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Abstract

The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine
tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control
program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24
months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is
dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of
transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to
parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of
bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed
to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and
an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency
before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-
linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with
no statutory controls, increases from 1.5 (0.26–4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99–14.0) in a herd of 400. Under
this model we estimate that 50% (33–67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin
testing. However this figure falls to 24% (11–42) of recurrent breakdowns under our alternative model. Under both models the
estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is
unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.
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Introduction

The number of cattle herds in Great Britain (GB) placed under

movement restrictions due to the suspected presence of bovine

tuberculosis (bTB) has progressively increased over the past 25

years [1]. This increase in the rate of so-called ‘‘breakdown’’ herds

is despite an intensive and costly test-and-slaughter control

program [2]. Recent studies have focused on estimating the

contributions of cattle movements and wildlife transmission to

incidence [1,3–8] as measured by the rate of new breakdowns.

However, less attention has been paid to quantifying the dynamics

of transmission within herds, even though this is arguably the most

data-rich unit within the wider ecology of M. bovis. Previous history

of disease within a herd is an important predictor of breakdown

[5,8,9], with 38% of herds that clear movement restrictions

experiencing a recurrent incident within 24 months [10].

This high rate of recurrence suggests that infection may be

persisting within herds in the face of repeated testing. In GB and

internationally, detection and clearance of herds is dependent on

variants of the imperfect tuberculin skin test. In GB and Ireland

this takes the form of a single intra-dermal comparative cervical

tuberculin (SICCT) [11] test. Infection missed by SICCT testing is

likely to be contributing to recurrence within herds. However, the

lack of a gold-standard diagnostic test for bovine tuberculosis

means that the efficiency of the SICCT test is poorly characterized

and the contribution of missing infection to recurrence cannot be

easily assessed. Furthermore, reactivity to the SICCT test is

dependent on the time-from-infection [12], most often character-

ized [13,14] as an occult period where animals are infected but not

yet detectable. As a consequence, the efficiency of testing within a

herd depends not only on the characteristics of the diagnostic test,

but also on the competing timescales of transmission and the

frequency of testing.

Within-herd models of bTB have been developed to address this

problem with a view to informing government policy [13,14].

However, extant models have been based on ad-hoc parameter-
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izations informed by disparate experimental studies and expert

opinion. There exists considerable uncertainty in the assumed

values of key parameters, in particular the occult period, the

scaling of transmission rates with herd size [15,16] and the

duration of latency between infection and infectiousness. To

address this uncertainty, we propose a novel basis for parameter-

ization of within-herd models using measures of stochastic

persistence [17] as a metric for Approximate Bayesian Compu-

tation (ABC) [18–19].

Persistence measures have proven to be a powerful probe on

which to parameterize models of childhood infectious diseases

[20–23]. A successful approach has been to assume that the

intrinsic rate of transmission within a population is rapid

compared to the combined rate of transmission from sources

extrinsic to the local population. This time-scale separation allows

us to model local populations independently. Extrinsic routes of

transmission are modeled through a generalized infectious

pressure [20–22]. Comparatively less theoretical attention has

been paid to modeling the persistence of managed endemic

diseases.

For chronic diseases, such as bTB, demographic turnover of the

population is the only natural mechanism acting to clear infection

from populations. In this context persistence can be used as an

indirect measure of the efficiency of diagnostic testing. In this study

we model the within-herd persistence of bTB as a balance between

three key processes: the infectious pressure acting to introduce

infection into the herd from extrinsic sources, the rate of cattle-to-

cattle transmission within the herd and the rate of removal of

infection through testing and demographic turnover. Herds are

considered as isolated populations loosely connected to a reservoir

of infection modeled as an infectious pressure. We are therefore

not concerned with modeling the routes of introduction to the

herd – which may be through movements of infected animals or

contact with wildlife reservoir populations. Instead we focus on the

processes of transmission within a herd with relation to the

detection and resolution of breakdowns. We do so using two

mechanistic models of within-herd transmission that we param-

eterize using routinely collected epidemiological data. We finally

apply our parameterized models to estimate the hidden burden of

infection and its implications for control of bTB in Great Britain.

Results

Measures of persistence of bTB
The probability of extinction within epidemic models is

dependent on the past history of infection within the population

[24]. Alternative empirical measures of persistence, that capture

different aspects of the transmission dynamics, can be constructed

depending on how we condition on the past history of infection

[21]. For bTB, infection missed during a given test is likely to

contribute to the probability of the herd failing subsequent tests.

Contingent on the natural time-scale of transmission and the

scheduling of testing, missing infection may act to prolong the

duration of breakdowns and/or increase the probability of a

recurrent breakdown. We therefore quantify within-herd persis-

tence through two competing measures related to the duration and

the rate of recurrence of breakdowns. The duration of breakdowns

is captured by the probability that breakdowns are prolonged [25],

defined as lasting longer than 240 days. Recurrence is captured

through the probability of a breakdown recurring [10] within a

fixed time horizon of 6, 12 and 24 months after the end of a

breakdown.

Study population
Bovine tuberculosis is a statutory infectious disease. Incidence

and testing data are routinely collected by the Animal Health and

Veterinary Laboratories Agency (AHVLA) and collated within the

VetNet database. It is not feasible or desirable to model the full

complexity of the British testing regime within a herd level model.

In addition to the schedule of statutory surveillance testing, there

exists a diverse range of auxiliary tests including pre-movement

testing, contiguous tests and tests trigged by epidemiological

investigations of ‘‘at risk’’ premises. As a consequence there is

considerable variability in the duration of time that infection can

spread unobserved within herds before detection. In an attempt to

control for this uncertainty we restrict our current analysis to new

breakdowns with start dates between 2003–2005 that were

detected through routine surveillance, either through the slaugh-

terhouse or by the detection of reactors at a routine or whole herd

test (tests classified as ‘VE-WHT’, ‘VE-WHT2’,‘VE-RHT’ or ‘VE-

SLH’).

