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Abstract

Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks
usually adopt a global search algorithm (for example, an evolutionary algorithm), often in combination with a local search
method (such as gradient descent) in order to minimize the value of a cost function, which measures the discrepancy
between various features of the available experimental data and model output. In this study, we approach the problem of
parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-
dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can
then be tackled using a range of well-established statistical inference methods. The particular method we used was
Kitagawa’s self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using
simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of
parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic
noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints
imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used.
Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the
Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter
estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on
compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-
dimensional inference problems based on noisy electrophysiological data and, therefore, a potentially useful tool in the
construction of biophysical neuron models.
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Introduction

Among several tools at the disposal of neuroscientists today,

data-driven computational models have come to hold an eminent

position for studying the electrical activity of single neurons and

the significance of this activity for the operation of neural circuits

[1–4]. Typically, these models depend on a large number of

parameters, such as the maximal conductances and kinetics of

gated ion channels. Estimating appropriate values for these

parameters based on the available experimental data is an issue

of central importance and, at the same time, the most laborious

task in single-neuron and circuit modeling.

Ideally, all unknown parameters in a model should be

determined directly from experimental data analysis. For example,

based on a set of voltage-clamp recordings, the type, kinetics and

maximal conductances of the voltage-gated ionic currents flowing

through the cell membrane could be determined [5] and, then,

combined in a conductance-based model, which replicates the

activity of the biological neuron of interest under current-clamp

conditions with sufficient accuracy. Unfortunately, this is not

always possible, especially for complex compartmental models,

which contain a large number of ionic currents.

A first problem arises from the fact that not all parameters can

be estimated within an acceptable error margin, especially for

small currents and large levels of noise. A second problem arises

from the practice of estimating different sets of parameters based

on data collected from different neurons of a particular type,

instead of estimating all unknown parameters using data collected

from a single neuron. Different neurons of the same type may have

quite different compositions of ionic currents [6–9] (but, see also

[10]). This implies that combining ionic currents measured from

different neurons in the same model or even using the average of

several parameters calculated over a population of neurons of the

same type will not necessarily result in a model that expresses the

experimentally recorded patterns of electrical activity under

current-clamp conditions. Usually, only some parameters are well

characterized, while others are difficult or impossible to measure

directly. Thus, most modeling studies rely on a mixture of
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experimentally determined parameters and estimates of the

remaining unknown ones using automated optimization method-

ology (see, for example, [11–22]). Typically, these methods require

the construction of a cost function (for measuring the discrepancy

between various features of the experimental data and the output

of the model) and an automated parameter selection method,

which iteratively generates new sets of parameters, such that the

value of the cost function progressively decreases during the course

of the simulation (see [23] for a review). Popular choices of such

methods are evolutionary algorithms, simulated annealing and

gradient descent methods. Often, a global search method (i.e. an

evolutionary algorithm) is combined with local search (gradient

descent) for locating multiple minima of the cost function with

high precision. Since a poorly designed cost function (for example,

one that merely matches model and experimental membrane

potential trajectories) can seriously impede optimization, the

construction of this function often requires particular attention

(see, for example, [24]). Nevertheless, these computationally

intensive methodologies have gained much popularity, particularly

due to the availability of powerful personal computers at

consumer-level prices and the development of specialized

optimization software (e.g. [25]).

Alternative approaches also exist as, for example, methods

based on the concept of synchronization between model dynamics

and experimental data [26]. An emerging trend in parameter

estimation methodologies for models in Computational Biology is

to recast parameter estimation as an inference problem in hidden

dynamical systems and then adopt standard Computational

Statistics techniques to resolve it [27,28]. For example, a particular

study following this approach makes use of Sequential Monte

Carlo methods (particle filters) embedded in an Expectation

Maximization (EM) framework [28]. Given a set of electrophys-

iological recordings and a set of dynamic equations that govern the

evolution of the hidden states, at each iteration of the algorithm

the expected joint log-likelihood of the hidden states and the data

is approximated using particle filters (Expectation Step). At a

second stage during each iteration (Maximization Step), the log-

likelihood is locally maximized with respect to the unknown

parameters. The advantage of these methods, beyond the fact that

they recast the estimation problem in a well-established statistical

framework, is that they can handle various types of noisy

biophysical data made available by recent advances in voltage

and calcium imaging techniques.

Inspired by this emerging approach, we present a method for

estimating a large number of parameters in Hodgkin-Huxley-type

models of single neurons. The method is a version of Kitagawa’s

self-organizing state-space model [29] combined with an adaptive

algorithm for selecting new sets of model parameters. The

adaptive algorithm we have used is akin to the Covariance Matrix

Adaption (CMA) Evolution Strategy [30], but other methods (e.g.

Differential Evolution as described in [31]) may be used instead.

We demonstrate the applicability of the algorithm on a range of

models using simulated or actual electrophysiological data. We

show that the algorithm can be used successfully with very noisy

data and it is straightforward to apply on compartmental models

and multiple datasets. An interesting result from this study is that

by using the self-organizing state-space model in combination with

a CMA-like algorithm, we managed to achieve a dramatic reduction

in the variance of the inferred parameter values. Our main

conclusion is that a large number of parameters in a conductance-

based model of a neuron (including maximal conductances, reversal

potentials and kinetics of gated ionic currents) can be inferred from

low-dimensional experimental data (typically, a single or a few

recordings of membrane potential activity) using the algorithm, if

sufficiently informative priors are available, for example in the form

of well-defined ranges of valid parameter values.

Methods

Modeling Framework
We begin by presenting the current conservation equation that

describes the time evolution of the membrane potential for a

single-compartment model neuron:

dV

dt
~

Iext{GL(V{EL){
P

i Ii

Cm

ð1Þ

where V , Iext and Ii are all functions of time. In the above

equation, Cm is the membrane capacitance, V is the membrane

potential, Iext is the externally applied (injected) current, GL and

EL are the maximal conductance and reversal potential of the

leakage current, respectively, and Ii is the ith transmembrane ionic

current. A voltage-gated current Ii can be modeled according to

the Hodgkin-Huxley formalism, as follows:

Ii~Gim
pi
i hi(V{Ei) ð2Þ

where mi and hi are both functions of time. In the above

expression, Gi and Ei are the maximal conductance and reversal

potential of the ith ionic current, mi and hi are dynamic gating

variables, which model the voltage-dependent activation and

inactivation of the current, and pi is a small positive integer power

(usually, not taking values larger than 4). The product m
pi
i hi is the

proportion of open channels in the membrane that carry the ith

current. The gating variables mi and hi obey first-order relaxation

kinetics, as shown below:

dmi

dt
~

m?,i{mi

tmi

,
dhi

dt
~

h?,i{hi

thi

ð3Þ

Author Summary

Parameter estimation is a problem of central importance
and, perhaps, the most laborious task in biophysical
modeling of neurons and neural networks. An emerging
trend is to treat parameter estimation in this context as yet
another statistical inference problem, which can be tackled
using well-established methods from Computational
Statistics. Inspired by these recent advances, we adopted
a self-organizing state-space-model approach augmented
with an adaptive sampling algorithm akin to the Covari-
ance Matrix Adaptation Evolution Strategy in order to
estimate a large number of parameters in a number of
Hodgkin-Huxley-type models of single neurons. Parameter
estimation was based on noisy electrophysiological data
and involved the maximal conductances, reversal poten-
tials, levels of noise and, unlike most mainstream work, the
kinetics of ionic currents in the examined models. Our
main conclusion was that parameters in complex, conduc-
tance-based neuron models can be inferred using the
aforementioned methodology, if sufficiently informative
priors regarding the unknown model parameters are
available. Importantly, the use of an adaptive algorithm
for sampling new parameter vectors significantly reduced
the variance of parameter estimates. Flexibility and
scalability are additional advantages of the proposed
method, which is particularly suited to resolve high-
dimensional inference problems.

Parameter Estimation in Hodgkin-Huxley-Type Models
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where the steady states (m?,i, h?,i) and relaxation times (tmi
, thi

)

are all functions of voltage.

Using vector notation, we can write the above system of

Ordinary Differential Equations (ODEs) in more concise form:

dx(t)

dt
~f(x(t),t) ð4Þ

where the state vector x(t) is composed of the time-evolving state

variables V , mi and hi and the vector-valued function f(:,:), which

describes the evolution of x(t) in time, is formed by the right-hand

sides of Eqs. 1 and 3. Notice that f(:,:) also depends on a

parameter vector h, which for now is dropped from Eq. 4 for

notational clarity. Components of h are the maximal conductances

Gi, the reversal potentials Ei and the various parameters that

control the voltage-dependence of the steady states and relaxation

times in Eq. 3.

The above deterministic model does not capture the inherent

variability in the electrical activity of neurons, but rather some

average behavior of intrinsically stochastic events. In general, this

variability originates from various sources, such as the random

opening and shutting of transmembrane ion channels or the

random bombardment of the neuron with external (e.g. synaptic)

stimuli [32]. Here, we model the inherent variability in single-

neuron activity by augmenting Eq. 4 with a noisy term and re-

writing as follows:

dx(t)~f(x(t),t)dtz
ffiffiffiffiffiffi
Sx

p
dWx(t) ð5Þ

where Sx is a covariance matrix and Wx(t) is a standard Wiener

process over the state space of x(t). Sx may be a diagonal matrix

of variances (s2
V , s2

mi
and s2

hi
) corresponding to each component of

the state vector.

Typically, we assume that the above model is coupled to a

measurement ‘‘device’’, which permits indirect observations of the

hidden state x(t):

y(t)~g(x(t),f(t)) ð6Þ

where f(t) is an observation noise vector. In the simplest case, the

vector of observations y(t) is one-dimensional and it may consist of

noisy measurements of the membrane potential:

y(t)~V (t)zsyN (0,1) ð7Þ

where sy is the standard deviation of the observation noise and

N (0,1) a random number sampled from a Gaussian distribution

with zero mean and standard deviation equal to unity. More

complicated non-linear, non-Gaussian observation functions may

be used when, for example, the measurements are recordings of

the intracellular calcium concentration, simultaneous recordings of

the membrane potential and the intracellular calcium concentra-

tion or simultaneous recordings of the membrane potential from

multiple sites (e.g. soma and dendrites) of a neuron.

Assuming that time t is partitioned in a very large number K of time

steps Dt, such that t[ft0,t1~t0zDt,t2~t0z2 Dt, . . . ,tK~K Dtg
and the corresponding states are x[fx0,x1,x2, . . . ,xKg, we can

approximate the solution to Eq. 5 using the following difference

equation:

xkz1~xkzf(xk,tk)Dtz
ffiffiffiffiffiffi
Sx

p
(Wx,kz1{Wx,k) ð8Þ

where Wx,kz1{Wx,k~
ffiffiffiffiffi
Dt
p

jk and jk is a random vector with

components sampled from a normal distribution with zero mean and

unit variance. The above expression implements a simple rule for

computing the membrane potential, activation and inactivation

variables at each point tkz1 of the discretized time based on

information at the previous time point tk and it can be considered as a

specific instantiation of the Euler-Maruyama method for the

numerical solution of Stochastic Differential Equations [33].

Then, the observation model becomes:

ykz1~g(xkz1,fkz1) ð9Þ

In general, measurements do not take place at every point tk of the

discretized time, but rather at intervals of Dk time steps

(depending on the resolution of the measurement device), thus

generating a total of K=Dk measurements. For simplicity in the

above description, we have assumed that Dk~1. However, all the

models we consider in the Results section assume Dkw1.

In terms of probability density functions, the non-linear state-

space model defined by Eqs. 8 and 9 (known as the dynamics model)

and the observation model, respectively) can be written as:

xkz1*p(:jxk) ð10Þ

ykz1*p(:jxkz1) ð11Þ

where the initial state x0 is distributed according to a prior density

p(x0). The above formulas are known as the state transition and

observation densities, respectively [34].

Simulation-Based Filtering and Smoothing
In many inference problems involving state-space models, a

primary concern is the sequential estimation of the following two

conditional probability densities [29]: (a) p(xkjy1:k) and (b)

p(xkjy1:K ), where y1:k~fy1,:::,ykg, i.e. the set of observations

(for example, a sequence of measurements of the membrane

potential) up to the time point tk. Density (a), known as the filter

density, models the distribution of state xk given all observations

up to and including the time point tk, while density (b), known as

the smoother density, models the distribution of state xk given the

whole set of observations up to the final time point tK .

In principle, the filter density can be estimated recursively at

each time point tk using Bayes’ rule appropriately [29]:

p(xkjy1:k)~
p(ykjxk)

p(ykjy1:k{1)

ð
p(xkjxk{1)p(xk{1jy1:k{1)dxk{1 ð12Þ

where p(xkjxk{1) and p(ykjxk) are the state transition and

observation densities, respectively, and p(xk{1jy1:k{1) is the filter

density at the previous time step tk{1.

Then, the smoother density can be obtained by using the

following general recursive formula:

p(xkjy1:K )~p(xkjy1:k)

ð
p(xkz1jxk)p(xkz1jy1:K )

p(xkz1jy1:k)
dxkz1 ð13Þ

which evolves backwards in time and makes use of the pre-

calculated filter, p(xkjy1:k). Given either of the above posterior

densities, we can compute the expectation of any useful function of

the hidden model state as:

Parameter Estimation in Hodgkin-Huxley-Type Models
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�hhk~

ð
h(xk)p(xkj:)dxk ð14Þ

where p(xkj:) is either the filter or the smoother density. Common

examples of h(xk) are xk itself (giving the mean �xxk) and the

squared difference from the mean (giving the covariance of xk).

