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Abstract

Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no
direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to
test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in
particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network.
We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor
tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test
scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were
found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network
properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a
shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel
information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted
networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain
structural organization may be an important biological basis for intelligence.
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Introduction

Researchers have long studied the biological basis for

intelligence and have found increasing evidence relating high

performance on intelligence quotient (IQ) tests to the coordination

of multiple brain regions, utilizing both structural and functional

brain imaging techniques [1–11]. Our hypothesis, inspired by

these earlier findings, is that higher IQ test scores may correspond

to more efficient information transfer in the brain. However, no

direct evidence has been provided from the perspective of brain

networks. In particular the relationship between individual

intelligence and topological properties of the brain anatomical

network has never been investigated, leaving the impact of brain

structural organization on intelligence largely unknown.

It is well accepted that the human brain, which can be viewed as

a large, interacting and complex network with nontrivial

topological properties [12–17], especially with small-world attri-

butes, characterized by a high clustering index and a short average

distance between any two nodes [18], is one of the most

challenging systems found in nature. Noninvasive investigation

of human brain networks has been enabled by recent advances in

modern neuroimaging techniques. Small-world attributes have

been found in brain functional networks using electroencephalog-

raphy, magnetoencephalography and functional magnetic reso-

nance imaging [13–17,19]. Also, recent progress has been made in

the investigation of brain anatomical networks by He et al. [20],

who investigated patterns of anatomical connections in cerebral

cortices in vivo using cortical thickness measured from structural

magnetic resonance imaging (MRI). Their findings supported the

view that human brain anatomical networks manifest small-world

attributes. However, only one binary anatomical network could be

generated from a group of subjects by their method, which made it

inapplicable for investigating the network properties of an

individual brain. In addition to He et al.’s cortical thickness

measurements, an anatomical network was derived from the inter-

regional covariation of the gray matter volume by Bassett et al.

using MRI data from 259 healthy volunteers [21]. In this data

classical divisions of the cortex (multimodal, unimodal and

transmodal) showed distinct topological distributes. Diffusion

imaging is a relatively new MRI technique, which can visualize

brain white matter fiber tracts in vivo [22–28], and has been

recently used to investigate human brain anatomical networks.

Hagmann et al. made the first attempt by applying diffusion

spectrum imaging to two healthy volunteers and was thus the first

to confirm small-world topology in the anatomical networks of

individual brains [29]. They further extended their investigation

into the dense network of cortico-cortical axonal pathways and

revealed a structural core in the human cerebral cortex [30].

Another study performed by Iturria-Medina et al. established a

weighted anatomical network for individual brains using diffusion

tensor imaging (DTI) and graph theory; they also found small-

world properties of the networks across 20 subjects [31]. However,
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their approach will sometimes result in assigning a nonzero

connection probability value to brain region pairs which are

unlikely to be connected (e.g., left frontal and right occipital cortex)

[31]. In a recent study by Gong et al. [32], a macro scale

anatomical network was established across 80 healthy volunteers

using diffusion tensor tractography (DTT). The entire cerebral

cortex was subdivided into 78 regions, not including the

subcortical structures, using automated anatomical labeling

(AAL). Their findings suggested prominent small-world attributes

which are generally compatible with the findings of previous

studies. However, only one group-based binary network was

generated from all subjects using their approach, leaving the

investigation of individual brains and the construction of weighted

brain networks unstudied.

In the present study, we tested the hypothesis that individual

intelligence is associated with the individual’s brain structural

organization. Specifically, higher intelligence test scores corre-

spond to a higher global efficiency of the individual’s brain

anatomical network. We performed our study on 79 healthy young

adults, basically using the DTT method proposed by Gong et al.

[32] with some modifications to allow the method to fit our goal.

First, we constructed a binary anatomical network of the

individual brain of each subject using a modified method, in

which subcortical structures (i.e. the thalamus) were included and

a robust algorithm for fiber tracking was employed. Secondly, we

developed the binary networks into weighted ones by introducing

an appropriate index to achieve a more complete picture for our

investigation. Thirdly, topological properties of the binary and the

weighted anatomical networks of each subject were calculated and

used for the small-world evaluation. Fourthly, depending on their

IQ tests scores, all healthy adults were divided into general

intelligence (GI) and high intelligence (HI) groups, and a two-

sample t-test of network properties was performed between the two

groups. Finally, partial correlation analyses were performed

between the IQ scores and the topological properties of brain

anatomical networks across all subjects while controlling for age

and gender. To obtain convergent evidence from the test of our

hypothesis, both inter-group comparisons and partial correlation

analyses were performed on the binary and the weighted networks;

we also reproduced our investigation utilizing different brain

parcellation schemes for network construction as well as different

indices for weighted network construction.

Results

Topological properties of the brain anatomical network
We successfully constructed binary and weighted anatomical

networks for each of the 79 subjects in the form of symmetric

connectivity matrixes using our method (see Materials and

Methods, Fig. 1, Tables 1 and 2). Figures 2 and 3 show the mean

map which was obtained by averaging across the binary

connectivity matrixes of all 79 subjects (Fig. 2) as well as a 3D

representation of the network in anatomical space (Fig. 3 A, B and

C). The network is primarily comprised of intra-hemispheric

connections with a few major inter-hemispheric connections. This

connection pattern is generally comparable with previous brain

anatomical network studies utilizing MRI and diffusion imaging

data [20,30–32]. Please note that we constructed the network

showed in Figs. 2 and 3 using a threshold value of 3 (see Materials

and Methods). In addition, six well-known white matter fiber tracts

- the genu of the corpus callosum (CC), the body of the CC, the

splenium of the CC, the cingulum, the corticospinal tract and the

inferior frontooccipital fasciculus - were further constructed in

three randomly selected subjects utilizing our fiber tracking

method and are presented in Fig. 4. We used the AAL regions

as seed regions and some extra ROIs as filters which are necessary

for correctly reconstructing the six fiber tracts. In detail, the filter

ROIs for the corpus callosum were placed on the midsagittal

planes; the ROIs for the cingulum were placed through the genu-

trunk junction and the trunk-splenium junction of the corpus

callosum in coronal planes; the ROIs for the corticospinal tract

were placed in the posterior limb of the internal capsule and the

pre- and postcentral gyri respectively; and the ROIs for inferior

frontooccipital fasciculus included large part of the entire frontal

and occipital lobes [33,34]. The trajectories of these major white

matter tracts are consistent with the existing anatomical

knowledge-base [35] as well as with a previous DTI study [36].

This consistency with anatomical and DTI information may

provide further support for the validation of our constructed

network.

Network measures included the total number of edges E,

absolute clustering coefficient Cp, mean characteristic path length

Lp and global efficiency Eglob of the network as well as the small-

world indices c and l (see Materials and Methods). The average

value of these topological properties of the binary and the

weighted networks across all the 79 subjects are listed in Table 3

along with the results of previous studies on functional and

anatomical human brain networks at a macro scale level

[15,16,20,31,32]. Our results are very compatible with these

previous findings. In particular, a prominent small-world attribute

was consistently observed in the binary networks of all 79 healthy

volunteers. In addition, we examined the hub regions and degree

distributions of the binary networks we constructed. These

examinations showed consistent results with previous studies of

functional or anatomical networks, providing further support for

our current study (Details can be found in Text S3).