We choose to restrict our study to the period 2003–2005 due to

systematic changes to the testing system surrounding the 2001

foot-and-mouth disease epidemic [5] and a later increase in use of

the gamma-interferon test [26]. Although discretionary use of the

gamma interferon test increased after the end of our study period,

this does not appear to have impacted upon persistence and our

model still provides an equally good fit to target measures taken

from more recent data (Figures S7,S11).

The cessation of testing during the 2001 foot-and-mouth

epidemic artificially increased the duration of time that herds

were kept under movement restrictions, delayed the scheduling of

routine surveillance tests and was associated with an increase in

incidence and spread of bTB to new areas [5]. Given the slow rate

of transmission of bTB, the perturbative effect of this disruption to

testing is likely to have continued for many years. However, our

interest is primarily in the sequence of transmission and testing

after the disclosure of a breakdown. Disruptions to testing prior to

the disclosure of infection will increase the duration of time that

infection was able to transmit silently within our study herds.

Author Summary

Epidemic models are commonly used to assess the impact
of alternative management strategies. The efficacy of
controls is typically assumed from ‘‘expert opinion’’ rather
than estimated from data. Managed endemic diseases
such as bovine tuberculosis offer the potential to estimate
the efficiency of control directly from epidemiological
data. Our methodology constitutes a shift in the level of
statistical rigor applied to ‘‘policy’’ models and offers
insights into the epidemiology of Bovine tuberculosis in
Great Britain. bTB continues to persist and spread
relentlessly in Britain, despite extensive testing and control
programs. Cattle farmers question the efficacy of cattle
controls, blaming the badger wildlife reservoir. Contrary to
much public perception, we demonstrate the importance
of cattle-to-cattle transmission, especially in larger herds.
We estimate that in the worst case scenario up to 21% of
herds may be harboring infection after they clear
restrictions. However, we also estimate that there is a
high rate of re-introduction of infection into herds,
particularly in high incidence areas. Eliminating the hidden
burden of infection alone is unlikely to be sufficient to
prevent recurrent breakdowns. Rather, the high rate of
external infection, both through cattle movements and
environmental sources, must be addressed if recurrence is
to be reduced.

Persistence of Bovine Tuberculosis
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However, as this variation is included within the empirical testing

distributions used within our model (Figure S1, Dataset S1) we do

not expect it to affect our results.

Of 10,174 breakdowns recorded within our study period, 3,456

(34%) breakdowns match our criteria for inclusion. Restricting our

analyses to this sub-population has an important advantage. The

scheduling of surveillance tests in GB is based on the local

incidence (Figure 1), that determines the so-called parish testing

interval (PTI). The duration of time that infection may have

remained undisclosed within our sub-population of herds is

strongly constrained by the herd’s local PTI. After detection of

infection, regardless of the disclosing test type, all herds must

undergo the same statutory sequence of testing. We therefore do

not believe that our inclusion criteria impacts upon the generality

of our inference for rates of within-herd transmission and the

efficiency of surveillance.

Of the remaining breakdowns the majority are either recurrent

breakdowns (2,102; 21%) initiated by a follow-up ‘VE-6M’ or ‘VE-

12M’ test or breakdowns that started with a so-called ‘‘inconclu-

sive’’ reactor (2,032; 20%). Inconclusive reactors (IRs) demonstrate

a response to the SICCT that is close to the cut-off value defining a

reactor. IRs do not necessarily trigger a breakdown but require the

animal, rather than the herd, to be retested at an interval of 60

days. The population of IRs will be composed of both false reactor

and truly infected animals and cannot be rationally treated within

our model framework, requiring us to omit these herds from our

analysis. The remaining 25% of breakdowns were initiated

through a mixture of contiguous testing of affected premises and

contact tracing.

The persistence of bTB has previously been demonstrated to

scale with herd size [27]; a known risk factor for both prolongation

[25] of breakdowns in GB and recurrence in Irish herds [28]. We

extend these analyses to quantify the relationship of our two

persistence measures with herd size. The size of a cattle herd varies

dynamically, even over the course of a breakdown. We therefore

define herd size as the maximum herd size over the breakdown.

The distribution of herd sizes is right skewed with 90% of

breakdowns having herd sizes less than or equal to 360 cattle

(Figure S4). The scarcity of herd sizes larger than this limits our

ability to measure the relationship with persistence [27]. We

therefore finally restrict our study population to breakdowns with a

herd size of less than or equal to 360 cattle, leaving us with a final

study population of 3,094 breakdowns. These 3,094 breakdowns

were then binned into 6 groups with histogram mid-points of

[30,90,150,210,270,330].

Patterns of persistence of bTB in Great Britain
We further stratify these herds by the parish testing interval

(PTI) and confirmation status of breakdowns to produce empirical

distributions of persistence (Figure 2, Figures S6,S10). This

classification is motivated by the systematic differences in testing

for herds within different PTIs and after confirmation. Confirmed

(recently re-classified as Officially TB-Free Status Withdrawn or

OTF-Withdrawn) breakdowns are required to pass an additional

clear test at a more strict (severe) interpretation of the SICCT test

(Figure 1B). The severe interpretation increases the sensitivity of

the SICCT test at the expense of reducing the specificity.

Confirmation is triggered by the discovery of reactor animals

with visible lesions and/or culture of M. bovis.

The proportion of prolonged and recurrent breakdowns both

scale with herd size, but demonstrate distinct relationships with

respect to both confirmation status and the local background risk

of infection as measured by PTI. These empirical relationships are

consistent with previous analyses suggesting that confirmation is

associated with an increase in the duration of breakdowns [25],

but has negligible impact on recurrence [10]. In contrast to the

consistency of the duration of breakdowns across all areas there is

a marked increase in the rate of recurrence with local risk as

measured by PTI. These differential relationships of persistence

with herd size are the basis on which we set out to infer the within-

herd transmission dynamics of bTB.