In practice, the computations defined by the above formulas can

be performed analytically only for linear Gaussian models using

the Kalman smoother/filter and for finite state-space hidden

Markov models. For non-linear models, the extended Kalman

filter is a popular approach, which however can fail when non-

Gaussian or multimodal density functions are involved [34]. A

more generally applicable, albeit computationally more intensive

approach, approximates the filter and smoother densities using

Sequential Monte Carlo (SMC) methods, also known as particle

filters [34,35]. Within the SMC framework, the filter density at

each time point is approximated by a large number N of discrete

samples or particles, fx(1)
k , . . . ,x

(N)
k g, and associated non-negative

importance weights, fw(1)
k , . . . ,w

(N)
k g:

p(xkjy1:k)&
XN

j~1

w
(j)
k d(xk,x

(j)
k ),

XN

j~1

w
(j)
k ~1 ð15Þ

where d(xk,x
(j)
k ) is the Dirac delta function centered at the jth

particle, x
(j)
k .

Given an initial set of particles sampled from a prior distribution

and their associated weights, a simple update rule involves the

following steps [29]:

Step 1: For j~1, . . . ,N, sample a new set of particles from the

proposal transition density function, q(x
(j)
kz1jx

(j)
k ,ykz1). In general, one

has enormous freedom in choosing the form of this density and

even condition it on future observations, if these are available (see,

for example, [36]). However, the simplest (and a quite common)

choice is to use the transition density as the proposal, i.e.

q(xkjxk{1,yk)~p(xkjxk{1). This is the approach we follow in this

paper.

Step 2: For each new particle x
(j)
kz1, evaluate the importance

weight:

W
(j)
kz1~w

(j)
k p(ykz1jx

(j)
kz1)

p(x
(j)
kz1jx

(j)
k )

q(x
(j)
kz1jx

(j)
k ,ykz1)

ð16Þ

Notice that when q(x
(j)
k jx

(j)
k{1,yk)~p(x

(j)
k jx

(j)
k{1), then the compu-

tation of the importance weights is significantly simplified, i.e.

W
(j)
kz1~w

(j)
k p(ykz1jx

(j)
kz1).

Step 3: Normalize the computed importance weights, by

dividing each of them with their sum, i.e.

w
(j)
kz1~

W
(j)
kz1PN

j~1 W
(j)
kz1

ð17Þ

The derived set of weighted samples fx(j)
kz1,w

(j)
kz1g is considered

an approximation of the filter density p(xkz1jykz1).

In practice, the above algorithm is augmented with a re-

sampling step (preceding Step 1), during which N particles are

sampled from the set of weighted particles computed at the

previous iteration with probabilities proportional to their weights

[34,35]. All re-sampled particles are given weights equal to 1=N.

This step results in discarding particles with small weights and

multiplying particles with large weights, thus compensating for the

gradual degeneration of the particle filter i.e. the situation where

all particles but one have weights equal to zero. For performance

reasons, the resampling step may be applied only when the

effective number of particles drops below a threshold value, e.g.

Nthr~N=2. An estimation of the effective number of particles is

given by

N̂Neff ~
1PN

j~1 w
(j)
kz12

ð18Þ

The above filter can be extended to a fixed-lag smoother, if

instead of resampling just the particles at the current time step, we

store and resample all particles up to L time steps before the

current time step, i.e. fx(j)
k{L, . . . ,x

(j)
k{1,x

(j)
k g [29]. The resampled

particles can be considered a realization from a posterior density

p(xkjy1:kzL), which is an approximation of the smoother density

p(xkjy1:K ), for sufficiently large values of L.

Within this Monte Carlo framework, the expectation in Eq. 14

can be approximated as:

�hhk&
XN

j~1

w
(j)
k h(x

(j)
k ) ð19Þ

for a large number N of weighted samples.

Simultaneous Estimation of Hidden States and
Parameters

It is possible to apply the above standard filtering and

smoothing techniques to parameter estimation problems involving

state-space models. The key idea [29] is to define an extended state

vector zk by augmenting the state vector xk with the model

parameters, i.e. zk~(hk,xk)T . Then, the time evolution of the

extended state-space model becomes:

zkz1~
hkz1

xkz1

� �
~

hk

xkzf(xk,tk)Dtz
ffiffiffiffiffiffiffiffiffiffiffi
SxDt
p

jk

� �
ð20Þ

while the observational model remains unaltered:

ykz1~G(zkz1,fkz1)~g(xkz1,fkz1) ð21Þ

The marginal posterior density of the parameter vector hk is given

by:

p(hkjy1:K )~

ð
p(zkjy1:K )dxk~

ð
p(hk,xkjy1:K )dxk ð22Þ

and, subsequently, the expectation of any function of hk can be

computed as in Eq. 14:

�hhk~

ð
h(hk)p(hkjy1:K )dhk ð23Þ

Furthermore, given a set of particles and associated weights, which

approximate the smoother density p(zkjy1:K ) as outlined in the

previous section, i.e. fz(j)
k ,w

(j)
k g~fx

(j)
k ,h

(j)
k ,w

(j)
k g for j~1, . . . ,N, the

above expectation can be approximated as:

Parameter Estimation in Hodgkin-Huxley-Type Models
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�hhk&
XN

j~1

w
(j)
k h(h(j)

k ) ð24Þ

for large N.

Under this formulation, parameter estimation, which is

traditionally treated as an optimization problem, is reduced to

an integration problem, which can be tackled using filtering and

smoothing methodologies for state-space models, a well-studied

subject in the field of Computational Statistics.

Connection to Evolutionary Algorithms
It should be emphasized that although in Eq. 20 the parameter

vector hk was assumed constant, i.e. hkz1~hk, the same

methodology applies in the case of parameters that are naturally

evolving in time, such as a time-varying externally injected current

Iext(t). A particularly interesting case arises when an artificial

evolution rule is imposed on a parameter vector, which is

otherwise constant by definition. Such a rule allows sampling

new parameter vectors based on samples at the previous time step,

i.e. hkz1*p(:jhk), and generating a sequence fh0,h1, . . .g, which

explores the parameter space and, ideally converges in a small

optimal subset of it, after a sufficiently large number of iterations.

It is at this point that the opportunity to use techniques borrowed

from the domain of Evolutionary Algorithms arises. Here, we

assume that the artificial evolution of the parameter vector hk is

governed by a version of the Covariance Matrix Adaptation

algorithm [30], a well-known Evolution Strategy, although the

modeler is free to make other choices (e.g. Differential Evolution

[31]). For the jth particle, we write:

h
(j)
kz1~g

(j)
kz1zs

(j)
kz1

ffiffiffiffiffiffiffiffiffiffiffi
Qkz1

p
l

(j)
kz1 ð25Þ

where l(j)
kz1 is a random vector with elements sampled from a

normal distribution with zero mean and unit variance. g(j)
kz1 and

Qkz1 are a mean vector and covariance matrix respectively, which

are computed as follows:

g(j)
kz1~(1{a)h(j)

k zaÊE½hk� ð26Þ

Qkz1~(1{b)QkzbĈCov½hk� ð27Þ

In the above expressions, a and b are small adaptation constants

and ÊE½:� and ĈCov½:� are the expectation and covariance of the

weighted sample of hk, respectively. s
(j)
kz1 is a scale parameter that

evolves according to a log-normal update rule:

s
(j)
kz1~s

(j)
k exp(cw(j)

kz1) ð28Þ

where c is a small adaptation constant and w(j)
kz1*N (0,1) is a

normally distributed random number with zero mean and unit

variance.

According to Eq. 25, the parameter vector h(j)
kz1 is sampled at

each iteration of the algorithm from a multivariate normal

distribution, which is centered at g
(j)
kz1 and has a covariance

matrix equal to s
(j)
kz1

2Qkz1:

h(j)
kz1*N (g(j)

kz1,s
(j)
kz1

2Qkz1) ð29Þ

Both g
(j)
kz1 and Qkz1 are slowly adapting to the sample mean

ÊE½hk� and covariance ĈCov½hk�, with an adaptation rate determined

by the constants a and b. Notice that by switching off the

adaptation process (i.e. by setting a~b~c~0), h
(j)
kz1 evolves

according to a multivariate Gaussian distribution, which is

centered at the previous parameter vector and has a covariance

matrix equal to s
(j)
0

2Q0:

h(j)
kz1*N (h(j)

k ,s
(j)
0

2Q0) ð30Þ

Therefore, given an initial set of weighted particles

fz(j)
0 ,w

(j)
0 g~fs

(j)
0 ,h(j)

0 ,x
(j)
0 ,w

(j)
0 g sampled from some prior density

function and an initial covariance matrix Q0, which may be set

equal to the identity matrix, the smoothing algorithm presented

earlier becomes:

Step 1a: Compute the expectation ÊE½hk� and covariance

ĈCov½hk� of the weighted sample of hk

Step 1b: For j~1, . . . ,N , compute the scale factor s
(j)
kz1

according to Eq. 28. Notice that this scale factor is now part of the

extended state z
(j)
kz1 for each particle

Step 1c: For j~1, . . . ,N , compute the mean vector g(j)
kz1, as

shown in Eq. 26

Step 1d: Compute the covariance matrix Qkz1, as shown in

Eq. 27

Step 1e: For j~1, . . . ,N , sample h(j)
kz1, as shown in Eq. 25

Step 1f: For j~1, . . . ,N, sample a new set of state vectors from

the proposal density q(x
(j)
kz1jx

(j)
k ,h

(j)
kz1,ykz1), thus completing

sampling the extended vectors z
(j)
kz1. Notice that the proposal

density q(:j:) is conditioned on the updated parameter vector

h(j)
kz1.

Step 2–3: Execute steps 2 and 3 as described previously

Notice that in the algorithm outlined above, the order in which

the components of z
(j)
kz1 are sampled is important. First, we sample

the scaling factor s
(j)
kz1. Then, we sample the parameter vector

h(j)
kz1 given the updated s

(j)
kz1. Finally, we sample the state vector

x
(j)
kz1 from a proposal, which is conditioned on the updated

parameter vector h
(j)
kz1. When resampling occurs, the state vectors

x
(j)
kz1 with large importance weights are selected and multiplied

with high probability along with their associated parameter vectors

and scaling factors, thus resulting in a gradual self-adaptation

process. This self-adaptation mechanism is very common in the

Evolution Strategies literature.

Implementation
The algorithm described in the previous section was imple-

mented in MATLAB and C (source code available as Supple-

mentary Material; unmaintained FORTRAN code is also

available upon request from the first author) and tested on

parameter inference problems using simulated or actual electro-

physiological data and a number of Hodgkin-Huxley-type models:

(a) a single-compartment model (derived from the classic Hodgkin-

Huxley model of neural excitability) containing a leakage,

transient sodium and delayed rectifier potassium current, (b) a

two-compartment model of a cat spinal motoneuron [37] and (c) a

model of a B4 motoneuron in the Central Nervous System of the

pond snail Lymnaea stagnalis [38], which was developed as part of

this study. Each of these models is described in detail in the Results

section. Models (a) and (b) were used for generating noisy voltage

traces at a sampling rate of 10KHz (one sample every 0:1ms). The

simulated data was subsequently used as input to the algorithm in

order to estimate a large number of parameters; typically, maximal
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conductances of ionic currents, reversal potentials, the parameters

governing the activation and inactivation kinetics of ionic currents,

as well as the levels of intrinsic and observation noise. Estimated

parameter values were subsequently compared against the true

parameter values in the model. The MATLAB environment was

used for visualization and analysis of simulation results. For the

estimation of the unknown parameters in model (c), actual

electrophysiological data were used, as described in the next section.

Prior information was incorporated in the smoother by

assuming that parameter values were not allowed to exceed well-

defined upper or lower limits (see Tables 1, 2 and 3). For example,

maximal conductances never received negative values, while time

constants were always larger than zero. At the beginning of each

simulation, the initial population of particles was uniformly

sampled from within the acceptable range of parameter values

and, during each simulation, parameters were forced to remain

within their pre-defined limits.

All simulations were performed on an Intel dual-core i5

processor with 4 GB of memory running Ubuntu Linux. The

number of particles used in each simulation was typically 100|D,

where D was the dimensionality of the extended state z (equal to

the number of free parameters and dynamic states in the model).

The time step Dt in the Euler-Maruyama method was set equal to

0:01ms. The parameter L of the fixed-lag smoother was set equal

to 100 (unless stated otherwise), which is equivalent to a time

window 10ms wide (since data were sampled every 0:1ms). The

adaptation constants a, b and c in Eqs. 26, 27 and 28 were all set

equal to 0:01, unless stated otherwise. Depending on the size of D,

the complexity of the model and the length of the (actual or

simulated) electrophysiological recordings, simulation times

ranged from a few minutes up to more than 12 hours.

Electrophysiology
As part of this study, we developed a single-compartment

Hodgkin-Huxley-type model of a B4 neuron in the pond-snail

Lymnaea stagnalis [38]. B4 neurons are part of the neural circuit that

controls the rhythmic movements of the feeding muscles via which

the animal captures and ingests its food. The Lymnaea central

nervous system was dissected from adult animals (shell length

20{30mm) that were bred at the University of Leicester as

described previously [39]. All dissections were carried out in

HEPES-buffered saline containing (in mM) 50 NaCl, 1:6 KCl,
2 MgCl2, 3:5 CaCl2, and 10 HEPES, pH 7:9, in distilled water.

All chemicals were purchased from Sigma. The buccal ganglia

containing the B4 neurons were separated from the rest of the

nervous system by cutting the cerebral buccal connectives and the

buccal-buccal connective was crushed to eliminate electrical

coupling between B4 neurons in the left and right buccal ganglion.

Prior to recording, excess saline was removed from the dish and

small crystals of protease type XIV were placed directly on top of

the buccal ganglia to soften the connective tissue and aid the

impalement of individual neurons. The protease crystals were

washed of after about 30s with multiple changes of HEPES-

buffered saline. The B4 neuron was visually identified based on its

size and position and impaled with two sharp intracellular

electrodes filled with a mixture of 3M potassium acetate and

10mM potassium chloride (resistance *20MV). During the

recording, the preparation was bathed in HEPES-buffered saline

plus 1mM hexamethonium chloride to block cholinergic synaptic

inputs and suppress spontaneous fictive feeding activity.