Different network properties between GI and HI groups
As shown in Table 4, significant differences in network

properties were found between the GI and HI groups by a two-

sample t-test (see Materials and Methods): E was significantly larger

in the HI group; the Lp of the binary and the weighted networks

Author Summary

Networks of interconnected brain regions coordinate brain
activities. Information is processed in the grey matter
(cortex and subcortical structures) and passed along the
network via whitish, fatty-coated fiber bundles, the white
matter. Using maps of these white matter tracks, we
provided evidence that higher intelligence may result from
more efficient information transfer. Specifically, we hy-
pothesized that higher IQ derives from higher global
efficiency of the brain anatomical network. Seventy-nine
healthy young adults were divided into general and high
IQ groups. We used diffusion tensor tractography, which
maps brain white matter fibers, to construct anatomical
brain networks for each subject and calculated the
network properties using both binary and weighted
networks. We consistently found that the high intelligence
group’s brain network was significantly more efficient than
was the general intelligence group’s. Moreover, IQ scores
were significantly correlated with network properties, such
as shorter path lengths and higher overall efficiency,
indicating that the information transfer in the brain was
more efficient. These converging evidences support the
hypothesis that the efficiency of the organization of the
brain structure may be an important biological basis for
intelligence.
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was significantly shorter in HI group; the Eglob of the binary and

the weighted networks was significantly higher in HI group; no

significant difference in Cp was observed between the two groups

in the binary and weighted networks. In most cases, the weighted

networks showed a much smaller P-value than the binary

networks, suggesting that the differences in network properties

between these two groups were more significant in the weighted

networks. Please note that these results were observed using a

threshold value of 3 to construct the network (see Materials and

Methods). To explore the dependence of our results on our choice

of threshold, we reproduced the two-sample t-test between the GI

and HI groups on binary and weighted networks that we

constructed using five different threshold values ranging from 1

to 5. Similar results were consistently observed, suggesting that our

findings are relatively robust (Table 4).

Relationship between intelligence test scores and
network properties

Intelligence test scores included full scale IQ (FSIQ), perfor-

mance IQ (PIQ) and verbal IQ (VIQ) (see Materials and

Methods). As shown in Table 5, significant correlations between

the intelligence test scores and the topological properties of the

binary and the weighted anatomical brain networks were found by

partial correlation analyses in all 79 subjects, when the data were

controlled for age and gender (see Materials and Methods): E was

found to be positively correlated to FSIQ and PIQ (Fig. 5); for the

binary networks, Lp was found to be negatively correlated to FSIQ

and PIQ, and for the weighted networks, Lp was found to be

negatively correlated to FSIQ, PIQ and VIQ (Fig. 6); Eglob was

found to be positively correlated to FSIQ, PIQ and VIQ in the

binary and the weighted networks for all subjects (Fig. 7); no

significant correlation was found between Cp and the intelligence

tests scores. In most cases, the weighted networks showed a much

larger absolute value of the partial correlation coefficient and a

much smaller P-value than the binary networks, suggesting that

the correlations were stronger and more significant in the weighted

networks. Having established that changing the threshold values

did not change our overall conclusions, we will use a threshold

value of 3 throughout the rest of the Results section.

To further localize the association with intellectual perfor-

mance, the local efficiency (Ei local ) of each node region was

calculated for each subject (see Materials and Methods). As shown

in Tables 6 and 7, when we controlled for age and gender, we

found significant correlations (Pv0:05, uncorrected) using partial

correlation analyses performed across all subjects between their

intelligence test scores and the local efficiency (Ei local ) of multiple

Figure 1. Schematic representation of the transformation of the AAL template into individual DTI space. Both the T1 template and the
AAL template showed in the right column are in the MNI space, with image dimensions of 181 mm6217 mm6181 mm and voxel dimensions of
1 mm61 mm61 mm. Both the rT1 image and the transformed AAL template overlaid on it showed in the left column are in the DTI native space of
one randomly selected individual, with image dimensions of 256 mm6256 mm645 mm and voxel dimensions of 1 mm61 mm63 mm. The
homologous brain regions in AAL template were coded in different colors because the areas in the left and right hemispheres were considered
separately.
doi:10.1371/journal.pcbi.1000395.g001
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brain regions, which were located in widely-distributed areas

across the brain. These involved cortical areas in the parietal,

temporal, occipital and frontal lobes as well as subcortical

structures such as the thalamus, amygdala and hippocampus.

Convergent evidence from comprehensive analyses
We reproduced our investigations utilizing different brain

parcellation schemes for network construction (see Text S1) as

well as different indices for weighted network construction (see

Text S2). In each of these situations, we calculated the topological

properties of brain networks for small-world evaluation and

performed statistical analyses, including inter-groups comparisons

and partial correlation analyses between IQ scores and brain

network properties across all subjects as well. The results of these

analyses showed that, in most of the tested situations, prominent

small-world attributes were consistently observed across all the 79

subjects (see Text S1). More importantly, significantly higher

global efficiencies of the brain networks were consistently observed

in the HI group (see Text S1 and Text S2), and significant

correlations were consistently found between specific IQ scores

and brain network properties (see Text S1 Text S2 as well as

Figs.S1, S2, S3, S4 and S5). In particular, higher intellectual

performance corresponds to better global efficiency of the brain

networks. These comprehensive analyses provide convergent

evidence for the validity of our findings.

Discussion

In this study, we successfully constructed binary and weighted

anatomical networks for individual brains from 79 healthy young

adults using a DTT method. Network topological properties were

analyzed and prominent small-world attributes were found. These

findings are in accordance with the findings of previous human

brain network studies that were done at a macro scale level

[15,16,20,31,32]. More importantly, we found convergent evi-

dence supporting our hypothesis that individual differences in

intelligence are associated with the structural organization of the

brain. Significant differences in network properties were observed

between the GI and HI groups. Specifically, significant correla-

tions were found between intelligence tests scores and global

network topological properties from all subjects while controlling

for age and gender. To the best of our knowledge, this is the first

study that investigated the relationship between intelligence and

the brain anatomical network utilizing the DTT method and

supported the concept that complex brain network topology

parameters have cognitive significance.

Topological properties of the brain anatomical network
Efficient small-world brain anatomical network. After its

introduction by Watts and Strogatz [18], the small-world attribute

has been found in numerous complex networks, including social,

economic and biological networks. It is characterized by a high

local clustering of connections between neighboring nodes and

short path lengths between any pair of nodes [37]. The cortical

networks of other mammalian brains [12,38] as well as functional

Table 1. Cortical and sub-cortical regions defined in the AAL
template.