Modelling the persistence of bTB
We consider the persistence of bTB to be a product of the non-

linear interaction of both the disease and testing dynamics.

Heuristically, our model can therefore be considered as having two

interacting dynamic components: an epidemic model that

describes transmission within and into the herd and a testing

model that models the sequence of tests and removal of reactors.

We estimate the parameters of our model (Table 1) directly from

our target measures of persistence using a sequential Monte Carlo

implementation of Approximate Bayesian Computation (ABC-

SMC) [18,19]. This framework is designed to bypass the

calculation of computationally infeasible likelihood functions and

instead generates distributions of parameters for which model

outputs are consistent with the data according to a set of pre-

defined goodness-of-fit metrics.

Figure 1. Parish Testing Intervals (PTI) for bTB in GB (2003–
2005). Routine surveillance for bTB in GB is based upon the regular
(SICCT) testing of herds at a frequency determined by the local
incidence of affected premises. Panel (A) maps the shortest recorded
PTI for each parish over our study period of 2003–2005. High incidence
areas are spatially clustered with the greatest incidence, and thus
intensity of testing, in the south-west of England and south Wales. PTI
therefore offers a crude categorization of herds according to
epidemiological risk, past history of testing and to a lesser extent,
geographical location. In contrast to surveillance testing, the sequence
of tests (B) following a breakdown are dependent only on the outcome
of tests on the affected premises. A failed surveillance test leads to a
sequence of short interval tests (SI) at intervals of at least 60 days.
Confirmation of infection, through isolation of M. bovis or evidence of
visible lesions at slaughter, leads to tests being re-interpreted under a
‘‘severe’’ interpretation of the SICCT, until one test is passed; testing
then continues until an additional test at the standard interpretation is
passed. After a breakdown is cleared follow-up tests are scheduled at
intervals of at least 6 and 12 months, after which testing frequency
reverts to the local parish testing frequency.
doi:10.1371/journal.pcbi.1002730.g001

Persistence of Bovine Tuberculosis
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The period of latency between infection and infectiousness is a

key epidemiological parameter that sets the time-scale between

subsequent epidemic generations. Given the chronic, progressive

nature of bTB, models have conventionally assumed long

epidemiological latent periods of ,6–20 months [13,14]. Howev-

er, animal challenge studies have suggested that bacterial

shedding, and therefore transmission, may occur over shorter

time-scales of ,30 days [29]. In order to explore these two

scenarios of latency, we fitted two models using vague (uniform)

prior assumptions (Table 2), one based on the conventional model

structure assumed for bTB [13,14] (SORI, Table 3) and an

alternative model allowing for ‘‘early’’ infectiousness (SOR,

Table 4). In the SORI model cattle are assumed to be infectious

(I) only after passing through two latent stages: an occult stage (O)

Figure 2. The persistence of bTB in GB herds (2003–2005). The within-herd persistence of bTB in GB as measured by the probability of all GB
breakdowns from our study population being prolonged (duration of greater than 240 days, top panel) or recurrent within 24 months (middle panel).
The relationship of each measure is plotted against herd size, with breakdowns further stratified by parish testing interval (PTI 1, 2 and 4, left to right)
and confirmation status (unconfirmed breakdowns: lime green, circles, confirmed breakdowns: magenta squares). Uncertainty in each (mean) target
observation (thick lines) is illustrated by an envelope (thin lines) of 61.96 standard errors around the mean. Predictive distributions from our within-
herd (SORI) model for each of these measures are plotted as shaded density strips where the intensity of color is proportional to the probability
density at that point [35].
doi:10.1371/journal.pcbi.1002730.g002

Persistence of Bovine Tuberculosis
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where animals are infected, but not detectable by SICCT testing

and a reactive stage (R) where animals are ‘reactive’ to the SICCT

test but not yet infectious. The SOR model decouples this

relationship between epidemiological latency and reactivity to the

SICCT test. Animals are assumed to be potentially infectious from

both the occult (O) and reactive (R) classes, dispensing with the

infectious class (I).

Both models provide comparable fits to the empirical target

distributions (Figure 2, Figures S6,S10) despite remarkably

different estimates for the duration of the occult period and the

epidemiological period of latency between infection and infec-

tiousness (Figures S5, S9). The occult period is estimated to last

,1.8 days (0.0–7.7 days, 95% CI) for the SOR model and ,275

days (24–517, 95% CI) for the SORI model. Whereas infectious-

ness is implicitly assumed to begin with infection under the SOR

model, the period of epidemiological latency estimated under the

SORI model is more than twice that of previously assumed values

[13,14] with a point estimate of 406 days (116–827, 95% CI). The

occult period estimated from the SORI model is an order of

magnitude larger than the range of 8–65 days observed in animal

challenge studies [12,30,31]. Placing a more informative prior

(uniform on the range 0–128 days) on the occult period for the

SORI model has no appreciable impact on the fidelity of the

model fit and reduces the estimated occult period to a median

point estimate of ,28 days (1–119 days, 95% CI). We therefore

select the SORI model fit with the more informative prior for

comparison with the alternative SOR model within this paper.

Both models estimate that the rate of cattle-to-cattle transmis-

sion within a herd increases, non-linearly, with herd size. The

potential for transmission within a herd can be characterized by

the basic reproductive ratio R0, defined as the expected number of

secondary cases within a herd of size N on the introduction of a

single infectious individual. Within the range of our study

Table 1. Model parameters.

Parameter Description

pT Standard Sensitivity. Probability of positive test from R,I compartments at standard definition.