The signals from the two intracellular electrodes were amplified

using a Multiclamp 900A amplifier (Molecular Devices), digitized

at a sampling frequency of 10kHz using a CED1401plus A/D

converter (Cambridge Electronic Devices) and recorded on a PC

using Spike2 version 6 software (Cambridge Electronic Devices). A

custom set of instructions using the Spike2 scripting language was

used to generate sequences of current pulses consisting of individual

random steps ranging in amplitude from {4nA to z4nA and a

duration from 1 to 256ms. The current signal was injected through

one of the recording electrodes whilst the second electrode was used

to measure the resulting changes in membrane potential.

Results

Hidden States, Intrinsic and Observational Noise are
Simultaneously Estimated Using the Fixed-Lag Smoother

The applicability of the fixed-lag smoother presented above was

demonstrated on a range of Hodgkin-Huxley-type models using

simulated or actual electrophysiological data. The first model we

examined consisted of a single compartment containing leakage,

sodium and potassium currents, as shown below:

dV~

Iext{GL(V{EL){GNam3
NahNa(V{ENa){GK m4

K (V{EK )

Cm

dtz

sV dWV

dmNa~
m?,Na{mNa

tmNa

dt, dhNa~
h?,Na{hNa

thNa

dt,

dmK~
m?,K{mK

tmK

dt

ð32Þ

where Cm~1mF=cm2. Notice the absence of noise in the

dynamics of mNa, hNa and mK , which is valid if we assume a

very large number of channels (see Supplementary Material and

Supplementary Figures S1 and S2 for the case were noise is

present in the dynamics of these variables). The steady states and

relaxation times of the activation and inactivation gating variables

were voltage-dependent, as shown below (e.g. [5]):

x?,i~ 1zexp
VH,xi

{V

VS,xi

 !{1

ð33Þ
and

txi
~tmin,xi

z(tmax,xi
{tmin,xi

)x?,i exp dxi

VH,xi
{V

VS,xi

 !
ð34Þ

where x[fm,hg and i[fNa,Kg. The parameters VH,xi
, VS,xi

, dxi
,

tmin,xi
and tmax,xi

in Eqs. 33 and 34 were chosen such that x?,i

and txi
fit closely the corresponding steady-states and relaxation

times of the classic Hodgkin-Huxley model of neural excitability in

the giant squid axon [40]. Observations consisted of noisy

measurements of the membrane potential, as shown in Eq. 7.

The full set of parameter values in the above model is given in

Table 1.

First, we used the fixed-lag smoother to simultaneously infer the

hidden states (V , mNa, hNa, mK ) and standard deviations of the

intrinsic (sV ) and observation (sy) noise based on 1s-long simulated

recordings of the membrane potential V . These recordings were

generated by assuming a time-dependent Iext in Eq. 31, which

consisted of a sequence of current steps with amplitude randomly

distributed between {5 mA=cm2 and 20 mA=cm2 and random

duration up to a maximum of 20ms. Two simulated voltage

recordings were generated corresponding to two different levels of

observation noise, sy~0:5mV and sy~50mV , respectively. The

second value (50mV ) was rather extreme and it was chosen in order to

ð31Þ
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illustrate the applicability of the method even at very high levels of

observation noise. Simulated data points were sampled every 0:1ms

(10KHz). The standard deviation of the intrinsic noise was set at

sV~5mV . The injected current Iext and the induced voltage trace

(for either value of sy) were then used as input to the smoother, during

the inference phase. At this stage, all other parameters in the model

(conductances, reversal potentials, and ionic current kinetics) were

assumed known, thus the extended state vector took the form

z~(s,sV ,sy,V ,mNa,hNa,mK )T , where s was a scale factor as in Eq.

25. New samples for s were taken from a log-normal distribution (Eq.

28), while new samples for sV and sy were drawn from an adaptive

bivariate Gaussian distribution at each iteration of the algorithm (Eq.

25). For each data set, smoothing was repeated for two different values

of the smoothing lag, i.e. L~0 and L~100. L~0 corresponds to

filtering, while L~100 corresponds to smoothing with a fixed lag

equal to 10ms. Our results from this set of simulations are summarized

in Fig. 1.

We observed that at low levels of observation noise (Fig. 1A), the

inferred expectation of the voltage (solid blue and red lines) closely

matched the underlying (true) signal (solid black line). This was

true for both values of the fixed lag L used for smoothing.

However, at high levels of observation noise (Fig. 1Bi), the true

voltage was inferred with high fidelity when a large value of the

fixed lag (L~100) was used (solid red line), but not when L~0
(solid blue line). Furthermore, the inferred expectations of the

unobserved dynamic variables mNa, hNa and mK (solid red lines in

Fig. 1Bii) also matched the true hidden time series (solid black lines

in the same figure) remarkably well, when L~100.

We repeat that during these simulations an artificial update rule

was imposed on the two free standard deviations sV and sy, as

shown in Eq. 25. The artificial evolution of these parameters is

illustrated in Fig. 1Ci, where the inferred expectations of sV and sy

are presented as functions of time. These expectations converged

immediately, fluctuating around the true values of sV and sy

(dashed lines in Fig. 1Ci). This is also illustrated by the histograms

in Fig. 1Cii, which were constructed from the data points in

Fig. 1Ci. We observed that the peaks of these histograms were

located quite closely to the true values of sV and sy (dashed lines

in Fig. 1Cii).

In summary, the fixed-lag smoother was able to recover the

hidden states and standard deviations of the intrinsic and

observation noise in the model based on noisy observations of

the membrane potential. This was true even at high levels of

observation noise, subject to the condition that a sufficiently large

smoothing lag L was adopted during the simulation.

Adaptive Sampling Reduces the Variance of Inferred
Parameter Distributions and Accelerates Convergence of
the Algorithm

Next, we treated two more parameters in the model as unknown,

i.e. the maximal conductances of the transient sodium (GNa) and

Table 1. True and estimated values and prior intervals used during smoothing for all parameters in the single-compartment
conductance-based model.

# Parameter Unit True Value Estimated Value1 Lower Bound Upper Bound

1 sV mV 1:0 1:0 0:0 10:0

2 sy mV 1:0 1:0 0:01 10:0

3 GL mS=cm2 0:3 0:17 0:0 150:0

4 GNa mS=cm2 120.0 34.3 0:0 150:0

5 GK mS=cm2 36.0 125:9 0:0 150:0

6 EL mV {54:4 {32:49 {100:0 0:0

7 ENa mV 55.0 66:35 0:0 100:0

8 EK mV {77.0 {77:8 {100:0 0:0

9 VH,mNa
mV {39:6 {42:9 {70:0 (245.0)2 {30:0 (235.0)

10 VH,hNa
mV {62:2 {58:2 {70:0 (265.0) {30:0 (255.0)

11 VH,mK
mV {51:5 {43:0 {70:0 (255.0) {30:0 (245.0)

12 VS,mNa
mV 9:5 9:0 5:0 (5.0) 25:0 (10.0)

13 VS,hNa
mV {7:1 {9:7 {25:0 (210.0) {5:0 (25.0)

14 VS,mK
mV 16:4 19:6 5:0 (10.0) 25:0 (20.0)

15 tmin,mNa
ms 0:0093 0:009 0:008 1:0

16 tmin,hNa
ms 0:4 0:6 0:01 1:0

17 tmin,mK
ms 0:5 0:24 0:01 1:0

18 tmax,mNa
ms 1:0 0:7 0:01 20:0

19 tmax,hNa
ms 16:1 6:6 0:01 20:0

20 tmax,mK
ms 8:9 12:2 0:01 20:0

21 dmNa
- 0:4 0:4 0:0 (0.0) 1:0 (0.5)

22 dhNa
- 0:4 0:2 0:0 (0.0) 1:0 (0.5)

23 dmK
- 0:8 0:6 0:0 (0.5) 1:0 (1.0)

1These parameter values were estimated when we used the broad prior intervals (see Fig. 7Di).
2Values in bold indicate the narrow prior intervals we used for generating Fig. 7Dii (and Supplementary Fig. S3).
doi:10.1371/journal.pcbi.1002401.t001
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delayed rectifier potassium (GK ) currents. The extended state

vector, thus, took the form z~(s,sV ,sy,GNa,GK ,V ,mNa,hNa,mK )T .

As in the previous section, new samples for s were drawn from a log-

normal distribution (Eq. 28), while sV , sy, GNa and GK were

sampled by default from an adaptive multivariate Gaussian

distribution at each iteration of the algorithm (Eq. 25).

In order to examine the effect of this adaptive sampling

approach on the variance of the inferred parameter distributions,

we repeated fixed-lag smoothing on 1s-long simulated recordings

of the membrane potential assuming each time that different

aspects of the adaptive sampling process were switched off, as

illustrated in Fig. 2. First, we assumed that no adaptation was

imposed on s or the ‘‘unknown’’ noise parameters and maximal

conductances, i.e. the constants a, b and c in Eqs. 26–28 were all

set equal to zero. In this case, the multivariate Gaussian

distribution from which new samples of sV , sy, GNa and GK

were drawn from reduced to Eq. 30. In addition, we assumed that

s
(j)
0 in the same equation was equal to 1, for all samples j. Under

these conditions, the true values of the free parameters were

correctly estimated through application of the fixed-lag smoother,

as illustrated for the case of GNa and GK in Figs. 2Ai and 2Aii.

Subsequently, we repeated smoothing assuming that the scale

factor s evolved according to the log-normal update rule given by

Eq. 28 with c~0:01, while a and b were again set equal to 0. As

illustrated in Figs. 2Bi and 2Bii for parameters GNa and GK , by

imposing this simple adaptation rule on the multivariate Gaussian

distribution from which the free parameters in the model were

sampled, we managed again to estimate correctly their values, but

this time the variance of the inferred parameter distributions (the

width of the histograms in Fig. 2Bii) was drastically reduced.

By further letting the mean and covariance of the proposal

Gaussian distribution in Eq. 25 adapt (by setting a~b~0:01 in

Eqs. 26 and 27), we achieved a further decrease in the spread of

the inferred parameter distributions (Figs. 2C and 2D). Parameters

sy and sV and the hidden states V , mNa, hNa and mK were also

inferred with very high fidelity in all cases (as in Fig. 1), but the

Table 2. True and estimated values and prior intervals used during smoothing for all parameters in the two-compartment
conductance-based model.

# Parameter Unit True Value Estimated Value1 Lower Bound Upper Bound

1 sVS
mV 1:0 2:1 0:0 10:0

2 sVD
mV 1:0 1:0 0:0 10:0

3 sy mV 1:0 0:9 0:01 10:0

4 GNa mS=cm2 120 88:8 0:0 150:0

5 GK mS=cm2 100 48:1 0:0 150:0

6 GK(Ca),S mS=cm2 5:0 3:2 0:0 20:0

7 GCaN,S mS=cm2 14:0 0:0 0:0 20:0

8 GK(Ca),D mS=cm2 1:1 0:72 0:0 5:0

9 GCaN,D mS=cm2 0:3 0:64 0:0 1:0

10 GCaL mS=cm2 0:33 0:2 0:0 1:0

11 VH,mNa
mV 235.0 {29:7 260.0 (245.0)2 {20:0 (225.0)

12 VH,hNa
mV {55:0 {48:5 260.0 (265.0) {20:0 (245.0)

13 VH,mK
mV {28:0 {24:1 260.0 (240.0) {20:0 (220.0)

14 VH,mCaN
mV {30:0 {33:2 260.0 (240.0) {20:0 (220.0)

15 VH,hCaN
mV {45:0 {41:4 260.0 (255.0) {20:0 (235.0)

16 VH,mCaL
mV {40:0 {45:4 260.0 (250.0) {20:0 (230.0)

17 VS,mNa
mV 7:8 8:9 5:0 (5.0) 25:0 (10.0)

18 VS,hNa
mV {7:0 {12:7 {25:0 (210.0) {5:0 (25.0)

19 VS,mK
mV 15:0 21:7 5:0 (10.0) 25:0 (20.0)

20 VS,mCaN
mV 5:0 23:0 3:0 (3.0) 23:0 (8.0)

21 VS,hCaN
mV {5:0 {5:4 {23:0 (28.0) {3:0 (23.0)

22 VS,mCaL
mV 7:0 19:8 5:0 (5.0) 25:0 (10.0)

23 tmin,mK
ms 0:65 0:2 0:01 1:0

24 tmax,hNa
ms 30:3 11:6 0:01 70:0

25 tmax,mK
ms 6:3 7:3 0:01 10:0

26 dhNa
- 0:6 0:2 0:0 (0.5) 1:0 (1.0)

27 dmK
- 0:7 0:7 0:0 (0.5) 1:0 (1.0)

28 tmCaN
ms 4:0 9:8 0:01 10:0

29 thCaN
ms 40:0 17:0 0:01 70:0

30 tmCaL
ms 40:0 48:1 0:01 70:0

1These parameter values were estimated when we used the broad prior intervals (see Fig. 11Ai).
2Values in bold indicate the narrow prior intervals we used for generating Figs. 11Aii, 11B, 11C (and Supplementary Figs. S4 and S5).
doi:10.1371/journal.pcbi.1002401.t002
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variance of the estimated posteriors for sy and sV followed the

same pattern as the variance of GNa and GK .

It is worth observing that when all three adaptation processes

were switched on (i.e. a~b~c~0:01), the algorithm converged to

a single point in parameter space within the first 1s of simulation,

which coincided with the true parameter values in the model (see

Fig. 2D for the case of GNa and GK ). At this point, the covariance

matrix �ss2
kQk became very small (i.e. all its elements were less than

10{8, although the matrix itself remained non-singular) and the

mean �ggk was very close to the true parameter vector h. We note

that �ssk~ÊE½sk� and �ggk~ÊE½gk�, where ÊE½:� stands for the

expectation computed over the population of particles. In this

case, it is not strictly correct to claim that the chains in Fig. 2Di

approximate the posteriors of the unknown parameters GNa and

GK ; since repeating the simulation many times would result in

convergence at slightly different points clustered tightly around the

true parameter values, it would be more reasonable to claim that

these optimal points are random samples from the posterior

parameter distribution and they can be treated as estimates of its

mode.