Region name Abbreviation Region name Abbreviation

Precentral PreCG Lingual LING

Frontal_Sup SFG Occipital_Sup SOG

Frontal_Sup_Orb SFGorb Occipital_Mid MOG

Frontal_Mid MFG Occipital_Inf IOG

Frontal_Mid_Orb MFGorb Fusiform FG

Frontal_Inf_Oper IFGoper Postcentral PoCG

Frontal_Inf_Tri IFGtri Parietal_Sup SPG

Frontal_Inf_Orb IFGorb Parietal_Inf IPG

Rolandic_Oper ROL SupraMarginal SMG

Supp_Motor_Area SMA Angular ANG

Olfactory OLF Precuneus PCUN

Frontal_Sup_Medial SFGmed Paracentral_Lobule PCL

Frontal_Mid_Orb FGMedOrb Caudate CAU

Rectus RECT Putamen PUT

Insula INS Pallidum PAL

Cingulum_Ant ACC Thalamus THA

Cingulum_Mid MCG Heschl HES

Cingulum_Post PCC Temporal_Sup STG

Hippocampus HIP Temporal_Pole_Sup STGp

ParaHippocampal PHIP Temporal_Mid MTG

Amygdala AMYG Temporal_Pole_Mid MTGp

Calcarine CAL Temporal_Inf ITG

Cuneus CUN

Abbreviations: AAL, Automated Anatomical Labeling.
doi:10.1371/journal.pcbi.1000395.t001

Table 2. Topological properties of binary anatomical networks constructed on the individual brains of all 79 subjects using five
different threshold values.

Threshold value
SOBCC group
mean (SD)

E group
mean (SD)

Cp group
mean (SD)

Lp group
mean (SD)

c group
mean (SD)

l group
mean (SD)

E_glob group
mean (SD)

1 90 (0.16) 1185 (6101) 0.52 (60.01) 2.32 (60.09) 1.83 (60.15) 1.11 (60.02) 0.50 (60.02)

2 90 (0.35) 921 (685) 0.50 (60.02) 2.60 (60.11) 1.82 (60.12) 1.13 (60.02) 0.45 (60.02)

3 90 (0.47) 785 (679) 0.49 (60.02) 2.81 (60.14) 2.07 (60.20) 1.14 (60.03) 0.42 (60.02)

4 89 (0.66) 694 (674) 0.48 (60.02) 2.99 (60.17) 2.07 (60.21) 1.17 (60.03) 0.40 (60.02)

5 89 (0.75) 625 (668) 0.47 (60.02) 3.15 (60.19) 2.13 (60.23) 1.18 (60.04) 0.39 (60.02)

Abbreviations: SOBCC, Size of Biggest Connected Component; SD, Standard deviation.
Notes: E, Cp, Lp denote the number of edges, average clustering coefficient and mean shortest path length of the network respectively. c and l denote the small-world
properties of the network. E_glob denotes the absolute global efficiency of the network. Detailed definitions can be found in the Materials and Methods section. The
values are showed in the form of group means (6SD), which were obtained by averaging across all 79 subjects.
doi:10.1371/journal.pcbi.1000395.t002
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and structural human brain networks exhibit small-world

properties [13–16,20,29–32,39]. In keeping with these earlier

findings, a salient small-world attribute was observed consistently

in the individual brains of all our healthy volunteers using our

network construction method based on DTT. However, it should

be noted that the mean value of the small-world index, l, for the

weighted networks using the number of existing fibers as the

weighted index was considerably higher than the mean value of l
for the binary networks and for the weighted networks obtained

using an average fractional anisotropy (FA) as the weighted index

(see Text S1). Thus our network construction method seems to

indicate that the number of existing fiber bundles may not be

ideally suited for describing all aspects of the topological properties

of the brain network. This could result from a variety of factors

such as the limited resolution of DTI, or the inadequate capacity

of the deterministic fiber tracking method we employed in dealing

with the ‘‘fiber crossing’’ problem, or the procedure used for

generating the random network when calculating the small-world

index. The question of how best to weight the connectivity

between two brain regions remains open. Nevertheless, although

our current analysis of brain anatomical networks may be not

completely comparable to previous investigations due to

differences in species and network construction approaches, our

results give good support to the common finding that small-world

topology is a fundamental principle of the structural and functional

organization of complex brain networks [32,40].

Figure 2. Mean map of the binary connectivity matrixes averaged across the 79 subjects. A 90690 symmetric matrix in which the x and y
axes correspond to the regions listed in Table 1 (labeled by the abbreviations defined in Table 1) and each entry represents the percentage of
subjects that have a connection between the corresponding pair of brain regions. The value of each entry ranged from 0 (black color on the map),
indicating that no subject showed a connection between the corresponding pair of brain regions, to 1 (white color in the map), indicating that the
two regions were connected in all subjects. The regions in the left and right hemispheres are ordered separately. Abbreviations: LH, Left Hemisphere;
RH, Right Hemisphere.
doi:10.1371/journal.pcbi.1000395.g002

Brain Anatomical Network and Intelligence
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Hubs and degree distribution. We identified hub regions,

which have been identified by previous studies of functional or

anatomical networks [16,20,30,32,39], such as the PCUN (see

Text S3). We also found that the distribution of the node degrees

followed an exponentially truncated power-law (see Text S3 and

Fig.S6). These findings appear to provide further support for the

validation of our current study (extended details can be found in

Text S3).

In general, the topological properties of the brain anatomical

network constructed in our current study are compatible with the

findings of previous human brain network studies. However, some

discrepancies exist between our results and previous findings, such

as the exact values of the topological properties including the

small-world indices. These discrepancies may be due to differences

in data types and analytical methods.

Relationship between intelligence and brain structural
organization

In this study, global efficiency of the brain anatomical network

was higher in the HI groups than in the GI groups, and positive

correlations between intelligence tests scores and the global

efficiency of the networks were found in all the healthy young

adults while controlling for age and gender. These findings were

consistently observed in the different situations we tested, including

the binary and the weighted networks we constructed, the different

brain parcellation schemes we employed (see Text S1) and the

various indices we used for weighted network construction (see

Text S2).

Many previous studies have related intelligence to different

structural and functional properties of the brain. Positive

correlations between IQ and total brain volume have been

reported by several research teams who used structural imaging

techniques on different populations with different scan protocols

and different intelligence measures [41–46]. Utilizing voxel-based

morphometry methods, recent studies have revealed correlations

between IQ and certain specific brain regions involving the

frontal, parietal, temporal and occipital lobes [3–5,47–50]. Several

previous functional imaging studies, using intellectually demand-

ing tasks ranging from working memory to a variety of verbal and

non-verbal reasoning, have also shown that people who performed

well on intelligence related tests recruited multiple brain regions

[1,2,9,51]. Although none of these previous studies investigated

the issue from the perspective of brain networks, they can

nonetheless provide support for our current findings. Partial

correlation analyses performed across all subjects while controlling

for age and gender revealed significant correlations between

intelligence test scores and the local efficiency (Ei local ) of multiple

brain regions, including cortical areas located in the parietal,

temporal, occipital and frontal lobes as well as subcortical

structures such as the thalamus, amygdale and hippocampus

Figure 3. 3D presentation of the binary connectivity matrixes averaged across the 79 subjects. (A), (B) and (C): A 3D presentation of the
network in anatomical space, in which the green points correspond to the 90 AAL regions defined in Table 1 and the lines correspond to the
connection between corresponding pairs of brain regions. The colors of the lines represents the percentage of subjects that have a connection
between the corresponding pair of brain regions, ranging from 0.5 (yellow color), indicating that at least half of the subjects showed a connection
between the corresponding pair of brain regions, to 1 (red color), indicating that the two regions were connected in all subjects. Abbreviations: LH,
Left Hemisphere; RH, Right Hemisphere.
doi:10.1371/journal.pcbi.1000395.g003

Brain Anatomical Network and Intelligence
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(Tables 6 and 7). Please note that the significance level for our

partial correlation analyses of the local efficiency (Ei local ) was set

at Pv0:05 and was uncorrected for multiple comparisons across

all the 90 brain regions. An even higher level of significance might

be able to be achieved in future studies by including more subjects.