1{pFP Standard Specificity. Probability of negative test from all compartments at standard definition.(1 – probability of a false positive pFP)

p’T Severe Sensitivity. Probability of positive test from R,I compartments at severe definition

1{p’FP Severe Specificity. Probability of negative test from all compartments at severe definition.(1 – probability of false positive p’FP)

pC Confirmation. Probability of confirmation of breakdown per reactor based on slaughter-house inspection and culture (only applies to
reactors from O,R,I compartments)

pRI Slaughterhouse routine inspection. Probability of detecting an infected animal (O,R,I compartment) at slaughter under routine inspection

TO Occult Period. Mean length of time that animals are undetectable (occult) to SICCT

TR Reactive Period. Mean length of time between infection and animals becoming infectious

b Transmission parameter associated with density dependence (rate per day, dimensions change with q)

q Transmission parameter measuring the strength of density dependence (range 0–1)

x1 Transmission parameter measuring infectious pressure per susceptible per year in PTI 1

x2 Transmission parameter measuring infectious pressure per susceptible per year in PTI 2

x4 Transmission parameter measuring infectious pressure per susceptible per year in PTI 4

Hm~165 Constant equal to mid-point of range of herd sizes within study population. Used to transform density dependence of force of infection.

doi:10.1371/journal.pcbi.1002730.t001

Table 2. Prior assumptions.

Parameter Prior Constraints Initial sampling distribution

pT 0vpT v1 Uniform [0.05,1]

1{pFP 0vpFPv0:0003 Uniform [0.05,1-0.9997]

p’T pT vp’T v1 Uniform [0.4,1]

1{p’FP p’FPwpFP Uniform [0,1-0.9990]

pC 0vpCv1 Uniform [0.0,0.5]

pRI 0vpRI vpC Uniform [0.0,0.5]

T0(SOR) 0ƒT0ƒ1:5 Uniform [0.0,1.5]

T0(SORI) 0ƒT0ƒ0:35 Uniform [0.0,0.35]

TR TRw0 Uniform [0.0,1.5]

b bw0 Uniform [0,2.0]

q 0vqv1 Uniform [0,1]

x1 x1w0 Uniform [0,3e-4]

x2 x2w0 Uniform [0, 3e-4]

x4 x4w0 Uniform [0, 3e-5]

doi:10.1371/journal.pcbi.1002730.t002

Table 3. Events defining SORI stochastic epidemic model.

Event Effect Probability per unit time

Move susceptible
animal onto herd

S?Sz1 mHT

Remove animal
from herd

S?S{1 mS

O?O{1 mO

R?R{1 mR

I?I{1 mI

Transmission S?S{1;
O?Oz1

bI

(H=Hm)q zx

� �
S

Emergence
(Occult)

O?O{1;
R?Rz1

(1=TO)O

Emergence
(Reactive)

R?R{1;
I?Iz1

(1=TR)R

doi:10.1371/journal.pcbi.1002730.t003
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population our (median) point estimate of R0 from the SORI

model increases from 1.5 (0.26–4.9; 95% CI) in a herd of size 30

up to 4.9 (0.99–14.0; 95% CI) in a herd of 400 cattle (Figure 3A).

Estimates from the SOR model are smaller, but with overlapping

credible intervals, increasing from 0.52 (0.1–1.6, 95% CI) in a

herd of size 30 up to 3.6 (0.73–8.85, 95% CI) in a herd of size 400

(Figure 3A). As a consequence, both models predict that the

efficiency of control will also scale with herd size.

The SOR and SORI models provide contrasting estimates of

the efficiency of SICCT testing in Great Britain. The SOR model

estimates a true median SICCT test sensitivity of 66% (52–80%,

95% CI) at the standard interpretation, rising to 72% (56–88%,

95% CI) under the severe interpretation. Estimates of true

sensitivity from the more traditional SORI model are far lower,

at 36% (24–51%, 95% CI) for the standard interpretation rising to

48% (34–69%, 95% CI) for the severe interpretation (Figure 3B).

However, these model estimates are relative to the true infection

status of animals. Given the lack of a gold standard diagnostic test

for bTB, such information is not available in real populations.

Rather, out of necessity, sensitivity of diagnostic tests for bTB is

routinely measured relative to the presence of visible lesions and/

or culture. The limitations of such comparative measures of

sensitivity are aptly illustrated by comparison of our estimates from

the SOR and SORI models. Despite the differences in the true

sensitivity between the two models, the effective test sensitivities

relative to visible lesions are indistinguishable and considerably

higher than the true values (Figure 3B). As a consequence the

diverse sensitivity estimates from the SOR and SORI models are

nonetheless both consistent with published estimates of the

sensitivity of SICCT relative to visible lesions of up to 93.5% at

the severe interpretation [11].

In order to quantify the efficiency of control we introduce a new

measure - the infectious burden. We define infectious burden as

the probability that at least one infected animal remains within a

herd after movement restrictions are lifted. By simulating our

within-herd models using the distribution of herd sizes from our

study population we can generate predictive distributions for the

infectious burden at the national level (Figure 3 C,D). Once more,

the SOR and SORI models provide contrasting views of the

efficiency of control. Under the SOR model we estimate that 8%

(3–17%; 95% CI) of breakdowns will have an infectious burden

when they clear restrictions, with a median of 1 (1–3; 95% CI)

infectious animal remaining in these herds. Under the SORI

model this estimate increases to 21% (12–33%; 95% CI) of

breakdowns with an infectious burden when they clear restrictions,

with a median of 1 (1–4; 95% CI) infectious animal remaining in

these herds.

Implications for control
We apply our fitted models to predict how different herd-level

interventions may affect the resolution of breakdowns (Figure 4).

Specifically we consider two treatments: application of a ‘perfect

test’ and eliminating the extrinsic infectious pressure through

‘perfect isolation’. In the SOR model, recurrence is driven almost

completely by re-introduction, with ‘perfect isolation’ having the

potential to eliminate recurrence completely in some herds

(Figure 4B). Perfect isolation is predicted to be less effective at

reducing recurrence in herds with a low extrinsic rate of re-

introduction (i.e. small herds in low incidence areas). Although

these herds are predicted to have a lower infectious burden

(Figures S8, S12), when they do experience a recurrent

breakdown it is more likely to be caused by infection missed by

SICCT testing than re-introduction.