Depending on the situation, one may wish to estimate the full

posteriors of the unknown parameters or just an optimal set of

parameter values, which can be used in a subsequent predictive

simulation. In Fig. 3A, we examined in more detail how the scale

factor sk affects the variance of the final estimates, assuming that

a~b~c~0:01. We repeat that each particle j contains sk as a

component of its extended state. Each scaling factor s
(j)
k is updated

at each iteration of the algorithm following a lognormal rule (Eq.

28, Step 1b of the algorithm in the Methods section). Sampling

new parameter vectors is conditioned on these updated scaling

factors (Eq. 25, Step 1e of the algorithm). When at a later stage

weighting (and resampling) of the particles occurs, the scaling

factors that are associated with high-weight parameters and

hidden states are likely to survive into subsequent iterations (or

‘‘generations’’) of the algorithm. During the course of this adaptive

process, the scaling factors s
(j)
k are allowed to fluctuate only within

predefines limits, similarly to the other components of the

extended state vector.

In Fig. 3Ai, we demonstrate the case where the scaling factors

s
(j)
k were allowed to take values from the prior interval ½0,2�. We

observed that during the course of the simulation (which utilized

2s-long simulated membrane potential recordings), the average

value of the scaling factor, �ssk, decreased gradually towards 0 and

this was accompanied by a dramatic decrease in the variance of

the inferred parameters GNa and GK , which eventually ‘‘col-

lapsed’’ to a point in parameter space located very close to their

true values. This situation was the same as the one illustrated in

Fig. 2D. Notice that although �ssk decreased towards zero, it never

actually took this value; it merely became very small (*0:01).

When we used a prior interval for s
(j)
k with non-zero lower bound

(i.e. ½0:15,2]; see Fig. 3Aii), the final estimates had a larger

variance, providing an approximation of the full posteriors of the

‘‘unknown’’ parameters GNa and GK . Thus, controlling the lower

bound of the prior interval for the scaling factors s
(j)
k provides a

simple method for controlling the variance of the final estimates.

Notice that the variance of the final estimates also depends on the

number of particles (Fig. 3B). A smaller number of particles

resulted in a larger variance of the estimates (compare Fig. 3Bi to

Fig. 3Bii). However, when a large number of particles was already

in use, further increasing their number did not significantly affect

the variance of the estimates or the rate of convergence (compare

Fig. 3Bii to Fig. 3Aii), indicating the presence of a ceiling effect.

The adaptive sampling of the scaling factors s
(j)
k further depends

on parameter c in Eq. 28, which determines the width of the

lognormal distribution from which new samples are drawn. The

value of this parameter provides a simple way to control the rate of

convergence of the algorithm; larger values of c resulted in faster

convergence, when processing 1s-long simulated recordings

Table 3. Estimated mean values and prior limits used during smoothing for all parameters in the B4 model.

# Parameter Unit Estimated Mean Value1,2 Lower Bound Upper Bound

1 GNa mS=cm2 24:9 0:0 60:0

2 GK mS=cm2 21:5 0:0 60:0

3 GA mS=cm2 23:3 0:0 60:0

4 VH,mNa
mV {25:1 {70:0 (240.0) 0:0 (220.0)

5 VH,hNa
mV {24:1 {70:0 (240.0) 0:0 (220.0)

6 VH,mK
mV {23:1 {70:0 (240.0) 0:0 (220.0)

7 VH,mA
mV {10:2 {70:0 (220.0) 0:0 (0.0)

8 VH,hA
mV {53:6 {70:0 (270.0) 0:0 (240.0)

9 VS,mNa
mV 6:6 5:0 (5.0) 25:0 (10.0)

10 VS,hNa
mV {6:5 {25:0 (210.0) {5:0 (25.0)

11 VS,mK
mV 11:0 5:0 (10.0) 25:0 (15.0)

12 VS,mA
mV 6:8 5:0 (5.0) 25:0 (10.0)

13 VS,hA
mV {20:1 {25:0 (225.0) {5:0 (215.0)

14 tmax,hNa
ms 22:9 0:01 (15.0) 60:0 (25.0)

15 tmax,mK
ms 32:0 0:01 (25.0) 60:0 (35.0)

16 tmax,mA
ms 29:5 0:01 (25.0) 60:0 (35.0)

17 tmax,hA
ms 49:9 0:01 (35.0) 60:0 (60.0)

1These parameter values were estimated when we used the narrow prior intervals (in bold; see Fig. 12).
2The parameter posteriors estimated when we used the broad prior intervals are illustrated in Supplementary Fig. S7.
doi:10.1371/journal.pcbi.1002401.t003
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Figure 1. Simultaneous estimation of hidden states, intrinsic and observation noise. Estimation was based on a simulated recording of
membrane potential with duration 1s. For clarity, only 30ms of activity are shown in A and Bi,ii. (A) Smoothing of the membrane potential (the
observed variable), when observation noise was low (sy~0:5mV ). High-fidelity smoothing was achieved for either small (L~0) or large (L~100)
values of the fixed smoothing lag L. Simulated and smoothed data are difficult to distinguish due to their overlap. (Bi) Smoothing of the membrane
potential at high levels of observation noise (sy~50mV ). A large value of the smoothing lag (L~100) was required for high-fidelity smoothing. (Bii)
Inference of the unobserved activation (mNa , mK ) and inactivation (hNa) variables for sodium and potassium currents as functions of time, during
smoothing of the data shown in Bi for L~100. (Ci) Inference of the standard deviations for the intrinsic and observation noise (sV and sy,
respectively) during smoothing of the data shown in Bi for L~100. Dashed lines indicate the true values of sV and sy . (Cii) Histograms of the time
series for sV and sy in Ci. Again, dashed lines indicate the true values of the corresponding parameters. At this stage, maximal conductances, reversal
potentials and kinetic parameters in the model were assumed known. The number of particles was N~700. Also, a~b~c~0. The scaling factors in
Eq. 25 were all considered equal to 1.
doi:10.1371/journal.pcbi.1002401.g001
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Figure 2. The effect of adaptive parameter sampling on the variance of parameter estimates. Merging the fixed-lag smoother with an
adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy reduced significantly the variance of parameter estimates.
At this stage, the maximal conductances for the sodium (GNa) and potassium (GK ) currents were assumed unknown. Estimation was based on a
simulated recording of membrane potential with duration 1s and sV ~sy~1mV . (A) Inference of GNa and GK during smoothing, when new
parameter samples were drawn from a non-adaptive multi-variate normal distribution (Eq. 30). Dashed lines indicate the true parameter values. (B)
Inference of GNa and GK during smoothing, when new samples were drawn from a multi-variate normal distribution (Eq. 25) with an adaptive scaling
factor s (c~0:01 in Eq. 28). (C) Inference of GNa and GK during smoothing, when new samples were drawn from a multi-variate normal distribution
(Eq. 25) with adaptive scaling (as in B) and mean (a~0:01 in Eq. 26). (D) Inference of GNa and GK during smoothing, when new samples were drawn
from a multi-variate normal distribution with adaptive scaling (as in B), mean (as in C) and covariance (b~0:01 in Eq. 27). The histograms in the right
plots were constructed from the time series in the left plots. Membrane potential, activation and inactivation variables, intrinsic and observation noise
were also subject to estimation, as in Fig. 1. Smoothing lag and number of particles were L~100 and N~900, respectively. The prior interval of the
scaling factors s

(j)
k was ½0,10�.

doi:10.1371/journal.pcbi.1002401.g002
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(compare Fig. 4A to Fig. 4B). The rate of convergence also

depends on the number of particles in use (compare Fig. 4A to Fig.

4C), although it is more sensitive to changes in parameter c;

dividing the value of c by 2 (Fig. 4B) had a larger effect on the rate

of convergence than dividing the number of particles by 10
(Fig. 4C).

In summary, by assuming an adaptive sampling process for the

unknown parameters in the model, we managed to achieve a

significant reduction in the spread of the inferred posterior

distributions of these parameters. Furthermore, adjusting the prior

interval and adaptation rate c of the scaling factors s
(j)
k provides a

straightforward way to control the variance of the estimated

posteriors and the rate of convergence of the algorithm.

Alternatively, we could have set s
(j)
k ~constant, i.e. set it to the

same constant value for all particles j and time steps k (as in Fig. 2A).

However, by permitting s
(j)
k to adapt within a predefined interval,

we potentially allow this parameter and, thus, the covariance

matrices s
(j)
k

2Qk take large values, which in turn would permit the

algorithm to escape local optima in the parameter space. For

example, the time profiles of �ssk in Figs. 3 and 4 indicate that, early

during the simulations, this quantity had relatively large values,

which were associated with large variances of the posterior

parameter estimates. During this initial period, the algorithm has

the potential to ‘‘jump’’ away from local optima and towards more

optimal regions of the parameter space. One may see, here, a distant

analogy to simulated annealing, where a fictitious ‘‘temperature’’

control variable is gradually decreased, thus allowing the system to

escape local minima and gradually settle to more optimal regions of

the energy landscape.

Increasing Observation Noise Reduces the Accuracy and
Precision of the Fixed-Lag Smoother

In a subsequent stage, we treated as unknown two more parameters

in the model, i.e. the reversal potentials for the sodium and potassium

currents, ENa and EK , respectively. Thus, the extended state vector

became z~(s,sV ,sy,GNa,GK ,ENa,EK ,V ,mNa,hNa,mK )T . This time,

we wanted to examine how increasing levels of observation noise (i.e.

the value of parameter sy) affect the inference of unknown quantities in

the model based on the fixed-lag smoother. For this reason, we

repeated smoothing on four 2s-long simulated data sets (i.e. recordings

of membrane potential and the associated Iext) corresponding to

Figure 3. The effect of the size of the scaling factor s and the number of particles N on the variance of the estimates. Large minimal
values of s and small values of N imply large variance of the estimates. (A) Resampling of particles (see Methods) implies adaptation of (among
others) the scaling factors s

(j)
k , which gradually approach the lower bound of their prior interval (red lines in Ai,ii). A prior interval with zero lower

bound (i.e. ½0,2�) leads to estimates with negligible variance (Ai). A prior interval with relatively large lower bound (e.g. ½0:15,2�) leads to estimates
with non-zero variance (Aii). Notice that the expectation �ss in Ai does not actually take the value 0 (instead it becomes approximately equal to 0:01).
(B) A small number of particles (Bi, N~90) implies estimates with large variance (compare to Bii, N~1800). Notice that the difference between Aii
(N~900) and Bii (N~1800) is negligible, implying the presence of a ceiling effect, when the number of particles becomes very large. In these
simulations, L~100 and a~b~c~0:01.
doi:10.1371/journal.pcbi.1002401.g003
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increasing values of the standard deviation of the observation noise sy,

i.e. 0:5mV , 5mV , 25mV and 50mV .

The results from this set of simulations are summarized in Fig. 5.

For sy~0:5mV , the expectations of the four parameters GNa, GK ,

ENa and EK (red solid lines in Figs. 5Ai–iv) eventually converged

to their true values (dashed lines in the aforementioned figures).

For sy~50mV , the expectations of these parameters (light red

solid lines in Figs. 5Ai–iv) also converged, although the

expectations for GNa (Fig. 5Ai) and, to a lesser degree, GK

(Fig. 5Aii) deviated noticeably from their true values. As

expected, at higher levels of noise, the variance of the final

estimates was larger, although the rate of convergence did not

seem to be affected, due to the large number of particles we used

(N~1100; see ceiling effect in Fig. 3Bii). The inferred parameters

sV and sy (not illustrated for clarity) followed a similar

convergence pattern.

Figure 4. The effect of adaptation of the scaling factor s and the number of particles N on the speed of convergence. A slow rate of
adaptation for s and a small number of particles N imply slow convergence of the algorithm. The rate at which s

(j)
k adapts depends on the parameter

c in Eq. 28. Reducing c in half results in a significant decrease in the rate of convergence (compare A to B). Also, reducing the number of particles by a
factor of 10 slows down the speed of convergence (compare A to C), but not as much as when parameter c was adjusted. The plots on the right
illustrate the profile of �ss associated with the estimation of the parameters on the left plots. In these simulations, L~100, a~b~0:01 and the prior
interval for the scaling factors s

(j)
k was ½0:15,2�.

doi:10.1371/journal.pcbi.1002401.g004
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Figure 5. The effect of observation noise on the accuracy and precision of parameter estimates. Increasing observation noise decreases
the accuracy and precision of the fixed-lag smoother. At this stage, the reversal potentials for the sodium and potassium currents (ENa and EK ,
respectively) were also considered unknown. Estimation was based on a simulated recording of membrane potential with duration 2 s. The noise
parameters were sV ~1mV and sy~0:5mV , 5mV , 25mV or 50mV . (A) Inference of GNa , GK , ENa and EK during smoothing. The accuracy of the
estimates decreases and their variance increases with increasing observation noise. (B) The box plot of the time series in A for t§1s. Data were first
normalized according to Eq. 35. The reduction in the accuracy and precision at higher levels of observation noise were more prominent in the case of
the maximal conductances (GNa and GK ) and less prominent in the case of reversal potentials (ENa and, particularly EK ). The membrane potential,
activation and inactivation variables, intrinsic and observation noise were also subject to estimation, as in Fig. 1. In these simulations, L~100,
N~1100, a~b~c~0:01 and the prior interval of s

(j)
k was ½0:15,10�.

doi:10.1371/journal.pcbi.1002401.g005
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In Fig. 5B, we show, for each tested value of sy, the box plots of

the above four parameters, which were computed from the data

points (as in Fig. 5A) corresponding to time t§1s. For each

parameter and each value of sy, the data were first normalized as

follows:

~xxk~
�xxk{xtruePK

k~1 �xxk

ð35Þ

where x[fGNa,GK ,ENa,EKg. The box plots in Fig. 5B were

constructed from the normalized data points ~xxk. The above

normalization was necessary since it made possible the comparison

between different data sets, each characterized by its own mean,

variance and unit of measurement. In the box plots in Fig. 5B,

zero (i.e. the dashed lines) corresponds to the true parameter

values, while discrepancies from the true parameter values along

the y-axis are given in relation to the average
PK

k~1 �xxk. We may

observe that for very low levels of observation noise (sy~0:5mV ),

the posteriors of the four examined parameters were clustered

tightly around their true values, but for larger levels of noise

(sy~5, 25 and 50mV ), we observed larger discrepancies from the

true parameter values and broader inferred posteriors. The

parameters following more noticeably this trend were the

conductances GNa and GK , while ENa and, particularly, EK were

less affected. This indicates that smoothing is more sensitive to

changes in some model parameters than others and this is why

these parameters were tightly controlled. In summary, increasing

the levels of measurement noise (i.e. the value of parameter sy)

decreased the accuracy and precision of the algorithm, but it did

not significantly affect the rate of convergence due to the large

number of particles used during the simulations.