However, although the interpretation of our results must be

cautious, our findings appear to provide new evidence for the

biological basis of intelligence from a network perspective. In

particular, in one recent review of 37 neuroimaging studies

associated with the neural basis of intelligence [11], Jung and

Haier found that individual differences in intelligence were closely

related to variations in a distributed brain network which included

multiple brain regions located in the dorsolateral prefrontal cortex,

the inferior and superior parietal lobe, the anterior cingulate, the

temporal and the occipital lobes. Our investigations may provide

evidence for their findings from a brain anatomical network

perspective, and more importantly, our findings may indicate that

the efficient organization of the brain anatomical network may be

important for individual intellectual performance.

In a recent study performed by our group [34], a partial

correlation analysis on the same 79 healthy volunteers together

with 15 mental retardation patients controlling for age and gender

showed that FSIQ scores were significantly correlated with the FA

value of the bilateral uncinate fasciculus, the genu and truncus of

the corpus callosum, the bilateral optic radiation and the left

corticospinal tract. Significant correlation was also found between

the FSIQ scores and the FA of the right UF when further

controlling for group identity between patient and normal control

[34]. The findings of this earlier research provide structural

evidence for our current investigation by showing that the integrity

of the major white matter bundles, which was measured by the FA

value, may be an important biological basis for human

intelligence. The results of our current study show that higher

intelligence test scores are related to a larger global efficiency

(Eglob) of the brain anatomical network (Table 5 and Fig. 7), which

may indicate better parallel information transfer in the brain [52].

According to the DTT method, in which the propagation of fiber

tracking depends on white matter integrity as measured by the FA

value, we may speculate that the more efficient network

organization associated with better intellectual performance may

relate to increased white matter integrity, not only in the major

fiber bundles investigated in our previous study but also in the

white matter connectivity across the whole brain. Our findings

support the previous finding that cognitive processes are

dependent upon the fidelity of the underlying white matter to

facilitate the rapid and error-free transmission of data between

Table 3. Topological properties including small-world indices of human brain networks in the current study and previous studies.

Brain networks N Cp Lp c l E_glob

Anatomical network (Current study, binary) 90 0.49 (60.02) 2.81 (60.14) 2.07 (60.20) 1.14 (60.03) 0.42 (60.02)

Anatomical network (Current study, weighted) 90 0.55 (60.02) 0.15 (60.03) 2.20 (60.21) 1.27 (60.08) 11.04 (62.10)

Anatomical network (Gong et al. 2008) 78 0.49 2.32 4.07 1.15 Not reported

Anatomical network (Iturria-Medina et al. 2008) 90 Not reported Not reported 1.85 1.12 Not reported

Morphological network (He et al. 2007) 54 0.30 3.05 2.36 1.15 Not reported

Functional network (Achard et al. 2006) 90 0.53 2.49 2.37 1.09 Not reported

Functional network (Salvador et al. 2005) 45 0.25 2.82 2.08 1.09 Not reported

Notes: N, Cp, Lp denote the number of nodes, average clustering coefficient and mean shortest path length of the network respectively. c and l denote the small-world
properties of the network. E_glob denotes the absolute global efficiency of the network. Detailed definitions can be found in the Materials and Methods section. The
values from our current study are showed in the form of group means (6SD), which were obtained by averaging across all 79 subjects.
doi:10.1371/journal.pcbi.1000395.t003

Figure 4. Six well-known major white matter tracts recon-
structed in three randomly selected subjects. Please note that the
fiber bundles showed here may be only parts of a specific major white
matter tract, rather than the entire tract.
doi:10.1371/journal.pcbi.1000395.g004
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different brain regions [11]. In another resting state functional

MRI study on a subset of the same 79 healthy adults (59 subjects)

performed by our group [6], brain regions in which the strength of

functional connectivity significantly correlated with intelligence

scores were distributed in the frontal, parietal, occipital and limbic

lobes. This gives increased credence to our current study by

supporting a network view of intelligence from functional imaging

evidences, thus revealing that brain activity may be relevant to

differences in intelligence even in the resting state [6].

Subjects with higher IQ scores consistently showed more edges

(E) and shorter characteristic path lengths (Lp) in the various

situations which we tested. This is consistent with previous findings

that short paths in brain networks assure effective integrity or rapid

transfer of information between and across remote regions that are

believed to constitute the basis of cognitive processes [12]. A

previous study performed by Kaiser and Hilgetag [53] demon-

strated that neural systems are not optimized exclusively for

minimal global wiring length, but for a variety of factors including

Table 4. Two-sample t-test on properties of binary and weighted networks between GI and HI groups.

Threshold
value Topological properties Value, group mean (SD)

P- value (Two-sample t-test) (Equal
variances assumed)

GI (n = 42) HI (n = 37) GI vs HI

1 E 1160.95 (95.51) 1211.51 (101.19) 0.025

Cp Binary 0.52 (0.01) 0.52 (0.01) 0 .213

Weighted 0.60 (0.02) 0.61 (0.01) 0.063

Lp Binary 2.34(0.09) 2.30(0.07) 0.019

Weighted 0.16 (0.03) 0.14 (0.02) ,0.001 *

E_glob Binary 0.50(0.02) 0.51(0.02) 0.019

Weighted 10.28 (1.74) 11.79 (2.20) 0.001 *

2 E 899.05 (78.61) 946.11 (85.65) 0.013

Cp Binary 0.50 (0.02) 0.50 (0.02) 0 .217

Weighted 0.57 (0.02) 0.57 (0.02) 0.162

Lp Binary 2.63 (0.11) 2.57 (0.10) 0.015

Weighted 0.16 (0.03) 0.14 (0.02) ,0.001 *

E_glob Binary 0.45 (0.02) 0.46 (0.02) 0.012

Weighted 10.31 (1.74) 11.83 (2.23) 0.001 *

3 E 760.86 (70.52) 812.16 (79.85) 0.003 *

Cp Binary 0.48 (0.01) 0.49 (0.02) 0.030

Weighted 0.54 (0.02) 0.55 (0.02) 0.014

Lp Binary 2.85 (0.14) 2.76 (0.13) 0.004 *

Weighted 0.16 (0.02) 0.14 (0.02) ,0.001 *

E_glob Binary 0.42 (0.02) 0.43 (0.02) 0.003 *

Weighted 10.33 (1.74) 11.84 (2.21) 0 .001 *

4 E 670.14 (66.01) 721.08 (74.22) 0.002 *

Cp Binary 0.47 (0.02) 0.49 (0.02) 0.018

Weighted 0.52 (0.02) 0.54 (0.02) 0.006 *

Lp Binary 3.04 (0.17) 2.94 (0.15) 0.006 *

Weighted 0.15 (0.02) 0.13 (0.02) 0.001 *

E_glob Binary 0.40 (0.02) 0.41 (0.02) 0.004 *

Weighted 10.40 (1.73) 11.91 (2.27) 0.001 *

5 E 601.86 (60.05) 650.86 (68.36) 0.001 *

Cp Binary 0.47 (0.02) 0.47 (0.02) 0.183

Weighted 0.51 (0.02) 0.52 (0.02) 0.034

Lp Binary 3.21 (0.19) 3.01 (0.17) 0.004 *

Weighted 0.15 (0.02) 0.13 (0.02) ,0.001 *

E_glob Binary 0.38 (0.02) 0.39 (0.02) 0.003 *

Weighted 10.44 (1.72) 11.97 (2.30) 0.001 *

Significance was set at Pv0:01 with equal variances assumed. The results for a threshold of 3 are bolded, as these were chosen for inclusion in the paper.
Abbreviations: GI, General Intelligence; HI, High Intelligence.
doi:10.1371/journal.pcbi.1000395.t004