Under the SORI model there is a similar relationship in the

response to ‘perfect isolation’, except that a greater proportion of

recurrence is attributable to persistence of infection. At the

national level, averaging over our study population of herds once

again, we estimate that 50% (33–67, 95% CI) of recurrent

breakdowns are attributable to persistence within the SORI

model, compared to 24% (11–42, 95% CI) under the SOR model.

However, eliminating this hidden burden of infection is not

sufficient to eliminate recurrence if the extrinsic infectious pressure

acting on herds is not simultaneously addressed. Under both

models a ‘perfect test’ with 100% sensitivity, specificity and no

occult period fails to improve the probability of recurrence in high

incidence areas (Figure 4). Although the perfect test reduces the

duration of breakdowns, it can also detect infection within herds

more quickly. In the short term, rates of recurrence will therefore

increase in high incidence areas and such a perfect test would only

be of benefit for low incidence (PTI 4) breakdowns where the rate

of re-introduction is sufficiently low.

This counter-intuitive result demonstrates an important limita-

tion of our approach. Our herd-level model does not distinguish

between movements to slaughter or to other herds, so the

infectious burden output from our model may potentially be

contributing to the extrinsic rate of transmission that drives

recurrence in our herd-level model. Both of our within-herd

models can equally well fit the empirical patterns of persistence of

bTB despite very different predictions for the level of the infectious

burden. However, such a difference would place very different

weights on the importance of cattle movements in network models

of herd-to-herd transmission. Recent analyses of the between-herd

transmission of the disease in GB have simplified, or ignored these

within-herd dynamics of transmission [6,7].

Discussion

A fundamental challenge in epidemiological modeling concerns

identifying the appropriate level of model complexity required to

understand the dynamics of transmission and form a rational basis

for policy development. Tuberculosis has been described as an

infectious disease with a period of latency ranging from one day to

a lifetime [32]. However, this uncertainty surrounding the

progression of disease in individuals is rarely considered as a part

of epidemiological modeling studies. In this study we have

demonstrated how assumptions concerning the relative timing of

infectiousness and reactivity to tuberculin profoundly impacts

upon the estimated efficiency of SICCT testing.

Table 4. Events defining SOR stochastic epidemic model.

Event Effect
Probability per
unit time

Move susceptible
animal into herd

S?Sz1 mHT

Remove animal
from herd

S?S{1 mS

O?O{1 mO

R?R{1 mR

Transmission S?S{1;
O?Oz1

b(OzR)

(H=Hm)q zx

� �
S

Emergence O?O{1;
R?Rz1

(1=TO)O

doi:10.1371/journal.pcbi.1002730.t004
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Both the SOR and SORI models are equally well supported by

the population level data used in this study, despite very different

estimates for the efficiency of testing. This suggests that persistence

measures alone are insufficient to distinguish the true burden of

infection and points to experimental studies that could resolve this

uncertainty. Neither model identifies, without the support of

informative priors, an occult period within the range observed

from animal challenge studies [12,30,31]. However, if there is a

relationship between infectious dose and the duration of latency,

estimates from challenge studies must also be treated with caution.

Given the importance of this parameter in determining the hidden

burden of infection, further research is required to clarify the

relationship between infectiousness and sensitivity to diagnostic

tests. Our modeling suggests that transmission of bTB ‘early’ in

Figure 3. Herd level measures of efficiency of transmission and clearance of infection for SORI and SOR models. (A) Predictive
distribution for the within-herd reproduction ratio (R0), plotted as a shaded density strip where the intensity of shading is proportional to the

probability that R0 takes a given value [35]. We calculate R0~
b

m
(H=Hm)1{q where q measures the strength of density dependence, b is the

estimated transmission parameter and m the per capita rate of turnover of the herd sampled from an empirical distribution and Hm~165. Both
models estimate that transmission is non-linearly density dependent with point estimates for the invasion threshold (R0 = 1) of 71 (8–674,95% CI) for
the SORI model and 12 (1–833, 95% CI) for the SOR model. (B) The effective sensitivity of the SICCT test within our study population of herds
measured under the standard (solid line) and severe (dashed line) interpretations and relative to the gold standard of confirmation with visible lesions
(dotted line). (C,D) The infectious burden remaining after movement restrictions are lifted can be characterized in terms of the number of herds with
at least one infectious animal remaining when movement restrictions are lifted (C) and the expected distribution of animals on those herds (D).
Predictive distributions for (B,C,D) are calculated by simulating from the empirical distribution of herds taken from our study population,
representing the national distribution of herds.
doi:10.1371/journal.pcbi.1002730.g003
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infection necessitates a lower level of persistence of infection than

predicted by traditional (SORI) transmission models. However,

evidence for such ‘early’ transmission comes from animal

challenge studies [29,33] and has not been verified under natural

transmission conditions. Our modeling emphasizes the critical

importance of understanding how the pattern of bacterial

shedding in naturally infected animals changes over time.

Both models estimate that the rate of cattle-to-cattle transmis-

sion in GB herds is non-linearly density dependent. This result has

immediate importance for the formulation of bTB policy at the

herd level, suggesting that additional controls may need to be

targeted towards larger herds. Our models suggest that the key to

addressing the ongoing spread of bTB lies with reducing the rate

of transmission into herds. The central question remains as to

whether this requires management of the reservoir of infection in

wildlife populations, or simply improved surveillance and

diagnostic testing to reduce the movement of undisclosed infection

between herds.

We have shown that stochastic persistence measures can

provide insights into the efficiency of control measures for

managed populations. However, the interpretation of these

patterns of persistence requires a modeling approach that

simultaneously accounts for the dynamics of control as well as

the intrinsic dynamics of disease transmission. In the case of bTB,

the dynamics of infection at the individual level have a profound

impact on the estimated burden of infection missed by testing. It is

therefore imperative to improve our understanding of the, still

mysterious, life history of infection of bTB in individual cattle.

