance at two points along the trajectory of a reaching movement

affects the outcome of the movement. We find no evidence that

subjects partition their covariance in response to rewards or costs.

Had they done so, there should have been increased vertical

variance, not increased horizontal variance. That is, any manipu-

lation that in fact increased horizontal variance should have been

‘referred’ to the vertical dimension, where it would not have

adversely affected performance.

Trajectories Outside the Obstacle and Target Planes and
Multiple Trajectory Constraints

We confined analysis to the intersection of trajectories with the

obstacle and target planes. The subject’s reward is determined by

these two points: fingertip position at the intersection of the

obstacle and target plane, nothing more. The subject should select

a movement plan, s, with the criteria that means and covariances

in passing through these two critical planes maximize expected

gain. Movement plans that satisfy these criteria clearly form a

subset of all possible plans, but are they unique? Does the choice of

the movement plan that maximizes expected gain in our

experiment determine the entire trajectory bundle? Or, are there

multiple planned trajectories (s’,s’’, etc.) that match s in mean and

covariance at the two critical planes, but that deviate from s
elsewhere? We cannot exclude this possibility nor can we exclude

the possibility that a subject chooses now s, now s’’, now s’, as he

pleases. All would count as optimal choices of movement plan.

The constraints we impose in the obstacle and target planes serve

to select a set of equivalent optimal movement plans but further

research is needed to determine the effect of the constraints we

impose on the trajectory outside of the obstacle and target plane.

In particular we avoided using data from outside the obstacle and

target plane precisely because measured means and covariances at

points along the trajectory outside of the obstacle and target planes

may not reflect any single movement plan and it would be

inappropriate to analyze them as if they were determined by the

constraints of our task.

In our task the location of the fingertip at just two points along

the trajectory determines the resulting reward or cost. We can

readily generalize the task by adding additional obstacles along the

path to create tasks for which the subject must consider his

covariance at many points along the trajectory. This sort of

generalization would allow investigation of the possible covariance

structures along the reach trajectory available to the motor system.

It also serves as a model task mimicking the constraints of many

natural tasks where the goal is to maneuver around multiple

obstacles to reach a goal, as in reaching into a computer chassis to

extract one component.

Biological Costs
We found that subjects’ performance was close to that of a

Bayesian decision-theoretic movement planner maximizing ex-

pected gain except for the most extreme conditions where the

optimal choice of trajectory required a large excursion (‘‘detour’’)

around the virtual obstacle. One possible explanation is that such

movements entail a large biological cost and that the subject

includes biological costs in the computation of expected gain. In

effect he ‘‘prices’’ biological cost and is willing to reduce his

monetary gain in order to reduce biological cost as well (see

discussion in [32]). Although our current data cannot speak to this

possibility, one might predict that separate measurements of

biomechanical cost would allow these extreme conditions to be

predicted as well.

The costs in our task are monetary but in theory would also

apply to tasks where movement constraints are the results of injury

or disease to the motor system [33,34]. Patients might limit their

motor repertoire in order to prevent undesirable outcomes such as

pain or clumsiness, leading to long-term, conditioned motor

deficits. This idea forms the basis of a now well-established

rehabilitation approach, Constraint Induced Movement Therapy,

in which the reward/cost structure of the environment is

manipulated in ways that encourage the use of the previously

avoided regions of motor space [35].

The conclusions we draw are based on movements confined to a

narrow, clearly visible region of space immediately in front of the

reviewer. Subjects presumably have considerable experience in

coordinating eye and hand in this region of space before they

begin the experiment. It would be interesting to investigate in
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future work with a full range of arm movements, including

whether movement plans tend to avoid awkward or unusual

movements.

Summary
We examined the problem of obstacle avoidance from the

standpoint of Bayesian decision theory. Our approach is different

from other work in the area of obstacle avoidance. Previously, this

problem has been approached from the standpoint of theories that

suggest that the CNS minimizes kinematic or dynamic variables

(e.g., total force production), with the constraint that the hand path

not intersect an obstacle. Of course, this approach fails to take

account of two major contributions to real-world movement plans:

the uncertainty of visual estimates and motor outcomes (even for

the same real-world obstacle and planned trajectory), and variable

costs associated with intersecting different kinds of obstacles

(accidentally toppling a cup of water is very different from toppling

a cup of scalding coffee). Instead, such models always predict the

smallest possible trajectory deviation that does not contact the

obstacle (with no ‘room for error’, so to speak). Moreover, the

approach confounds the effect on trajectory of hitting an

impenetrable obstacle and the cost to the subject. To return to

the example we began with, it is easy to imagine circumstances

where one would smash through the coffee cup to grasp something

on the other side, such as a child in danger of falling. We see that

obstacle avoidance, when viewed from the standpoint of Bayesian

decision theory, can explain the amount of deviation around a

virtual obstacle based on the cost of accidentally intersecting it,

and the visuo-motor uncertainty in predicting the location of the

fingertip when it passes the obstacle and when it reaches the target.

Supporting Information

Figure S1 QQ-plots. Quantiles of horizontal fingertip position

at the obstacle (a) and target (b) planes plotted against quantiles of

a standard Gaussian distribution, for each of the 9 conditions.

Data were normalized prior to plotting. Gaussian-distributed data

would fall on a straight line.

(EPS)

Figure S2 Average excursions over the course of a block.

Excursions are averaged over all blocks and subjects (the overall

mean was set to zero). Excursion values remain approximately

constant across a block; i.e., there does not appear to be any

learning. In particular, subjects do not appear to adopt a strategy

based on making initially large excursions, and subsequent

‘homing in’ on a final value.

(EPS)

Text S1 Model comparison. Basis for comparison of unity-line

vs. non-unity-line models of the data.

(DOC)
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