Brain Anatomical Network and Intelligence

PLoS Computational Biology | www.ploscompbiol.org 8 May 2009 | Volume 5 | Issue 5 | e1000395



the minimization of processing steps. Although not completely

comparable in data types and analysis methods, our finding of

shorter characteristic path lengths (Lp) in the subjects with higher

IQ scores may reflect fewer signal processing steps between brain

regions.

As reviewed by Roth and Dicke [54], no universally accepted

definition of animal intelligence exists; nor has any procedure for

measuring it come to dominate the field. One view that has

emerged from previous studies of comparative and evolutionary

psychologists and cognitive ecologists is that animal intelligence

can be defined as the degree of mental or behavioral flexibility

resulting in novel solutions, either in the wild or in the laboratory

[54–57]. According to review studies of previous intelligence

investigations [11,54], various brain properties such as brain

volume, relative brain volume and encephalization quotient have

been assumed to be relevant for intelligence. However, although

humans are generally considered to be the most intelligent species,

they do not have the largest brain or cortex, either in absolute or

relative terms. But they do have the largest number of cortical

neurons and a relatively high conduction velocity between those

neurons, which appears to correlate better with intelligence as the

basis for information processing capacity [54]. Significantly,

Table 5. Partial correlation between topological properties and intelligence test scores across all subjects while controlling for age
and gender.

Threshold value Topological properties FSIQ PIQ VIQ

PCC P-value PCC P-value PCC P-value

1 E 0.173 0.132 0.159 0.167 0.167 0.146

Cp Binary 0.040 0.730 0.006 0.960 0.068 0.559

Weighted 0.114 0.322 0.071 0.537 0.146 0.206

Lp Binary 20.192 0.094 20.179 0.120 20.184 0.108

Weighted 20.312 0.006 * 20.289 0.011 * 20.297 0.009 *

E_glob Binary 0.189 0.099 0.176 0.125 0.182 0.114

Weighted 0.302 0.008 * 0.273 0.016 * 0.291 0.010 *

2 E 0.187 0.104 0.186 0.106 0.166 0.149

Cp Binary 0.123 0.286 0.110 0.341 0.121 0.294

Weighted 0.131 0.256 0.111 0.336 0.134 0.245

Lp Binary 20.198 0.085 20.206 0.073 20.172 0.135

Weighted 20.338 0.003 * 20.325 0.004 * 20.314 0.005 *

E_glob Binary 0.200 0.081 0.206 0.073 0.176 0.125

Weighted 0.304 0.007 * 0.277 0.015 * 0.293 0.010 *

3 E 0.242 0.034 * 0.242 0.034 * 0.213 0.063

Cp Binary 0.138 0.231 0.117 0.311 0.142 0.218

Weighted 0.204 0.075 0.183 0.111 0.200 0.081

Lp Binary 20.262 0.021 * 20.275 0.016 * 20.221 0.053

Weighted 20.359 0.001 * 20.342 0.002 * 20.332 0.003 *

E_glob Binary 0.264 0.021 * 0.272 0.017 * 0.227 0.047 *

Weighted 0.308 0.006 * 0.281 0.013 * 0.296 0.009 *

4 E 0.254 0.026 * 0.264 0.020 * 0.217 0.058

Cp Binary 0.175 0.127 0.133 0.250 0.197 0.085

Weighted 0.218 0.057 0.179 0.119 0.233 0.042 *

Lp Binary 20.270 0.017 * 20.285 0.012 * 20.230 0.044 *

Weighted 20.357 0.001 * 20.330 0.003 * 20.338 0.003 *

E_glob Binary 0.272 0.017 * 0.284 0.012 * 0.233 0.041 *

Weighted 0.306 0.007 * 0.275 0.015 * 0.297 0.009 *

5 E 0.265 0.020 * 0.255 0.025 * 0.243 0.033 *

Cp Binary 0.017 0.884 20.015 0.898 0.040 0.727

Weighted 0.111 0.336 0.076 0.513 0.129 0.264

Lp Binary 20.275 0.015 * 20.287 0.011 * 20.237 0.038 *

Weighted 20.365 0.001 * 20.339 0.003 * 20.347 0.002 *

E_glob Binary 0.277 0.015 * 0.279 0.014 * 0.246 0.031 *

Weighted 0.309 0.006 * 0.277 0.015 * 0.300 0.008 *

Significance was set at P,0.05. The results for a threshold of 3 are bolded, as these were chosen for inclusion in the paper.
Abbreviations: FSIQ, Full Scale IQ; PIQ, Performance IQ; VIQ, Verbal IQ; PCC, Partial Correlation Coefficient.
doi:10.1371/journal.pcbi.1000395.t005
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myelinated cortical fibers are relatively thin in elephants and

cetaceans, but particularly thick in primates [58,59], contributing

to a better conduction velocity. This supports the idea that an

increase in information processing capacity is of great importance

for intelligence [54]. In our study, intelligence test scores were

found to be significantly correlated to the complex brain network

topological properties derived from a fiber tracking method based

on DTI. Our results appear to support previous findings since DTI

is currently the only noninvasive brain imaging technique that can

explore the structure of white matter in vivo and provide

information about the white matter integrity of cortical fibers, a

topic which is obviously closely related to fiber myelination

[28,60,61]. However, more extensive future analyses are necessary

to clarify more clearly the relationship between the complex brain

network topological parameters that we calculated and the

conduction velocity between neurons and to determine how these

are related to the information processing capacity of the human

brain.

In conclusion, we successfully constructed binary and weighted

anatomical networks of the individual brains of 79 healthy adults.

These networks showed topological properties that included a

prominent small-world attribute that was quite comparable with

Figure 5. Significant partial correlation between the total number of edges and intelligence tests scores. E was found to be positively
correlated to FSIQ and PIQ.
doi:10.1371/journal.pcbi.1000395.g005

Figure 6. Significant partial correlation between Lp and intelligence tests scores. In the case of binary networks, Lp was found to be
negatively correlated to FSIQ and PIQ; and in the case of weighted networks, Lp was found to be negatively correlated to FSIQ, PIQ and VIQ.
doi:10.1371/journal.pcbi.1000395.g006
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the findings of previous human brain network studies. More

importantly, extensive analysis consistently revealed significant

correlations between intelligence test scores and brain anatomical

network properties across all subjects, providing convergent

evidence for our hypothesis that a more efficient brain structural

organization may be an important biological basis for higher

intelligence. Our study may provide new clues for understanding

the mechanism of intelligence.