Methods

Epidemic model
Within-herd transmission of bTB is modeled using the standard

compartmental approach where animals are classified only by

their epidemiological status. We consider two alternative models

(SORI and SOR) corresponding to different assumptions

concerning the relationship between latency, transmission and

reactivity to the SICCT skin test. In the traditional SORI model

for bTB, occult (O) and reactive (R) animals are infected but not

yet infectious, differing only in their response to the SICCT test.

Infectious animals (I) are assumed to be both infectious and

detectable by the SICCT test with the same efficiency as reactive

Figure 4. Impact of herd-level interventions on probability of recurrence within 24 months. Change in the probability of a herd
experiencing a recurrent breakdown after application of a ‘perfect’ test (left column) or perfect isolation (right column). The perfect test is assumed to
have 100% sensitivity and specificity and no occult period. Perfect isolation corresponds to setting the extrinsic infectious pressure to zero at the end
of a breakdown (x~0). Plotted values correspond to the average % difference in the probability of recurrence relative to the fitted SORI (Panel A) and
SOR models (Panel B). Separate series are plotted for herds in PTI 1 (lime green circles), 2 (magenta squares) & 4 (sky blue diamonds). Predictive
distributions illustrating the variability in these point (mean) estimates are presented in supplementary figure S13.
doi:10.1371/journal.pcbi.1002730.g004
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animals. In the SOR model occult (O) and reactive (R) animals are

both assumed to be potentially infectious eliminating the need for

the infectious class (I).

Both epidemic models are implemented as stochastic Markov

chains in continuous time and can be defined by the allowed

transitions between the four state variables: Susceptible (S), Occult

(O), Reactive (R) and Infectious (I) (Tables 3,4). A per capita turnover

rate m is sampled from an empirical distribution for each simulation

(Figure S3). A constant target herd size (HT ) is maintained by

balancing a constant per-capita removal rate (m) with a fixed import

rate of mHT . Herd size therefore fluctuates, with an instantaneous

herd size of H~SzOzR(zI). The extrinsic infectious pressure (x)

is the only parameter to vary with the parish testing interval (PTI)

taking unique values for PTI 1, 2 and 4 (x1,x2,x4).

Testing model
The sequence of tests before, during and after a breakdown is

simulated by a model where the timing of tests and number of

animals to be tested changes dynamically according to the state-

variables of the epidemic model and the outcome of individual

animal tests.

Model simulations are initialised with the entire herd in the

susceptible compartment (S,O,R,I) = (N, 0, 0, 0). The model is then

simulated forward, piecewise, between the dynamically scheduled tests

before, during and for 5 years following the end of the first breakdown,

or until a recurrent breakdown is triggered. The sequence of decisions

following the outcome of herd tests is summarized in Figure 1B.

Simulations begin with the herd undergoing routine surveillance

through slaughterhouse inspection and whole herd tests (classified

as RHT or WHT) at 1, 2 or 4 yearly intervals (described below).

Detection of a reactor animal triggers a breakdown. The herd then

enters a sequence of short interval tests (SIT). Unconfirmed

breakdowns end after a single clear test at the standard

interpretation, while confirmed breakdowns must clear two tests

– one at severe interpretation and the second at standard

interpretation. Two follow-up tests, one six months after the end

of a breakdown (VE-6M) and one 12 months later (VE-12M) are

then scheduled. The time between all tests associated with a

breakdown (SIT, VE-6M, VE-12M) are sampled from empirical

distributions (Figure S1, Dataset S1). The duration of time

between routine tests is also sampled from an empirical

distribution (with separate distributions for PTI 1, 2 and 4) to

account for the additional variation in the time to detection that is

a consequence of delays in testing and the transition of herds

between different parish testing intervals (Figure S1, Dataset S1).

Breakdowns are triggered by the detection of a reactor, either due

to the presence of infected animals in the herd or the generation of a

false positive test result. Nominally, we simulate the full sequence of

tests until either of these events occurs with the proportion of false-

positive breakdowns determined by the relative values of the

specificity (1{pFP) and the infectious pressure (x). In practice, and

to increase the speed of simulations, this can be pre-calculated by

explicitly calculating the probability of a false positive breakdown

occurring between periods where there are no infectious animals

within the herd. Breakdowns can also be triggered by routine

slaughterhouse surveillance that is modeled as a fixed probability

(pRI ) that removals from the O, R and I compartments will be

detected. Breakdowns triggered by slaughterhouse surveillance are

treated as confirmed breakdowns, with the first whole herd test

carried out under the severe interpretation.

Simulating herd tests
The application of herd tests in GB can be modeled by

simulating three basic processes 1) the number of animals to test 2)

the number of reactor animals detected at the standard and severe

interpretations of the skin test and 3) the confirmation process.

For tests associated directly with a breakdown (SIT, VE-6M,

VE-12M) the whole herd is tested. However, there is more

variation in the type of test, and numbers of animals tested, in PTI

2 and 4 herds. We simulate this process by choosing the test type –

either a whole herd test or a routine herd test – at random

according to the proportion of tests recorded within the parish

testing interval of the simulated herd (Figure S2, Dataset S1).

Whole herd tests specify that all bovines older than 6 weeks

should be tested. We simulate this requirement by approximating

the instantaneous proportion of the herd ineligible for testing to be

(6/52) m/N, where m is the per-capita turnover of the herd. The

number of animals tested with a WHT (X) is then sampled from a

binomial distribution:

X*binom(N,1{(6=52)
m

N
)

There is greater variability in which non-breeding animals are

tested during a routine herd test (RHT), and therefore in the

proportion of the herd tested. In order to account for this we

sample the proportion from a Cauchy distribution fitted to the

empirical distribution from VetNet data by maximum likelihood

(Figure S2) with scale parameter 0.0932 and shift parameter 0.494

(to 3 s.f.). The number of animals tested with a RHT (X) is then

sampled from a binomial distribution as before with:

X*binom(N,pRHT )

pRHT*Cauchy(0:4941,0:09322)

The outcome of diagnostic tests within our model is determined

by the set of parameters defining the sensitivity and specificity of

the SICCT test at both the standard and severe interpretations

(Table 1). In the field, the classification of reactors is based on cut-

off values for the difference in reaction between avian and bovine

tuberculin, with the cut-off value for a reactor changing with the

severe and standard interpretation. As a consequence, tests can,

and are, re-interpreted at the severe interpretation following the

confirmation of a reactor animal after slaughter. In order to model

the process of confirmation in a consistent fashion we must

simulate the test outcome for each individual animal in the herd

separately to ensure that the number of reactors at the severe

interpretation is strictly greater than or equal to the number at the

standard interpretation.