High-Dimensional Inference Problems are Resolved
Given Sufficiently Informative Priors

At the next stage, we treated all parameters in the model (a total

of 23 parameters; see Table 1) as unknown. Therefore, the

extended state vector took the following (28-dimensional) form:

z~(s,sV ,sy,GL,Gi,EL,Ei,VH,xi
,VS,xi

,

tmin,xi
,tmax,xi

,dxi
,V ,mNa,hNa,mK )T

where i[fNa,Kg and x[fm,hg. These parameters included the

standard deviations of intrinsic and observation noise (sV and sy,

respectively), the maximal conductances Gi and reversal potentials

Ei of all currents in the model and the parameters controlling the

steady-states and relaxation times of activation and inactivation for

the sodium and potassium currents (VH,xi
, VS,xi

, tmin,xi
, tmax,xi

and dxi
). The results from this simulation are illustrated in Fig. 6.

We observed that the true signal (membrane potential) was

inferred with very high fidelity (Fig. 6Ai). The sodium activation

mNa was also recovered with very high accuracy, while estimation

of the hidden states hNa and mK (sodium inactivation and

potassium activation, respectively) was also satisfactory (despite

significant deviations, the general form of the true hidden states

was recovered without any observable impact on the dynamics of

the membrane potential), as shown in Fig. 6Aii. Among the 23
estimated parameters, we illustrate (in Figs. 6B and 6C) the

estimated posteriors for the reversal potential of sodium ENa

(Fig. 6B) and for parameters tmax,mNa
(Figs. 6Ci,ii) and tmax,mK

(Figs. 6Ciii,iv), which control the activation of sodium and

potassium currents, respectively. We focus on these parameters,

because they represent three different characteristic cases. The

posteriors of parameters ENa and tmax,mNa
are unimodal (see

Figs. 6Bii and 6Cii) and they were estimated with relatively high

accuracy. Particularly, the posterior for tmax,mNa
was estimated

with very high precision and accuracy, despite its broad prior

interval (the y-axis in Fig. 6Ci and the x-axis in Fig. 6Cii). On the

other hand, the estimated posterior of tmax,mK
covered a large part

of its prior interval (the y-axis in Fig. 6Ciii and the x-axis in

Fig. 6Civ), its main mode was located at a slightly larger value than

the true parameter value, while at least two minor modes seem to

be present near the upper bound of the prior interval (the arrow in

Fig. 6Civ). These results reiterate our previous conclusion that

smoothing may be particularly sensitive to some parameters, but

not to others. The posteriors of parameters in the former category

are very precise and narrow (as in the case of ENa and, especially,

tmax,mNa
), while the parameters in the latter category are

characterized by broader posteriors. Also, we can observe that

the fixed-lag smoother has the capability to provide a global

approximation of the unknown posteriors, including their variance

and the location of major and minor modes (i.e. global and local

optima). An overview of all inferred posteriors is given by the box

plot in Fig. 6D, which was constructed after all data (as in Figs. 6Bi,

6Ci and 6Ciii) were normalized according to Eq. 35. Again, it may

be observed that while some of the estimated parameter posteriors

are quite precise and accurate, such as sy (parameter #2), EK

(parameter #8) and VH,mNa
(parameter #9), others are less precise

and accurate, such as the maximal conductances (parameters #3
to #5), tmax,hNa

(parameter #19) and dhNa
(parameter #22).

The simulation results presented above were obtained by

assuming a prior interval for the scaling factors s
(j)
k equal to

½0:15,10�. When we repeated the simulation using the prior

interval ½0,10�, the true underlying membrane potential was again

inferred with very high fidelity (Fig. 7Ai), while the hidden states

mNa, hNa and mK were also estimated with sufficient accuracy

(Fig. 7Aii). In this case, however, the estimates of the ‘‘unknown’’

parameters converged to single points in parameter space (as

illustrated, for example, for parameters ENa, tmax,mNa
and tmax,mK

in Figs. 7Bi–ii), which fall within the support of the posteriors

illustrated in Figs. 6B and 6C. The activation and inactivation

steady states (Fig. 7Ci, red solid lines) and relaxation times

(Fig. 7Cii, red solid lines) as functions of voltage, which were

computed from these estimates, were also similar to their

corresponding true functions, with the curves for �tthNa
and �ttmK

manifesting the largest deviation from truth (black solid lines in

Figs. 7Ci,ii). An overview of the estimated parameter values (after

normalizing using Eq. 35) is given in Fig. 7Di. As stated previously,

some estimates were close to their true counterparts, while others

were not. For example, the activation of the sodium current mNa

(Fig. 7Aii) and its steady state m?,Na (Fig. 7Ci), which are

important for the correct onset of the action potentials, were

inferred with relatively high accuracy. On the other hand, larger

errors were observed, for example, in the inference of sodium

inactivation (hNa; Fig. 7Aii) or in the estimation of GNa (parameter

#4; Fig. 7Di), the maximal conductance for the sodium current.

Given the fact that the data on which inference was based (a

single noisy recording of the membrane potential) was of much

lower dimensionality than the extended state we aimed to infer,

the observed discrepancies between inferred and true model

quantities were unlikely to vanish unless we imposed more strict

constraints on the model. When we repeated the previous

simulation using more narrow prior intervals for some of the

parameters controlling the kinetics of the sodium and potassium

currents in the model (see red dashed boxes in Fig. 7Dii and bold

intervals in Table 1), the estimated parameters settled closer to

their true values (Fig. 7Dii). This was true even for parameters on

which more narrow intervals were not directly applied, such as the
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Figure 6. Estimation of all parameters in a single-compartment conductance-based model using the fixed-lag smoother. Estimation
was based on a simulated recording of the membrane potential with duration 20s. Noise parameters were sV ~sy~1mV . For clarity, only 35ms of
activity are illustrated in Ai,ii. (A) Smoothing of the membrane potential (Ai) and the unobserved activation and inactivation variables for the sodium
and potassium currents (Aii). (B, C) Estimated posteriors for ENa (B), tmax,mNa

(Ci,ii) and tmax,mK
(Ciii,iv). The histograms on the right were constructed

form the data on left. (D) Box plot of the 23 estimated parameter posteriors in the model. These included the standard deviations of intrinsic and
observation noise, maximal conductances, reversal potentials and kinetics of all currents in the model (see Table 1). The estimates were first
normalized according to Eq. 35. Parameter identification numbers are as in Table 1. In these simulations, L~100, N~2800, a~b~c~0:01 and the
prior interval for s

(j)
k was ½0:15,10�.

doi:10.1371/journal.pcbi.1002401.g006
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Figure 7. The effect of prior parameter intervals on the accuracy of the fixed-lag smoother. Estimation was based on a simulated
recording of the membrane potential with duration 2s. Noise parameters were sV ~sy~1mV . For clarity, only 35ms of activity are illustrated in Ai,ii.
Unlike Fig. 6, the prior interval for the scaling factors s

(j)
k was now assumed equal to ½0,10�. (A) Smoothing of the membrane potential (Ai) and the

unobserved activation and inactivation variables for the sodium and potassium currents (Aii). (B) Estimates for parameters ENa (Bi), tmax,mNa
and

tmax,mK
(Bii). Convergence to an optimal parameter vector was achieved after approximately 1:5s of activity. Notice that this optimal parameter vector

falls within the support of the corresponding parameter posteriors (see Figs. 6Bii, 6Cii and 6Civ). (C) Inferred steady states (Ci) and relaxation times
(Cii) for the activation and inactivation variables of sodium and potassium currents (red lines) against their true counterparts (black lines). (D) Inferred
parameter values when broad (Di) or narrow (Dii) prior intervals were used for the parameters controlling the kinetics of sodium and potassium ionic
currents (see Table 1). Plots A, B and C correspond to plot Di. In Dii, we also illustrate the estimated parameter values when very noisy data were used
(see also Supplementary Fig. S3). In these simulations, L~100, N~2800 and a~b~c~0:01.
doi:10.1371/journal.pcbi.1002401.g007
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maximal conductances (i.e. parameters #3 to #5 in Fig. 7Dii), and

even when data with higher levels of observation noise were used

(Fig. 7Dii, data points indicated with crosses; see also Fig. S3). It is

important to mention that using more narrow prior constraints only

affected the accuracy of the final estimates, not the quality of fitting

the experimental data, which in all cases was of very high fidelity.

Alternatively, we could have constrained the model by increasing

the dimensionality of the observed signal, e.g. by using simulta-

neously more that one unique voltage traces (each generated under

different conditions of injected current) during smoothing. We

examine the use of multiple data sets simultaneously as input to the

fixed-lag smoother later in the Results section.

In summary, the smoothing algorithm can be used to resolve

high-dimensional inference problems. In combination with suffi-

cient prior information (in the form of bounded regions within

which parameters are allowed to fluctuate; see Table 1), the fixed-

lag smoother can provide estimates of the intrinsic and observation

noise, maximal conductances, reversal potentials and kinetics of

ionic currents in a single-compartment Hodgkin-Huxley-type

neuron model, based on low-dimensional noisy experimental data.

Parameter Estimation in Compartmental Models is
Straightforward Using the Fixed-Lag Smoother

Next, we tested whether the fixed-lag smoother could be

successfully applied on inference problems involving more

complex models than the one we used in the previous sections.

For this reason, we focused on a two-compartment model of a

vertebrate motoneuron containing sodium, potassium and calcium

currents and intracellular calcium dynamics, which were differen-

tially distributed among a soma and a dendritic compartment [37].

The model (modified appropriately to include intrinsic noise

terms) is summarized below:

dVS~

Iext,S{GL(VS{EL){
GC

p
(VS{VD){INa{IK{IK(Ca),S{ICaN,S

Cm

dtz

sVS
dWVS

ð36Þ

dVD~

Iext,D{GL(VD{EL){
GC

1{p
(VD{VS){IK(Ca),D{ICaN,D{ICaL

Cm

dtz

sVD
dWVD

ð37Þ

where VS and VD is the membrane potential at the soma and dendritic

compartments, respectively, and Cm~1 mF=cm2. The leakage

conductance and reversal potential were GL~0:51mS=cm2 and

EL~{60mV , respectively. The coupling conductance was

GC~0:1mS=cm2 and the ratio of the soma area to the total surface

area of the cell was p~0:1. The various ionic currents in the above

model were as follows: (a) a transient sodium current,

INa~GNam3
?,NahNa(VS{ENa), (b) a delayed rectifier potassium

current, IK~GK m4
K (VS{EK ), (c) a calcium-activated potassium

current, IK(Ca),X ~GK(Ca),X
½Ca2z �X

½Ca2z �X zKd
(VX {EK ), where X[

fS,Dg and Kd~0:2 mM (the half-saturation constant), (d) an N-type

calcium current, ICaN,X ~GCaN,X m2
CaN,X hCaN,X (VX {ECa), where

X[fS,Dg and (e) an L-type calcium current, ICaL~
GCaLmCaL(VD{ECa). The various activation and inactivation

dynamic variables in the above model were modeled using first-order

relaxation kinetics (as in Eq. 32), where the various steady states were

assumed to be sigmoid functions of voltage (Eq. 33). Notice, that the

activation of INa was assumed instantaneous and therefore, it was given

at any time by the voltage-dependent steady state m?,Na. The

relaxation times for sodium inactivation and potassium activation were

also functions of voltage as in Eq. 34:

thNa
~tmax,hNa

h?,Na exp dhNa

VH,hNa
{V

VS,hNa

 !
ð38Þ

tmK
~tmin,mK

z(tmax,mK
{tmin,mK

)m?,K exp dmK

VH,mK
{V

VS,mK

 !
ð39Þ

where the parameters tmin,xi
, tmax,xi

and dxi
(with x[fm,hg and

i[fNa,Kg) were chosen by fitting the above expressions to the original

model in [37]. The relaxation times for the remaining activation and

inactivation variables were constant. All parameters values in the

model are given in Table 2.

The intracellular calcium concentration at either the soma or

the dendritic compartment was also modeled by a first-order

differential equation, as follows:

d½Ca2z�X
dt

~f (aICa,X {k½Ca2z�X ), X[fS,Dg ð40Þ

where f ~0:01, a~0:009mol(C mm){1 and k~2ms{1. The total

calcium current is ICa,S~ICaN at the soma (X~S) and

ICa,D~ICaNzICaL at the dendritic compartment (X~D).

The observation model assumed simultaneous noisy recordings

of the membrane potential from both the soma and dendritic

compartments, as follows:

yS

yD

� �
~

VS

VD

� �
z

sy 0

0 sy

� �
fS

fD

� �
ð41Þ

where fX*N (0,1) with X[fS,Dg. Notice that sy is the same for

both compartments.