Materials and Methods

Subjects
It should be noted that the healthy adults included in this

current work have been used in previous studies performed by our

group for different purposes [6,34,62]. However, we will again

present the description of these adults in detail here in order to

clearly present our current investigation.

Seventy-nine normal subjects (44 males and 35 females, mean

age = 23.8 years, range = 17–33 years) were recruited by adver-

tisement. Each subject was examined using the Chinese Revised

Wechsler Adult Intelligence Scale (WAIS-RC) [63]. Across all

subjects, the mean FSIQ was 113.7 (range = 71–145); the mean

test score of PIQ was 110.6 (range = 64–153); and the mean test

score of VIQ was 114.4 (range = 76–140). All subjects were right-

handed and Han Chinese in origin.

Ethics Statement
After a full explanation, all subjects gave voluntary written

informed consent according to the standards set by the Ethical

Committee of Xuanwu Hospital of Capital Medical University.

MRI data acquisition and preprocessing
Diffusion tensor images of all the subjects were obtained on a

3.0-T Siemens MRI scanner. A single shot echo planar imaging

sequence (TR = 6000 ms, TE = 87 ms) was employed. Diffusion

sensitizing gradients were applied along 12 non-collinear direc-

tions (b = 1000 s/mm2), together with a non-diffusion-weighted

acquisition (b = 0 s/mm2). An integrated parallel acquisition

technique was used with an acceleration factor of 2, which can

reduce the acquisition time with less image distortion from

susceptibility artifacts. From each subject, 45 axial slices were

collected. The field of view was 256 mm6256 mm; the acquisition

matrix was 1286128 and zero filled into 2566256; the number of

excitations was 3; and the slice thickness was 3 mm with no gap,

which resulted in a voxel-dimension of 1 mm61 mm63 mm. A

Figure 7. Significant partial correlation between E_glob and intelligence tests scores. Eglob was found to be positively correlated to FSIQ,
PIQ and VIQ in both the binary and weighted networks.
doi:10.1371/journal.pcbi.1000395.g007

Table 6. Brain regions that showed significant correlations
between the local efficiency and intelligence test scores in
binary networks across all subjects while controlling for age
and gender.

Brain regions
(Abbreviation) FSIQ PIQ VIQ

PCC P-value PCC P-value PCC P-value

PoCG _L 0.289 0.011 * 0.242 0.034 * 0.303 0.007 *

STGp _R 20.265 0.020 * 20.255 0.025 * 20.248 0.030 *

MCG _R 0.256 0.025 * 0.190 0.098 0.286 0.012 *

AMYG _R 0.249 0.029 * 0.262 0.021 * 0.232 0.042 *

MOG _L 0.215 0.061 0.282 0.013 * 0.130 0.260

MTGp _R 0.211 0.066 0.290 0.010 * 0.106 0.357

MFG _R 0.180 0.116 0.249 0.029 * 0.091 0.433

The threshold value was set at P,0.05 for significance (uncorrected). The
abbreviations of brain regions were defined in Table 1. ‘‘L’’ indicates that the
region was located in left hemisphere; ‘‘R’’ stands for right hemisphere.
Abbreviations: FSIQ, Full Scale IQ; PIQ, Performance IQ; VIQ, Verbal IQ; PCC,
Partial Correlation Coefficient.
doi:10.1371/journal.pcbi.1000395.t006
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3D T1-weighted image for each subject was obtained using a

magnetization prepared rapid gradient echo sequence. The

imaging parameters were a field of view of 220 mm6220 mm,

TE of 2 s, TR of 2.6 ms, flip angle of 9u, and a voxel-dimension of

1 mm61 mm61 mm.

Both the DTI data and T1-weighted data were visually inspected

by two radiologists for apparent artifacts arising from subject motion

and instrument malfunction. Distortions in the diffusion tensor

images caused by eddy currents and simple head motions were then

corrected by FMRIB’s Diffusion Toolbox (FSL 4.0; http://www.

fmrib.ox.ac.uk/fsl). After correction, three-dimensional maps of the

diffusion tensor and the FA were calculated using the DtiStudio

software [64]. T1-weighted images of each subject were co-

registered to the subject’s non-diffusion-weighted image (b = 0 s/

mm2) using the SPM2 package (http://www.fil.ion.ucl.ac.uk/spm),

resulting in a co-registered T1 image (rT1) in DTI space.

Construction of the brain anatomical network
Definition of network node. First, we employed the AAL

template [65] available with the MRIcro software (http://www.

sph.sc.edu/comd/rorden/mricro.html) to segment the cerebral

cortex of each subject into 90 regions (45 for each hemisphere with

the cerebellum excluded), each representing a node of the

network. As shown in Fig. 1, the parcellation process for each

subject was conducted in the DTI native space according to the

method used by Gong et al. [32]. In detail, each individual co-

registered T1 image (rT1) was normalized to the T1 template in

Montreal Neurological Institute (MNI) space. The resulting

inverse transformation was then used to warp the AAL template

from MNI space to the DTI native space in which the discrete

labeling values were preserved by using a nearest neighbor

interpolation method [32]. Both the normalization and the inverse

transformation were implemented using the SPM2 package. The

definitions of each cortical or sub-cortical region of the AAL

template are listed in Table 1.

To provide more support for our current investigation, we also

employed the parcellation scheme used by Gong et al. [32], in

which the cerebral cortex of each subject was segmented into 78

regions (39 for each hemisphere with the subcortical structures and

cerebellum excluded) using the AAL template. The subsequent

analyses were also performed under this different parcellation

scheme, with the subcortical structures excluded from examina-

tion. For details, please see Text S1.

Construction of the binary network for an individual
brain

Subsequently, DTT was performed on every subject. Seed

points were selected as voxels with an FA value greater than 0.3 in

each node region [66]. The AAL template is not a pure cortical

grey matter mask but includes tissues from both cortical grey

matter and subcortical white matter [65]. Selecting seed voxels

with the criteria of FA.0.3 in every node region helped to ensure

that the trajectories we got originated from the white matter tissue

underlying the cortical region or adjacent to subcortical structures.

A tensorline tracking algorithm, which approximates the direction

of fiber propagation by combining the major eigenvector of the

tensor, the vector of previous propagation step and the entire

tensor itself [67,68], was implemented using an in-house program

Table 7. Brain regions that showed significant correlations between the local efficiency and intelligence test scores in weighted
networks across all subjects while controlling for age and gender.