Given X animals to test we sample them randomly (and

uniformly) from each of the model compartments (S,O,R,I) to

generate the number of animals from each compartment that are

tested (XS,XO,XR,XI). For each (XS,XO,XR,XI) we sample a

uniform random number and use the value to simulate the

number of reactor animals at the standard (Standard Reactors)

and severe (Severe Reactors) interpretations:

For each XS:

Y*unif(0,1)

if (YƒpFP): Standard Reactors +1;

if (Yƒp’FP) : Severe Reactors +1
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For each Xo:

Y*unif(0,1)

if (YƒpFP) : Standard Reactors +1; Z+1

if (Yƒp’FP) : Severe Reactors +1

For each XR:

Y*unif(0,1)

if (YƒpTzpFP) : Standard Reactors +1; Z+1

if (Yƒp’Tzp’FP) : Severe Reactors +1

For each XI:

Y*unif(0,1)

if (YƒpTzpFP) : Standard Reactors +1; Z+1

if (Yƒp’Tzp’FP) : Severe Reactors +1

We must also keep track of the number of true reactors (Z) in

order to simulate the number of confirmed reactors (C):

C*binom(pC ,Z)

Provided that the breakdown has not been previously confirmed

and C = 0, then all reactors at the standard interpretation are

removed from the herd. Otherwise, if the number of confirmed

reactors C§1, then the breakdown status is switched to confirmed

(requiring an additional severe interpretation clear test to move

back to the standard interpretation) and the reactors at the severe

interpretation (including those from the current test) are removed.

ABC-SMC implementation
We use the ABC-SMC algorithm described in Toni et al. [19].

In essence the method replaces the calculation of a likelihood

function with an approximation based on matching model

simulations to the observed data using a set of goodness-of-fit

metrics (in this case corresponding to a set of key epidemiological

target measures). These target measures can be combined to

produce a single metric (described in the next section). For a given

set of parameters, a series of stochastic simulations from the model

are produced using the algorithm described in the previous

section. A simulation is said to ‘‘match’’ the observed data if the

corresponding (simulated) metric value lies below a pre-deter-

mined threshold. A Monte Carlo estimate of the probability of

matching can then be used as an approximation to the likelihood

in an SMC framework [18,19]. As the tolerance applied to the

metric is reduced, the approximate (posterior) distribution should

in principle converge towards the (true) posterior distribution.

The algorithm begins by generating 10,000 particles - each

‘‘particle’’ corresponding to a set of model parameters – from a set

of uniform proposal distributions (Table 2). For each particle we

produce a binary Monte Carlo estimate for the probability of

matching. This information is combined with the prior distribu-

tions for the parameters to produce a set of weights across the

whole population of particles. The algorithm then proceeds

through a series of repeated steps, whereby the population of

particles is re-sampled from the previous weighted population and

then each particle perturbed according to a set perturbation

kernel. A new set of weights is then generated in a similar manner

to before. The tolerance controlling the matching is reduced at

each step until the predictive distributions from the simulated

model generate an acceptable agreement with the target

epidemiological measures. All parameters are log transformed

and the perturbation kernel is uniform for each parameter (on this

scale) *unif ({0:1Wi,0:1Wi), where Wi is the range of the

marginal distribution for parameter i from the previous SMC

round.

At each successive round the threshold was reduced semi-

automatically to the median value of the metric from the previous

round. Heuristically the ABC-SMC procedure can be thought of

as using goodness-of-fit criteria to inform the shape of the

approximate posterior distributions, rather than the likelihood

function.

Prior assumptions
Uniform prior distributions are applied to individual parameters

and combinations of parameters to constrain their values to

biologically relevant ranges. Probabilities are constrained to be in

the interval [0,1] and rates are constrained to be positive. The

sensitivity and specificity of the SICCT test are constrained to

increase and decrease respectively under the severe interpretation

and the probability of confirmation of reactors under routine

slaughterhouse surveillance is assumed to be less than the

probability of confirmation of reactors. All prior assumptions are

intended to be uninformative, apart from the occult period for the

SORI model and the upper bound (0.0003) placed on pFP. This

value, equivalent to a lower bound on the specificity of the skin test

at the standard definition of 99.97%, was obtained by calculating

the value of pFP required to explain all of the unconfirmed

breakdowns within VetNet data given the total number of animal

tests.

Target epidemiological measures
Table 5 summarizes the target measures used to build our ABC

metric. For each measure there are 6 empirical targets, by 2 values

of confirmation status, by 3 values of PTI to give 36 target

distributions/probabilities for each epidemiological measure.

All of the target epidemiological measures for our final ABC-

SMC scheme can be expressed either as probabilities or as

(binned) probability distributions. This motivated the choice of an

ABC metric based on the relative entropy, also known as the

Kullback-Leibler divergence [34], that measures the distance

between a proposed probability distribution (p) and a reference

distribution (q):

KL(p,q)~
X

i

pi log
pi

qi

� �

Two properties of the relative entropy should be noted: firstly,

the relative entropy is asymmetric to the choice of reference

distribution, with KL(p,q)=KL(q,p). We choose to remove the

potential ambiguity introduced through the choice of reference

distribution by using a symmetrical metric (M):

M(p,q)~
X

i

pi log
pi

qi

� �
zqi log

qi

pi

� �

Secondly the relative entropy is undefined if any of the elements

of the reference distribution qi = 0. We numerically approximate

the distribution of each of our target measures through histograms,
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with bin-sizes chosen to capture the range of observed values

within VetNet data. Where we are free to choose appropriate bin

sizes for the empirical distributions (q) such that we avoid any

empty bins, we cannot ensure the same for the proposed

distributions (p) generated from model simulations. To ensure

that our metric is always defined, we add 1 to every bin of our

empirical and simulated histograms.