In the above model, the externally injected currents Iext,S and

Iext,D were sequences of random current steps with duration up to

50ms (instead of 20ms as in the single-compartment model, due to

the presence of slower currents in the two-compartment model)

and magnitude between {5 mA=cm2 and 20 mA=cm2. Current

was injected in both the dendritic compartment and the soma

(instead of just in the soma), because preliminary simulations

indicated that this experimental setting facilitated parameter

estimation, presumably due to the generation of a more variable

(and, thus, information-rich) data set. The injected currents and

the induced noisy voltage traces yS and yD comprised the

simulated data on which parameter estimation was based.

First, we aimed to infer the noise parameters and maximal

conductances of all voltage- and calcium-gated currents in the

model, assuming that the kinetics of these currents were known.

This implied an extended-state vector with 22 components as

shown below

z~(s,sX ,sy,GNa,GK ,GK(Ca),X ,GCaN,X ,GCaL,

VX ,½Ca2z�X ,hNa,mK ,mCaN,X ,hCaN,X ,mCaL)T

where X[fS,Dg. The results from this simulation are illustrated in

Figs. 8 and 9. The fixed-lag smoother managed to recover the

Parameter Estimation in Hodgkin-Huxley-Type Models

PLoS Computational Biology | www.ploscompbiol.org 18 March 2012 | Volume 8 | Issue 3 | e1002401



Figure 8. Simultaneous estimation of hidden model states (including intracellular calcium concentrations) and maximal
conductances in a two-compartment model of a vertebrate motoneuron (I). Estimation was based on two 3s-long simulated recordings
of the membrane potential, each recorded simultaneously from the soma and the dendritic compartment. Only part of the recorded activity is
illustrated in A, B and C for clarity. Notice the different time scales between the right and left panels. (A) High-fidelity smoothing of the membrane
potential at the soma (Ai) and the dendritic compartment (Aii). (B) Inference of the unobserved calcium concentrations at the soma (Bi) and the
dendrite (Bii). (C) Inference of the unobserved activation and inactivation variables for the sodium and potassium currents (Ci) and the N-type calcium
current (Ciii) at the soma and the N-type (Cii) and L-type (Civ) calcium currents at the dendritic compartment. Notice the almost complete overlap
between true (black lines) and inferred (red lines) dynamic variables in Ci–iv. This was not surprising since we assumed, at this stage, that the kinetics
of all gated currents were known. In these simulations, L~100, N~2200, a~b~c~0:01 and the prior interval for s

(j)
k was ½0,10�.

doi:10.1371/journal.pcbi.1002401.g008
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hidden dynamic states (including the time-evolution of the

intracellular calcium; Fig. 8), the standard deviations of the

intrinsic and observation noise (Figs. 9Ai,ii) and the true values of

all the gated maximal conductances (Figs. 9Bi–iv) in the model

using approximately 2s of simulated data and 2200 particles.

Notice that, in Figs. 8Ci–iv, the inferred hidden gating states

(dashed red lines) coincide extremely well with the true ones (solid

black lines), which is not surprising, since the voltage-dependent

kinetics of these states were assumed known and the true

membrane potential at the soma and dendritic compartment

was recovered with very high fidelity (Figs. 8Ai,ii). Also, notice

that, in Figs. 9Aii, 9Biii and 9Biv, the estimation of the standard

Figure 9. Simultaneous estimation of hidden model states (including intracellular calcium concentrations) and maximal
conductances in a two-compartment model of a vertebrate motoneuron (II). Inference of maximal conductances and noise parameters
during fixed-lag smoothing. (A) The standard deviations of the observation (Ai) and the intrinsic (Aii) noise at the soma and the dendrite. (B) Inferred
maximal conductances of the sodium and potassium currents at the soma (Bi), of the N-type calcium current and the calcium-activated potassium
current at the soma (Bii), of the calcium-activated potassium current at the dendrite (Biii) and of the N-type and L-type calcium currents at the
dendrite (Biv). In all cases, parameter expectations gradually converged towards the true parameter values (dashed lines) after less than 2s. The grey
lines in Aii, Biii and Biv correspond to estimated parameters, when current was injected in the soma only. In these simulations, L~100, N~2200,
a~b~c~0:01 and the prior interval for s

(j)
k was ½0,10�.

doi:10.1371/journal.pcbi.1002401.g009
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deviation of the intrinsic noise, sVD
, and the maximal conduc-

tances of calcium and calcium-dependent currents in the dendritic

compartment (GK(Ca),D, GCaN,D and GCaL) was improved after

injecting current in both the soma and the dendritic compartment

(compare the grey solid lines, which correspond to injection in the

soma only, to the color ones in the aforementioned figures).

In a second stage, we assumed that the kinetics of all voltage-

gated ionic currents were also unknown, implying an extended

state vector with 41 components, as follows:

z~( . . . ,GCaL,VH,xi
,VS,xi

,tmin,xi
,tmax,xi

,dxi
,to,xi

,VX , . . . )T

where X[fS,Dg, x[fm,hg and i[fNa,K ,CaN,CaLg. Our results

from this simulation are summarized in Figs. 10 and 11. Again, the

membrane potential at the soma and the dendrite were inferred

with very high fidelity (Fig. 10Ai,ii). However, the estimated

hidden dynamics of most ionic currents and intracellular calcium

concentrations in the model deviated significantly from their true

counterparts (Fig. 10B,C). The expectations of all estimated

parameters are illustrated in Fig. 11Ai. As in the case of the single-

compartment model, by imposing tighter prior constraints on

some of the parameters controlling the kinetics of ionic currents in

the model (see red dashed box in Fig. 11Aii and Table 2), we

managed to reduce the discrepancies of the estimates from their

true values (Fig. 11Aii and Supplementary Fig. S4). This was true

even for parameters on which stricter priors were not directly

applied. The inference was completed after processing almost 3s of

data, as shown in Fig. 11B for the maximal conductances of

sodium and potassium currents at the soma. Interestingly, the

algorithm seems to temporarily settle at local optima (see arrows in

Fig. 11B) before ‘‘jumping’’ away and, eventually, converge at

the final estimates. The inferred voltage-dependent steady-states of

the sodium, potassium and calcium currents (Figs. 11Ci,ii) and the

relaxation times for the sodium inactivation and potassium

activation (Fig. 11Ciii) were also very similar to their true

corresponding functions. The algorithm remained operational

when more noisy data were used, as illustrated in Fig. 11Aii and in

Supplementary Fig. S5.

An interesting fact regarding the simulation results presented in

Figs. 10 and 11Ai was that, in order to obtain high-fidelity

estimates of the true membrane potential at the soma and

dendritic compartment (as shown in Figs. 10Ai,ii) we had to use

more than 4100 particles, the number calculated by the

N~100|size of the extended state rule (see Methods). In par-

ticular, we used 8200 particles, although we cannot exclude that a

smaller number may have sufficed. After applying more narrow

prior constraints (Figs. 11Aii, B, C, S4 and S5), using the number

of particles calculated by the above simple heuristic (4100 in this

case) was again sufficient for accurately inferring the true

membrane potential (see Fig. S4Ai,ii and S5Ai,ii). This implies

that as the complexity (and dimensionality) of the estimation

problem increases, a non-linearly growing number of particles

may be required in order to obtain acceptable results, but this

situation may be compensated for by providing highly informative

priors. It should be mentioned that the two-compartment model

allows for the physical separation of currents and as such it is a

slightly better approximation of a real neuron with differential

expression of individual currents in different cellular compart-

ments. However, in no way does it capture the full morphological

complexity of a real neuron. As such, current injection into the

dendritic compartment can not be replicated accurately in a real

neuron, as current injection in the model will have a uniform effect

on all currents in that compartment, whilst current injection into

the dendrite of a neuron would have far more complex effects on

dendritic currents, which potentially would be dependent on the

distance from the injection site. Thus, whilst it would be possible,

albeit challenging, to carry out dual recordings from the soma and

dendrites in a real neuron this would not be the same as the dual

current injection in the model. In this case, application of the

fixed-lag smoother on a more spatially detailed model would be

necessary (and feasible). In principle, the method can also

assimilate other types of spatial data, such as calcium imaging

data, in case recordings from multiple neuron locations are not

available (although we do not examine this case in detail in this

paper).

Given the large number of unknown parameters and hidden

states in combination with the low dimensionality of the data

(notice that the intracellular calcium concentration was assumed

unobserved), it was truly remarkable that the algorithm managed

to recover much of the extended state vector with relatively

satisfactory accuracy. However, it should be noted that in our

simulations we assumed knowledge of important information, such

as the passive conductances GL and GC and the reversal potentials

of sodium, potassium and calcium currents. This and the fact that

the availability of prior information in the form of more narrow

parameter boundaries improved significantly the accuracy of the

final estimates emphasizes our previous conclusion that prior

information is important for the successful inference of unknown

model parameters and hidden model states using the fixed-lag

smoother. Given such information, inference in complex com-

partmental models based on simultaneous recordings from several

neuron locations and, possibly, measurements of intracellular

calcium, can be naturally achieved via appropriate formulation of

the extended state vector and application of the fixed-lag

smoother.

Parameters in a Model of an Invertebrate Motoneuron
were Inferred from Actual Electrophysiological Data
Using the Fixed-Lag Smoother

In a final set of simulations, we applied the smoother on actual

electrophysiological data in order to estimate the unknown

parameters in a single-compartment model of the B4 motoneuron

from the nervous system of the pond snail, Lymnaea stagnalis [38].

This neuron is part of a population of motoneurons, which receive

rhythmic electrical input from upstream Central Pattern Gener-

ator interneurons and in turn innervate and control the

movements of the feeding muscles via which the animal captures

and ingests its food. Previous studies in these neurons have

demonstrated the presence of a transient inward sodium current

INa, a delayed outward potassium current IK and a transient

outward potassium current IA [41]. A hyperpolarization-activated

current Ih was conditional on the presence of serotonin in the

solution [38] and, therefore, this current was not included in this

instance of the B4 model. Thus, the current conservation equation

for a single-compartment model of the B4 motoneuron (appro-

priately modified to include an intrinsic noise term) took the

following form:

dV~
Iext{GL(V{EL){INa{IK{IA

Cm

dtzsV dWV ð42Þ

where the leakage conductance, leakage reversal potential and

membrane capacitance in the above model were estimated a priori

based on neuron responses to negative current pulses

(GL~0:11mS, EL~{65mV and Cm~2:89nF , respectively).

The voltage-activated currents that appear in the above expression
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Figure 10. Simultaneous estimation of hidden model states, maximal conductances and kinetic parameters in a two-compartment
model of a vertebrate motoneuron (I). Estimation was based on two simulated 4s-long simultaneous recordings of the membrane potential
from the soma and dendritic compartment. Only part of this data is illustrated for clarity. Notice the different time scales between the left and right
panels. (A) High-fidelity smoothing of the observed voltage at the soma (Ai) and the dendrite (Aii). (B) Inference of unobserved calcium
concentrations at the soma (Bi) and dendritic compartment (Bii). (C) Inference of the unobserved activation and inactivation variables for all voltage-
gated currents at the soma and the dendrite. Since the kinetics of voltage-gated currents were assumed unknown, the difference between true (black
lines) and inferred (red lines) dynamic variables was significant (compare to Fig. 8). The inferred parameters are shown in Fig. 7Ai. In these simulations,
L~100, N~8200, a~b~c~0:01 and the prior interval for s

(j)
k was ½0,10�.

doi:10.1371/journal.pcbi.1002401.g010
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Figure 11. Simultaneous estimation of hidden model states, maximal conductances and kinetic parameters in a two-compartment
model of a vertebrate motoneuron (II). Inference of maximal conductances, noise and kinetic parameters during smoothing. (A) Inferred
parameters in the model using broad or narrow prior intervals and high or low levels of observation noise. Estimates were normalized according to
Eq. 35. Parameter identification numbers are as in Table 2. The estimates in Ai were obtained using broad prior intervals (see Table 2). The maximal
conductance GCaN,S (parameter #7) converged to zero and, for this reason, it is indicated with a red square. These estimates correspond to the
results shown in Fig. 10. Estimates in Aii were obtained using narrow prior intervals for some of the parameters controlling the kinetics of ionic
currents (see red dashed boxes) at either low (sy~1mV ) or high (sy~50mV ) levels of observation noise (see also Supplementary Figs. S4 and S5). (B)
Inferred maximal conductances for sodium (GNa) and potassium (GK ) when narrow prior intervals and low levels of observation noise were used
(circles in Aii). Notice the temporary convergence of the estimates (arrows) before jumping away towards their final values. (C) True (black lines) and
inferred (red lines) activation and inactivation steady-states for the sodium and potassium currents (Ci) and the N-type and L-type calcium currents
(Cii) and for the relaxation times for sodium inactivation and potassium activation (Ciii), when narrow prior intervals and low levels of observation
noise were used (circles in Aii). In these simulations, L~100, a~b~c~0:01 and the prior interval for s

(j)
k was ½0,10�. The number of particles was

N~8200 in Ai and N~4100 in Aii, B and C (see main text for further comments).
doi:10.1371/journal.pcbi.1002401.g011
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were modeled as follows: (a) INa~GNam3
?,NahNa(V{ENa), (b)

IK~GK m4
K (V{EK ) and (c) IA~GAm4

AhA(V{EK ), where

ENa~35mV and EK~{67mV as in [41]. The dynamic

activation and inactivation variables of these currents (hNa, mK ,

mA and hA) obeyed first-order relaxation kinetics (as in Eq. 32)

with voltage-dependent steady-states (Eq. 33) and relaxation times

(Eq. 34 with tmin,xi
~0 and dxi

~0:5), similarly to previously

published neuron models in the central nervous system of Lymnaea

[42]. The observation model was as in Eq. 7.