Brain regions (Abbreviation) FSIQ PIQ VIQ

PCC P-value PCC P-value PCC P-value

PoCG _L 0.349 0.002 * 0.345 0.002 * 0.313 0.006 *

IFGoper _R 0.333 0.003 * 0.274 0.016 * 0.343 0.002 *

CUN _L 0.303 0.007 * 0.253 0.026 * 0.310 0.006 *

PCUN _R 0.283 0.013 * 0.266 0.019 * 0.262 0.022 *

PCC _R 0.275 0.016 * 0.245 0.032 * 0.270 0.017 *

IFGorb _L 0.271 0.017 * 0.194 0.092 0.324 0.004 *

MOG _L 0.258 0.023 * 0.320 0.005 * 0.168 0.143

SOG _R 0.257 0.024 * 0.272 0.017 * 0.216 0.059

MOG _R 0.255 0.025 * 0.267 0.019 * 0.208 0.070

PreCG _L 0.252 0.027 * 0.223 0.051 0.262 0.021 *

MTG _L 0.247 0.030 * 0.212 0.064 0.251 0.028 *

THA _R 0.244 0.033 * 0.168 0.145 0.278 0.014

PAL _R 0.240 0.036 * 0.216 0.059 0.251 0.028 *

SFGorb _L 0.240 0.036 * 0.158 0.171 0.288 0.011 *

MFGorb _L 0.237 0.038 * 0.174 0.129 0.266 0.019 *

PAL _L 0.234 0.040 * 0.166 0.148 0.269 0.018 *

CUN _R 0.222 0.052 0.225 0.049 * 0.179 0.119

RECT _L 0.220 0.054 0.143 0.213 0.268 0.018 *

HIP _R 0.208 0.069 0.267 0.019 * 0.137 0.236

The threshold value was set at P,0.05 for significance (uncorrected). The abbreviations of brain regions were defined in Table 1. ‘‘L’’ indicates that the region was
located in the left hemisphere; ‘‘R’’ stands for the right hemisphere.
Abbreviations: FSIQ, Full Scale IQ; PIQ, Performance IQ; VIQ, Verbal IQ; PCC, Partial Correlation Coefficient.
doi:10.1371/journal.pcbi.1000395.t007
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developed in the Matlab 7.0 platform. Several previous studies

have demonstrated that tensorline tracking methods can achieve

robust and reproducible results for fiber bundles reconstruction

[68–71]. This was helpful when subcortical structures were

included for examination in our current study. The tracking

procedure was terminated at voxels with an FA value of less than

0.15 or when the angle between adjacent steps was greater than

45u [66].

Two AAL node regions i and j were considered to be connected

if the reconstructed fiber bundles with two end points located in

these two regions respectively were present [32]. However,

considering the limited resolution of DTI and the capacity of

the deterministic tractography method we employed, there is a risk

that some false-positive connections will be included. This

possibility may increase if only a few fiber bundles are

reconstructed between two node regions. In this situation the

apparent connections may be the result of noise. To address this

issue, a threshold value for the number of presented fibers was

utilized to exclude connections between regions that have too few

reconstructed fiber bundles to be certain of their validity. On the

other hand, some false-negative connections (that is, connections

that are real, but are rejected as false) might be excluded when a

relatively large threshold value was used. To determine the most

appropriate threshold, we tested values from 1 to 5 and calculated

the topological properties for the resultant networks of every

subject at each tested value. Based on the results showed in

Table 2, we chose a value of 3, which was the highest threshold

that maintained the average size of the largest connected

component at 90 across all subjects, meaning that the 90 brain

regions in the network were all connected at this threshold value in

the majority of the 79 subjects. A binary symmetric connectivity

matrix was obtained for each subject using the above procedures.

Please note that to further examine how dependent the results of

our study are on the choice of different threshold values, most of

the subsequent statistical analyses were also performed on the

topological properties of networks constructed using each of the

different threshold values ranging from 1 to 5.

Construction of a weighted network for an individual

brain. We further developed our investigation into weighted

anatomical networks by assigning a weighted index to each entry

of the binary network constructed in the previous section. In the

human brain network study by Hagmann et al. [29], in which a

weighted network for an individual brain was constructed based

on the results of fiber tracking, the number of connections between

two node regions was employed to weight the edge. Although this

previous work was performed at the millimeter scale, whereas ours

was at a larger scale, and although it used a diffusion spectrum

imaging method than ours, it may still provide a guide for the

method of weighting networks that we used in our current study.

We employed the number of existing fiber bundles between two

connecting brain regions as the connectivity weight, wij , resulting

in a weighted symmetric connectivity matrix for each individual.

To investigate other possible weighted indices, we also

employed the average FA value of all the reconstructed fiber

bundles between two connecting regions and implemented the

subsequent inspection of anatomical network properties and

statistical analyses on the resulting networks as well. Details can

be found in Text S2.

Anatomical network analyses
Graph theoretical analyses of the network topological

properties. A complex network can be represented as a graph

in which nodes correspond to the elements of the system and arcs

to the interactions between them [72]. In our current study, we

investigated both a binary anatomical network GB and a weighted

one Gw, which modeled the anatomical connections between

different cortical and subcortical AAL regions for each individual

brain. Several topological properties were included for our

investigations:

N We used N to represent the total number of nodes in the

network.

N We used E to represent the total number of edges in the

network.

N The subgraph Gi is defined as the set of nodes that are the

direct neighbors of the ith node. The degree of each node

Di,i~1,2,...,90 is defined as the number of nodes in Gi. The

degree of the network is the average across all the nodes in the

graph:

Dp~
1

N

X

i[G

Di

N For the binary network, the absolute clustering coefficient of a

node Ci B is defined as the ratio of the number of existing

connections to the number of all possible connections in the

subgraph Gi:

Ci B~
Ei

Di Di{1ð Þ=2

in which Ei is the number of edges in Gi [18,37]. For a

weighted network, the absolute clustering coefficient of a node

Ci W is defined as:

Ci W~
1

Si Di{1ð Þ
X

j,h

wijzwih

2
aijaihajh

in which aij~1 if there is an edge which connects the nodes i

and j; and Si~
PN

j~1

aijwij measures the strength of the vertices

in terms of the total weight of their connections [73]. The

absolute clustering coefficient of the network is the average of

all nodes:

Cp~
1

N

X

i[G

Ci

in which Ci~Ci B for a binary and Ci~Ci W for a weighted

network. Cp is a measure of the extent of local cliquishness or

local efficiency of information transfer of a network [18,74].

N The mean shortest absolute path length of a node is defined as:

Li~
1

N{1

X

i,j[Gw

i=j

dij

in which dij is the shortest absolute path length between the ith

node and the jth node. For a binary network, the length of

every edge is 1, and dij is defined as the number of edges along

the shortest path connecting nodes i and j. For a weighted

network, the path with the minimum number of nodes is no

longer necessarily the optimal dij because the length of every

edge is associated with the different weight indices between the
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nodes i and j. Here we followed the suggestion of Boccaletti et

al. [72], and set the length of the edge connecting nodes i and j

inversely proportional to the weight:

lij~
1

wij

:

The mean shortest absolute path length of the network is the

average across all nodes:

Lp~
1

N

X

i[G

Li

which quantifies the extent of average connectivity or the

overall routing efficiency of the network [52].

N The global efficiency of the network Eglob is defined as:

Eglob~
1

N N{1ð Þ
X

i,j[G
i=j

1

dij

which is the inverse of the harmonic mean of the minimum

absolute path length between each pair of nodes, reflecting the

global efficiency of parallel information transfer in the network

[52,74].

N The local efficiency of the ith node Ei local is defined as:

Ei local~Eglob Gið Þ

Since the ith node is not an element of the subgraph Gi, the

local efficiency can be understood as a measure of the fault

tolerance of the network, indicating how well each subgraph

exchanges information when the index node is eliminated [52].

Evaluation of the small-world property. The concept of

‘‘small-world’’, originally proposed by Watts and Strogatz [18], is

strongly related to the average clustering coefficient, Cp, and the

average shortest path length, Lp, of the given graph. A real

network would be considered as small-world if it meets the

following criteria: c~
Creal

p

Crand
p

&1 and l~
Lreal

p

Lrand
p

&1 [18], in which

Crand
p and Lrand

p are the mean clustering coefficient and mean

shortest path length of the random network. For the calculation of

Crand
p and Lrand

p , we followed the procedure which was used by Liu

et al. in their recent study of disrupted small-world networks in

schizophrenia [75]. In detail, we generated 100 random networks

for each subject’s anatomical network by a Markov-chain

algorithm [12,76,77], in which the original connectivity matrix

was randomly permuted with the same degree of distribution

preserved. The permutation procedure was repeated until the

topological structure of the original matrix was randomized [16].

Then we averaged across all 100 generated random networks to

obtain the mean Crand
p and Lrand

p . Small-world indices c and l
were then calculated for the binary and weighted anatomical

networks of every individual.

Hubs and degree distribution. To further explore the

configuration of the brain network, we examined the hub regions

and degree distribution of the binary anatomical networks we

constructed. Extended details can be found in Text S3.

Statistical analysis
A two-sample t-test on the properties of binary and weighted

networks was performed between the GI and HI groups using

SPSS13.0, and a threshold value was set at Pv0:01 for

significance. Please note that our database of healthy adults was

divided into GI (70,FSIQ,120; 22 men and 20 women; age,

22.864.1 years) and HI (FSIQ. = 120; 22 men and 15 women;

age, 24.963.3 years) groups according to their FSIQ scores in the

same manner as in the previous study by our group [34], which

was performed on the same dataset, for the sake of methodological

consistency. We believe that an explanation for our choice of an

FSIQ score of 120 as the cut-off value for general and high IQ

groups division will be helpful for clarifying this study. In the

Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) we

used, IQ classification in educational use is defined as: (1)

Extremely Low (69 and below); Borderline (70–79); (3) Low

Average (80–89); (4) Average (90–109); (5) High Average (110–

119); (6) Superior (120–129); (7) Very Superior (130 and above).

The IQ score of 120 is the cutting point which can be used to

identify the subjects with ‘‘superior’’ and ‘‘very superior’’

intelligence. In addition, there are two previous studies which

support this cutoff. In Waldmann’s et al. [78] study, subjects

between the ages of 18 and 30 were divided into groups based on

their Satz-Mogel Wechsler Adult Intelligence Scale-Revised FSIQ

scores: (a) Borderline (70 to 79); (b) Low Average (80 to 89); (c)

Average (90 to 109); (d) High Average (110 to 119); (e) Superior

(120 to 129). In another study by Karande et al. [79], ninety-five

children with specific learning disabilities (aged 9–14 years) were

divided into groups based on their nonverbal IQ scores obtained

on the Wechsler Intelligence Scale for Children test: (i) average-

nonverbal intelligence group (IQ 90–109), bright normal-nonver-

bal intelligence group (IQ 110–119), and (iii) superior-nonverbal

intelligence group (IQ 120–129). In both studies, an IQ score of

120 was used as the cutoff for identifying the ‘‘superior group’’.

Because these two studies are basically comparable to our current

study (although differing in populations, intelligence scale editions

and IQ scores) they add credibility to the IQ cutoff in our

investigation.

Partial correlations between intelligence test scores and global

brain network properties (E, Cp, Lp, Eglob) were performed across

all subjects using SPSS 13.0, while controlling the effects of age

and gender. The threshold value was set at Pv0:05 for

significance. Furthermore, to localize the association with

intellectual performance, partial correlations were also performed

between the local efficiency (Ei local ) of each node region and the

intelligence test scores across all subjects, while controlling for age

and gender. The threshold value was set at Pv0:05 for

significance (uncorrected).

Methodological considerations
There are several methodological issues in our present study

that need to be addressed.

First, a deterministic tractography method was utilized for

network construction. We realize that this kind of fiber tracking

method has a limited capacity for resolving crossing fiber bundles

[71], which may lead to the loss of some existing fiber connections

between brain regions or to the inclusion of some non-existent

fibers. A probabilistic tractography method may be a better

solution for future work as recent studies have demonstrated that

this method is advantageous for overcoming the fiber crossing

problem [27,80,81]. However, it is not applicable in our current

investigation as only 12 diffusion directions were employed for

data acquisition, an insufficient number for performing a valid

probabilistic tracking method. However, the tensorline tracking

method we used has been shown to be able to achieve robust and

stable tracking results [68–71], which would help to increase the

validity of our network construction.
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Second, in contrast to a population-based network analysis, which

may tend to exclude false-negative connections [32], our analysis of

individual brain networks may lead to false-positive connections in

each individual subject as a result of limitations that may arise from

the image resolution and the tracking method. To increase the

reliability of our work, we employed a threshold value on every

individual brain network to exclude regional connections that have

too few existing fiber bundles to be valid. Since the threshold value

was carefully tested (see Table 2) and since consistent, stable results

were obtained across all the different situations we tested, we believe

that our investigation of individual brains was basically valid.

However, more datasets using different populations should be tested

in the future for further evaluation of our method.

Third, we developed our investigations from a binary to a

weighted anatomical network by introducing different weighted

indices. Although no existing studies can directly validate our

method, our results showed that either using the number or the

average FA value of the existing fiber bundles between two regions

can lead to a network topology similar to that found in previous

human brain network studies (see Text S2). The results of the

statistical analyses indicated that using the number of fiber bundles

that link two regions as an edge weight may be more appropriate

than using the average FA when investigating the network

properties associated with intellectual performance (see Text S2).

We realize that the number of fiber bundles that we used here

cannot represent the actual number of axonal fibers, but rather

indicates the strength of the white matter connectivity between

different brain regions. Although our findings provided relatively

good support for this weight index, further examinations on other

datasets are necessary.

Finally, a risk of this study is that some of the fiber tracts

reconstructed by our method may not belong to the specific AAL

region. This could happen if the white matter voxels included in

the fiber tracking procedure were not truly adjacent to the cortex.

Additionally, the choice of the relatively high FA threshold of 0.3

for the seed voxel in our current study might increase this

possibility, since it may exclude low FA sub-cortical white matter

areas as seed regions. To address this issue Gong et al. [32]

removed white matter voxels from the unanalyzed AAL cortical

mask if no cortical voxels existed within 2 mm3 of them. We

believe that they have made an original and creative contribution

to this issue. On the other hand, because no gold standard for

identifying the nature of the removed white matter voxels exists,

their method could lead to a risk of excluding fiber tracts that

actually belong to the specific AAL region. This exclusion of

potentially significant fiber tracts could subsequently affect the

topological properties of the resulting brain anatomical network.

Here, we would like to point out that the FA threshold of 0.3 we

used in the current study was selected based on a somewhat similar

study performed by Thottakara et al. [66], in which an FA

threshold of 0.3 was used for selecting seed voxels to reconstruct

fiber tracts originating from or terminating in different Brodmann

areas utilizing the streamline tracking method. Although the

details of our current study and theirs are not completely

comparable, we believe that the FA threshold of 0.3 we used is

basically valid, considering that the DTI images in our study were

obtained from a 3.0-T MRI scanner using 12 non-collinear

diffusion encoding directions, which are the same as those used in

their study. Nevertheless, future investigations using a more

sophisticated brain template will be necessary to better address this

methodological limitation of our current study.
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