The raw data we used for inferring the parameters in the above

model took the form of four independent 3:5s-long recordings of

the membrane potential from the same B4 motoneuron. Each

recording was taken while injecting an external current in the

neuron consisting of a sequence of random steps ranging in

amplitude between {4nA and z4nA and with duration between

1 and 256ms. A particular characteristic of the data generated

under these conditions was the presence of brief bursts of spikes,

which were interrupted by relatively long intervals of non-activity

(corresponding to sub-threshold excitatory and inhibitory current

injections, respectively; see Figs. 12Ai–iv). These long intervals of

inactivity were not informative and they negatively affected the

performance of the smoother by permitting the random drift of

particles towards non-optimal regions of the parameter space (see

Supplementary Fig. S6). However, when the four recordings are

considered together, the intervals of inactivity at any single voltage

trace overlap with intervals of activity at the remaining three

voltage traces, resulting in a four-dimensional data set, where the

overall intervals of inactivity were minimized. This four-dimen-

sional data set was used as input to the smoother during the

inference phase.

Thus, the 42-dimensional extended state vector became:

z~(s,Gi,VH,xi
,VS,xi

,tmax,xi
,Vk,mNa,k,hNa,k,mK ,k,mA,k,hA,k)T

where x[fm,hg, i[fNa,K ,Ag and k[f1,2,3,4g. Notice the

presence of four groups of hidden dynamic states, {Vk, mNa,k,

hNa,k, mK ,k, mA,k, hA,k}, where each group corresponds to a

different voltage trace (and associated externally injected current,

Iext,k). The evolution of all four groups of dynamic variables was

governed by a common (shared) set of parameters. In total, we had

to estimate 17 unknown parameters. The boundaries within which

the values of these parameters were allowed to fluctuate are given

in Table 3 (indicated in bold) and they were chosen from within

the support of the posteriors in Supplementary Fig. S7 (after a few

trial-and-error simulations), which were obtained by using the

broader prior intervals given in Table 3. Notice that the marginal

distributions illustrated in Fig. S7 have large variance and multiple

modes and, although they provide a global view of the structure of

the parameter space, they cannot be used to identify a single

combination of optimal parameters values, since they do not

include any information regarding correlations between parame-

ters. Using the major modes of the inferred posteriors did not lead

to an accurate (or even spiking) predictive model. Thus, the

estimation was based on using more narrow prior intervals, which

helped us estimate unimodal posteriors with small variance (see

Fig. 12C) and, thus, identify a single combination of optimal

parameters that could be used in predictive simulations. We

cannot prove that other optimal combinations of parameters do

not exist, but we were not able to find any (i.e. by choosing

different narrow prior intervals) after a reasonable amount of time.

Also, notice that the standard deviations of the intrinsic and

observation noise were not subject to estimation, but instead they

were given (through trial and error) the minimal fixed values

sV ~0:3mV and sy~1mV , respectively. If left free during

smoothing, the values of these parameters fluctuated uncontrol-

lably, masking the contribution of the remaining parameters in the

model and, thus, achieving an almost perfect (but meaningless)

smoothing of the experimental data. This is an indication that the

B4 model we used may be missing one or more relevant

components, such as additional currents and compartments (see

below for further analysis of this point). We did not observe this

effect in the cases examined in the previous sections, where

simulated data was used, because the models responsible for the

generation of this data were, by definition, precisely known.

Our results from this set of simulations are illustrated in Fig. 12.

Simultaneous smoothing of all four data sets was again

accomplished with high fidelity, as illustrated in Figs. 12Ai–iv.

The artificial evolution of the expectations of the conductances for

the transient sodium, persistent potassium and transient potassium

currents, as well as of some of the kinetic parameters that were

estimated in the model is illustrated in Figs. 12Bi–iii. The

distributions of all inferred parameters (normalized after replacing

xtrue in Eq. 35 with
PK

k~1 �xxk, for each tested parameter) are also

illustrated in Fig. 12C. The inferred expectations of all parameters

are given in Table 3.

In order to examine the predictive value of the model given the

estimated parameter expectations in Table 3, we compared its

activity to that of the biological B4 neuron, when both were

injected with a 30s-long random current consisting of a sequence

of current pulses with amplitude ranging from {4nA to z4nA
and duration from 1ms to 256ms. Our results from this simulation

are illustrated in Fig. 13. We observed that the overall pattern of

activity of the model was similar to that of the biological neuron

(Fig. 13A). Whilst the model overall generated more action

potentials, some individual spikes were absent in the simulated

data. A more detailed examination of our data revealed specific

differences between the biological and model neurons, which

explain the differences in the overall activity between the two

(Fig. 13B, C). The spike shape of the model neuron was quite

similar to that of its biological counterpart (Fig. 13Bi), including

spike threshold, peak, trough and height (i.e. trough-to-peak

amplitude; Fig. 13Biii), but the simulated spike had a slightly

longer duration than the biological one (half-width: 1:9ms vs

1:5ms; Fig. 13Bii).

In a second set of experiments, both the biological and model

neurons were injected with 1s-long current pulses ranging from

{4nA to z4nA and their current-voltage (IV) and current-

frequency (IF) relations were constructed (Fig. 13C). The IV plot

showed some non-linear behavior in response to negative current

pulses in the experimental data (probably due to the presence of a

residual Ih current), which was not present in the simulations

(Fig. 13Ci). As a result, the slope of the part of the IV curve

corresponding to 0mV was more shallow in the simulations than

in the experimental data. Moreover, the rheobase was lower in the

experimental data than in the model, but the slope of the IF curve

was steeper in the simulated data, which resulted in higher firing

rates for the model at injected currents larger than approximately

3nA (Fig. 13Cii). This feature can account for the overall level of

spiking in the model neuron when compared to the biological one

(Fig. 13A).

Overall, this analysis illustrates that the assumed B4 model did

not capture all the aspects of the real neuron. However, this does

not mean that our estimation method is flawed. It just shows that

the model is actually missing some relevant components, such as

additional ionic currents or compartments, which would be

necessary for approximating more accurately the spatial structure

and biophysical properties of the biological neuron. In the first
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Figure 12. Parameter estimation in a model invertebrate motoneuron based on actual electrophysiological data. Estimation was
based on four independent 3:5s-long recordings of the membrane potential from the same B4 motoneuron. (A) Simultaneous, high-fidelity
smoothing of the four membrane potential recordings. (B) A total of 17 free parameters in the model were inferred during smoothing (see Table 3),
including the maximal conductances of the transient sodium and potassium and persistent potassium currents (Bi), the half steady-state activation
values (Bii) and the relaxation times for the activation of the potassium currents (Biii). The remaining inferred parameters are not illustrated for clarity,
but they follow a similar convergence pattern. (C) Box plot of all inferred parameters in the model. Parameter identification numbers are as in Table 3.
Estimates were normalized as explained in the main text (the non-normalized mean parameter values are given in Table 3). In this simulation, L~100,
N~3800, a~b~c~0:01 and the prior interval for s

(j)
k was ½0:2,0:5�.

doi:10.1371/journal.pcbi.1002401.g012

Parameter Estimation in Hodgkin-Huxley-Type Models

PLoS Computational Biology | www.ploscompbiol.org 25 March 2012 | Volume 8 | Issue 3 | e1002401



Figure 13. Comparison between B4 model activity and the biological neuron. (A) Response of the model and the biological B4
motoneuron to a sequence of current steps with random amplitude and duration. Current step amplitudes were from {4nA to z4nA and current
step durations from 1ms to 256ms. Intrinsic and observation noise in the model were sV ~0:3mV and sy~1mV , respectively. (B) Comparison
between model and biological B4 action potentials. The width of the spikes was measured at half their peak amplitude. (C) Current-Voltage (IV) and
Current-Frequency (IF) relations for the model and biological B4 neurons. In order to construct these relations both the model and biological neurons
were injected with 1s-long current pulses with amplitude between {4nA and z4nA.
doi:10.1371/journal.pcbi.1002401.g013
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part of the manuscript we have demonstrated that if the

underlying model is complete, then our method produced accurate

estimates of the true parameter values, given sufficient informative

priors. Thus, it is safe to assume that the observed differences

between the biological and model neurons can be minimized, if

the fixed-lag smoother is applied on a more complex model of the

B4 motoneuron.

In summary, we used the fixed-lag smoother to estimate the

unknown parameters in a single-compartment model of an

invertebrate motoneuron based on actual electrophysiological

data. The model, although a simplification of the actual biological

system, was still quite complex containing a number of non-

linearly interacting components and a total of 17 unknown

parameters. By using the methodologies outlined in the previous

sections, we managed to estimate the values of these parameters,

such that the resulting model mimicked with satisfactory accuracy

the overall activity of its biological counterpart. Furthermore, we

demonstrated the flexibility of the fixed-lag smoother by showing

how it can be used to process simultaneously multiple data sets,

given an appropriate formulation of the extended state vector.

Discussion

Parameter estimation in conductance-based neuron models

traditionally involves a global optimization algorithm (for example,

an evolutionary algorithm), usually in combination with a local

search method (such as gradient descent), in order to find

combinations of model parameters that minimize a pre-defined

cost function. In this paper, we have addressed the problem of

parameter estimation in Hodgkin-Huxley-type models of single

neurons from a different perspective. By adopting a hidden-

dynamical-systems formalism and expressing parameter estimation

as an inference problem in these systems, we made possible the

application of a range of well-established inference methods from

the field of Computational Statistics. Although it is usually

assumed that the kinetics of ionic currents in a conductance-

based model are known a priori, here we assumed that this was not

the case and, typically, we estimated kinetic parameters, along

with the maximal conductances and reversal potentials of ionic

currents in the models we examined.

The particular method we used was Kitagawa’s self-organizing

state-space model, which was implemented as a fixed-lag

smoother. The smoother was combined with an adaptive

algorithm for sampling new sets of parameters akin to the

Covariance Matrix Adaptation Evolution Strategy. Alternatively,

we could have approximated the smoother distribution (Eq. 13)

with a two-pass algorithm, consisting of a forward filter followed

by a backward smoothing phase, which would make use of the

precomputed filter [34]. This would require storing the filter for

the whole duration of the smoothed data, which in turn would

have very high memory requirements when large numbers of

particles or high-dimensional problems are considered. In

contrast, the fixed-lag smoother has the advantage that only the

particles up to L time steps in the past need to be stored, which is

less demanding in memory size and computationally more

efficient. Moreover, the fixed-lag smoother, being a single-pass

algorithm, was more natural to use in the context of on-line

parameter estimation.

The applicability of the algorithm was demonstrated on a

number of conductance-based models using noisy simulated or

actual electrophysiological data. In a recent study, it was found

that increasing observation noise led to an increase in the variance

of parameter estimates and a decrease in the rate of convergence

of the algorithm [28]. Similarly, we observed that at high levels of

observation noise, although the algorithm remained functional, its

accuracy and precision were reduced (Fig. 5). It is emphasized

that, at a particular level of observation noise, the outcome of the

algorithm is an approximation of the posterior distributions of

hidden states and unknown parameters in the model, given the

available experimental data and prior information. In general,

these approximate posteriors provide an overview of the structure

of the parameter space and they potentially have multiple modes

(or local optima). By taking advantage of the adaptive nature of the

fixed-lag smoother (and, in particular, by controlling the scaling

factor that determines the width of the proposal distribution in Eq.

25), we managed to reduce the variance of these posteriors and, in

the limit case, we could force the algorithm to converge to a single

optimal point (belonging to the support of the parameter

posteriors), which could subsequently be used in predictive

simulations (e.g. see Figs. 7D and 11A). Unlike the study in [28],

we did not observe any significant reduction in the rate of

convergence of the algorithm at high levels of observation noise,

which was attributed to a ceiling effect due to the large number of

particles we used in our simulations (typically, 100|D, where D
was the dimensionality of the estimation problem; see Figs. 3B and

4C). Thus, we cannot exclude observing such a reduction in the

rate of convergence, if a smaller number of particles is used and/or

problems of higher dimension are examined. Furthermore, the

proposed method requires only a single forward pass of the

experimental data, instead of multiple passes, as in the case of off-

line estimation methods, including the Expectation Maximization

(EM) algorithm. On the other hand, this means that, in general,

the proposed algorithm requires processing longer data time series

in order to converge. In addition, unlike off-line estimation

methods, it does not take into account the complete data trace at

each iteration, but at most L past data points (but, also, see [36] for

a partial ‘‘remedy’’ of this situation). In principle, it would be

possible to combine previous work on parameter estimation (e.g.

[43,44]) within an EM inference framework in order to estimate

various types of parameters (including maximal conductances and

channel kinetics) in conductance-based neuron models. This could

be an interesting topic for further research.

Our main conclusion was that, using this algorithm and a set of

low-dimensional experimental data (typically, one or more traces

of membrane potential activity), it was possible to fit complex

compartmental models to this data with high fidelity and,

simultaneously, estimate the hidden dynamic states and optimal

values of a large number of parameters in these models. Based on

simulation experiments using simulated data, we found that the

estimated optimal parameter values and hidden states were close

to their true counterparts, as long as sufficient prior information

was made available to the algorithm. This information took the

form of knowledge of the values of particular parameters (for

example, the passive properties of the membrane) or of relatively

narrow ranges of permissible parameter values. Such prior

information could have included the kinetics of the ion currents

that flow through the membrane or the spatial distribution of

various parameter values along different neuron compartments

(e.g. the ratio of maximal conductance A between compartment 1

and compartment 2). In real-life situations, such information may

become available through current- or voltage-clamp experiments.

For example, the passive properties in the B4 model (membrane

capacitance, leakage maximal conductance and reversal potential)

were inferred from current-clamp data and, thus, they were fixed

during the subsequent smoothing phase.

It has been demonstrated that this requirement for prior

information may be relaxed, if the data set used as input was

sufficiently variable to tease apart the relative contribution of
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different parameters in a model [15]. A well-established result in

conductance-based modeling is that the same pattern of electrical

activity may be produced by different parameter configurations of

the same model [6–9]. This implies that it is impossible to identify,

during the course of an optimization procedure, a unique set of

parameters using just this single pattern of activity as input to the

method. For example, as we observed in the case of the B4 model,

the posteriors of the estimated parameters may be characterized

by multiple modes (i.e. local optima) or quite large variances,

which makes identification of a unique set of optimal parameter

values for use in predictive simulations rather difficult (Supple-

mentary Fig. S7). A more variable data set would be necessary in

order to constrain the model under study, thus forcing the

optimization process to converge towards a unique solution. It

should be noted that this conclusion was reached by treating as

unknown only the maximal conductances in a conductance-based

model [15]. Although it is reasonable to assume that this holds true

when the kinetics of ion channels are also treated as unknown, it

still needs to be demonstrated whether the generation of a data set

sufficiently variable to constrain both the maximal conductances

and kinetics of ion channels in a complex conductance-based

model is practical or even feasible. A more pragmatic approach

would be to rely on a mixture of prior information and one or

more sufficiently variable electrophysiological recordings as input

to the optimization algorithm. It was shown in this study that both

the injection of prior information (in the form mentioned above)

and the simultaneous assimilation of multiple data sets is

straightforward using the proposed algorithm.

It is important to notice that, unlike more traditional

approaches, explicitly defining a cost or fitness function was not

required by the fixed-lag smoother. Given the fact that the

efficiency of any optimizer can be seriously impeded by a poorly

designed cost function, bypassing the need to define such a

function may be viewed as an advantage of the proposed method.

As in previous studies [43,44], here lies the implicit assumption

that by fitting (or smoothing) with high fidelity the raw

experimental data (for example, one or more recordings of the

membrane potential), the estimated model would capture a whole

range of features embedded in this data, such as the current-

frequency response of the neuron. Although this is a reasonable

assumption, we found that it did not hold completely true, when

our knowledge of the form of the underlying model was not exact,

as in the case of the B4 neuron. In this case, although we could

achieve a very good smoothing of the experimental data,

subsequent predictive simulations using the inferred model

parameters revealed discrepancies between simulation output

and experimental data. It is likely that these discrepancies will

be minimized, if important missing components are added to the

model, such as additional ionic currents or, importantly, an

approximation of the spatial structure of the biological neuron.

An important outcome of this study was to demonstrate the

intimate relation between the self-organizing state-space model

and evolutionary algorithms. When used for parameter estimation,

the self-organizing state-space model undergoes at each iteration a

process of new particle (individual) generation (mutation/recom-

bination) and resampling (selection and multiplication), which

parallels similar processes in evolutionary algorithms. At the root

of this parallelism is the fact that we need to impose an artificial

evolution on model parameters as part of the formulation of the

self-organizing state-space model (see Methods), thus providing a

unique opportunity to merge the two classes of algorithms. Here,

we decided to combine the self-organizing state-space model with

an adaptive algorithm similar to the Covariance Matrix Adapta-

tion Evolution Strategy [30] and by following this adaptive

strategy, we managed to achieve a dramatic reduction in the

variance of parameter estimates. However, this choice is by no

means exclusive and other evolutionary algorithms may be chosen

instead, e.g. the Differential Evolution algorithm [31]. This is a

topic open to further exploration. Notice that, similarly to

Evolutionary Algorithms, the proposed method has, in principle,

the ability to estimate the possibly multi-modal posterior

distribution of the unknown parameters in the examined model,

i.e. it is a global estimation method (for example, see Fig. 6C, 11B

and S7). At each iteration, the algorithm retains a population of

particles, which are characterized by a degree of variability and,

thus, give the algorithm the opportunity to randomly explore a

wide range of the parameter space, spending on average more

time in the vicinity of optimal regions. By imposing narrow prior

constraints on some of the unknown parameters, we are effectively

reducing the dimensionality of the problem and we force the

algorithm to converge towards a particular optimum, which can

be later used in predictive simulations.

A point of potential improvement concerns our choice of the

proposal density, q(zkjzk{1,yk). Here, we made the common and

straightforward choice to use the transition density p(zkjzk{1) as

our proposal. However, the modeler is free to make other choices.

For example, a recent study demonstrated that the efficiency of

particle filters can be significantly increased by conditioning the

proposal density on future observations [36].

An important practical aspect of the proposed algorithm was its

high computational cost. This cost increased as a function of

the number N of particles used during smoothing, the length of the

fixed smoothing lag L, the complexity of the model and the

number of unknown parameters in the model. Our simulations on

an Intel dual-core i5 processor with four gigabytes of memory took

from a few minutes to more than 12 hours to complete. An

emerging trend in Scientific Computing is the use of modern

massively parallel Graphics Processing Units (GPUs) in order to

accelerate general purpose computations, as those presented in this

paper. The utility of this approach in achieving significant

accelerations of Monte Carlo simulations has been recently

demonstrated [45] and it has even been applied recently on

parameter estimation problems in conductance-based models of

single neurons [46]. Preliminary results using a GPU-accelerated

version of the fixed-lag smoother (data not shown) have indeed

demonstrated reduced simulation times, but the accelerations we

observed were not as dramatic as those reported in the literature

[45,46]. This can always be attributed to the fact that our

implementation of the algorithm was not optimized. On the other

hand, we observed significant accelerations in our simulations

involving the serial implementation of the fixed-lag smoother, just

by switching from an open-source compiler (GNU) to a

commercial one (Intel), which presumably emitted better opti-

mized machine code for the underlying hardware. Nevertheless,

the use of GPUs for general purpose computing is becoming

common and it is likely to become quite popular with the advent of

cheaper hardware and, importantly, more flexible and program-

mer-friendly Application Programming Interfaces (APIs).

Overall, our results point towards a generic four-stage heuristic

for parameter estimation in conductance-based models of single

neurons: (a) First, the general structure of the model is decided,

such as the number of ionic currents and compartments it should

include. (b) Second, prior information is exploited in order to fix as

many parameters as possible in the model and tightly constrain the

remaining ones. For example, the capacitance, reversal potentials

and leakage conductance in the model may be fixed to values

estimated from current-clamp data. By further exploiting current–

and voltage-clamp data, narrow constraints may be imposed on
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the remaining free (e.g. kinetic) parameters in the model. (c) At a

third stage, more precise parameter value distributions are

estimated by applying the fixed-lag smoother on current-clamp

data, such as one or more recordings of the electrical activity of the

membrane induced by random current injections. (d) Finally, the

predictive value of the model is assessed through comparison to

independent data sets and the model is modified, if necessary. It is

important to notice that the techniques outlined in this paper are

applicable on a wide range of research domains and that they

provide a disciplined way to merge complex stochastic dynamic

models, noisy data and prior information under a common

inference framework.

In conclusion, the class of statistical estimation methods, which

the algorithm presented in this paper belongs to, in combination

with Monte Carlo approximation techniques are particularly

suitable to address high-dimensional inference problems in a

disciplined manner. This makes them potentially useful tools at the

disposal of biophysical modelers of neurons and neural networks

and it is predicted that these methodologies will become more

popular in the future among this research community.

Supporting Information

Figure S1 Simultaneous estimation of hidden states and
channel noise in a stochastic single-compartment mod-
el. Estimation was based on a simulated 1s-long recording of

membrane potential generated by Supplementary Eqs. S1, S2 and

S4. For clarity, only 90ms of activity are shown in Figs. Ai,ii.

Notice that in these simulations, we assumed the absence of

synaptic input (i.e. cE~cI~0mS=cm2). Activity in the model

neuron was driven by a random sequence of current steps Iext with

amplitude between {5 mA=cm2 and 20 mA=cm2 and duration up

to 20ms. (A) Simultaneous inference of the observed membrane

potential (Ai) and the hidden activation (m, n) and inactivation (n)

gating variables for the sodium and potassium currents. (B)

Inference of the standard deviation of the observation noise sy (Bi)

and the parameters sNa and sK , which control the variance of the

sodium and potassium channel noise (Bii). Estimates converged to

their final values after approximately 1000ms. The dashed lines

indicate the true values of these parameters. The y-axes in Bi,ii

indicate the width of the prior intervals imposed on the

corresponding parameters. Simulation parameters were: L~100,

N~800 and a~b~c~0:01. The prior interval for the scaling

factors s
(j)
k was ½0,2�.

(TIFF)

Figure S2 Simultaneous estimation of hidden states,
channel noise and presynaptic firing rates in a stochas-
tic single-compartment model. Estimation was based on a

simulated 2s-long recording of membrane potential generated by

Eqs. S1, S2 and S4 with Iext~0 mA=cm2. For clarity, only 90ms of

activity are shown in Figs. Ai,ii. (A) Simultaneous inference of the

observed membrane potential (Ai) and the hidden activation (m, n)

and inactivation (n) gating variables for the sodium and potassium

currents (Aii). (B) Inference of the standard deviation of the

observation noise sy (Bi), parameters sNa and sK , which control

the variance of the sodium and potassium channel noise (Bii) and

the presynaptic firing rates lE and lI (Biii). Estimates converged to

their final values after approximately 2s of activity. The dashed

lines indicate the true values of the parameters. The y-axes in B

and C indicate the width of the prior intervals imposed on the

corresponding parameters. Discrepancies from the true values in B

are due to the overlapping effects of different parameters

controlling observation, channel and synaptic noise. Simulation

parameters were: L~100, N~1000 and a~b~c~0:01. The

prior interval for the scaling factors s
(j)
k was ½0,2�.

(TIFF)

Figure S3 Simultaneous inference of hidden states and
unknown parameters in the single compartment model
(see main text) at high levels of observation noise. This

figure corresponds to Fig. 7Dii in the main text for sy~50mV . (A)

Inferred membrane potential (Ai) and unobserved gating variables

(Aii). (B) Examples of simultaneously inferred parameters, such as

maximal conductances (Bi,ii) and reversal potentials (Biii,iv). The

y-axes in Bi–iv indicate the prior intervals of the corresponding

parameters. Simulation details are as in Fig. 7 in the main text.

(TIFF)

Figure S4 Simultaneous inference of hidden states in
the two-compartment model (see main text) at low levels
of observation noise. This figure corresponds to Figs. 11Aii for

sy~1mV , 11B and 11C in the main text. (A) Inference of the

membrane potential at the soma (Ai) and the dendritic

compartment (Aii). (B) Inference of the unobserved concentration

of intracellular calcium at the soma (Bi) and the dendritic

compartment (Bii). (C) Inference of the unobserved gating

variables for the sodium and potassium currents at the soma

(Ci), the N-type calcium current at the soma (Ciii), the N-type

calcium current at the dendritic compartment (Cii) and the L-type

calcium current at the dendritic compartment (Civ). Simulation

details are as in Fig. 11 in the main text.

(TIFF)

Figure S5 Simultaneous inference of hidden states in
the two-compartment model (see main text) at high
levels of observation noise. This figure corresponds to

Fig. 11Aii for sy~50mV . (A) Inference of the membrane potential

at the soma (Ai) and the dendritic compartment (Aii). (B) Inference

of the unobserved concentration of intracellular calcium at the

soma (Bi) and the dendritic compartment (Bii). (C) Inference of the

unobserved gating variables for the sodium and potassium currents

at the soma (Ci), the N-type calcium current at the soma (Ciii), the

N-type calcium current at the dendritic compartment (Cii) and the

L-type calcium current at the dendritic compartment (Civ).

Simulation details are as in Fig. 11 in the main text.

(TIFF)

Figure S6 Inference in the B4 model using a single
recording of the membrane potential. A single 4:5s-long

recording of B4 activity induced by injecting a sequence of

random current steps in the neuron was used during smoothing.

Random current amplitude was between {4nA and z4nA and

random step duration was between 1ms and 256ms. (A) Inference

of the membrane potential (Ai) and the unobserved gating

variables for the sodium and potassium currents in the model

(Aii). (B) Examples of simultaneously inferred model parameters:

maximal conductances of all currents (Bi), half steady-state

activation voltages for all currents (Bii) and maximal relaxation

times for the activation of the potassium currents in the model

(Biii). Notice that in all cases the parameter estimates converge

exactly to the middle of their prior intervals (indicated by the y-

axes in Bi–iii). This convergence takes place while the algorithm

processes the ‘‘inactive’’ region of the data (approximately, from

second 2 to second 3 in Ai). Based on these converged estimates,

the model incorrectly emits spikes later during smoothing (see

arrows in Ai), indicating that the estimated parameters are not

optimal for smoothing during the whole duration of experimental

data. Simulation parameters were as follows: L~100, N~2300
and a~b~c~0:01. The prior interval for the scaling factors s

(j)
k
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was ½0:2,0:5�. For the 17 free parameters in the model, we used the

narrow prior intervals in Table 3.

(TIFF)

Figure S7 Inferred posterior distributions of all un-
known parameters in the B4 model using the broad
prior intervals in Table 3. Inference was based on

simultaneously smoothing four 3:5s-long voltage recordings from

the B4 neuron as in Fig. 12A in the main text. As in that case, data

smoothing was accomplished with very high fidelity, as illustrated

in Fig. 12A. (A) Inferred maximal conductances. (B) Inferred half

steady-state activation and inactivation voltages. (C) Inferred

activation (Ci) and inactivation (Cii) voltage sensitivities (param-

eters VS,xi
in the model). (D) Activation and inactivation

relaxation times. The x-axes in all plots indicate the prior

parameter intervals we used (Table 3). Notice that most posteriors

are very broad (covering a large portion of the prior interval) and

not unimodal. Simulation parameters were as described in Fig. 12

of the main text.

(TIFF)

Text S1 Supplementary text analysing in more detail
several points in the manuscript. To be read in conjuction

with the accompanying supplementary figures.

(PDF)

Text S2 The MATLAB/C99 source code we used in this
study.

(BZ2)
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