For each proposed set of parameters (particle) we simulated a

fixed number of realizations of the model (500) at the midpoint of

each of the 6 herd-size histogram bins [30,90,150,210,270,330] for

PTI 1,2 and 4 and generate a set of j proposed distributions (pj ) for

each corresponding target measure (qj ). We use a superscript to

indicate the jth distribution with elements indexed by i. We

calculate the distance between the proposed and target distribu-

tions using the symmetric metric (M(pj ,qj)) introduced above. The

maximum value of this metric will increase with the number of

histogram bins associated with that target distribution. In order to

ensure that the overall metric M~
P

j

M(pj ,qj) places a more

equal weight on each epidemiological measure we weight the

contributions from each target measure M(pj ,qj) proportionally to

the total number of bins forming that measure (wj ) (Table 5):

M~
X

j

1

wj
M(pj ,qj)

Supporting Information

Dataset S1 Target and auxiliary distributions necessary for

simulation and parameterization of models using ABC-SMC.

(ZIP)

Figure S1 Distribution of times between scheduled whole herd

tests in GB (2003–2005). Farmers are responsible for scheduling tests

as close as possible to the statutory intervals. Historically, this has lead

to variation in the time between tests that we quantify for our study

period (2003–2005). The frequency of routine herd tests is

determined by the current parish-testing interval (PTI) for a herd.

However, the time since the previous whole herd test is also

determined by the historical testing intervals for the parish and other

epidemiological factors. In practice the time since the previous

surveillance test for breakdown herds in PTI 1, 2 and 4 is distributed

with the greatest variation seen in PTI 2 (left). Short interval tests

(SIT) must be carried out at least 60 days after the last whole herd test

leading to a skewed distribution where test intervals are more likely to

be late than early (middle). Likewise the follow up tests after a

breakdown, that must be scheduled at intervals of at least 6 and 12

months respectively (VE-6 M, VE-12 M) are skewed to be late (right).

(PDF)

Figure S2 Proportion of animals tested in routine surveillance

tests (2003–2005). The number of animals within a herd that are

tested during routine surveillance varies depending on the

demographic structure of the herd and the perceived epidemio-

logical risk. PTI 1 herds should receive a whole herd test (WHT)

where all bovines older than 6 weeks are tested. In PTI 2, 3 and 4

a routine herd test (RHT) may be carried out where there is

greater discretion as to which animals are tested based on

perceived epidemiological risk. As a consequence the proportion of

animals tested is smaller and more variable for RHTs (Right) as

compared to WHTs (Middle). The proportion of breakdowns

reported as being disclosed by WHTs and RHTs also varies by

PTI (Left table). The small proportion of breakdowns in PTI 1

initiated by a RHT, despite WHTs being mandated in these herds,

stem from herds whose PTI was updated retrospectively after

disclosure. Likewise despite the majority of tests in PTI 4 being

RHTs, a higher proportion of breakdown herds are initiated by

WHTs, applied when there was a perceived higher risk or

consequence of infection (e.g. in dealer or milk retailer herds).

(PDF)

Figure S3 Annual per bovine rate of turnover in breakdown

herds. We define turnover as the time-averaged rate at which

animals move into and are removed from a herd. A representative

distribution of turnover rates for breakdown herds was calculated

from CTS data from 1st January 2003 – 1st January 2005 for all

breakdown herds with start dates in 2004. Note that since the CTS

data only records movements at the holding (CPH) rather than the

herd (CPHH) level, this is an indirect measure corresponding to

the annual per capita rate of movement of bovines through the

CPH associated with a breakdown herd. Turnover was calculated

three ways: using movements into a CPH (‘‘On Movements’’, red

line), movements out of a CPH (‘‘Off Movements’’, green line) and

the combined rate of both types of movements (black line, points).

The median number of ‘‘Off’’ movements is slightly smaller with

Table 5. Epidemiological target measures for ABC.

Description Type of Measure
Number of bins per
target distribution Weighting (wj )

Breakdown Length Distribution (Days)
[100,200,300,400,500,1000,2000]

7 1/7

Reactors at first test Distribution (Reactors) [1,2,3,4,5,10,47] 7 1/7

Reactors at VE-6M Distribution (Reactors) [1,2,3,4,5,10,47] 7 1/7

Reactors at VE-12M Distribution (Reactors) [1,2,3,4,5,10,47] 7 1/7

Total reactors removed within breakdown
(until movement restrictions are lifted)

Distribution (Reactors)
[2,4,6,8,10,12,14,16,18,20,47]

11 1/11

Probability of recurrence within 6 months Probability 1 1

Probability of recurrence within 12 months Probability 1 1

Probability of recurrence within 24 months Probability 1 1

doi:10.1371/journal.pcbi.1002730.t005
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than for on-movements consistent with the increase in herd size

nationally over the period. The ‘‘All movements’’ estimate is used

as the empirical distribution for the within-herd model.

(PDF)

Figure S4 Distribution of Breakdown Herd Sizes. Smoothed

density of the (maximum) herd size during a breakdown for our

study population. There is some variation in the size of herds with

PTI, with a longer tail of herds beyond our cutoff value of 360

(vertical dashed line) for PTI 4 herds.

(PDF)

Figure S5 Estimated Parameter Distributions for SORI model.

Distributions of parameters consistent with the persistence

measures and reactor distributions estimated from VetNet data

(Figure S6). The severe values of sensitivity and specificity are

constrained to be greater than and less than their respective values

at the standard interpretation. Likewise the probability of infected

animals being detected by routine slaughterhouse surveillance is

assumed to be less than or equal to the probability of confirmation.

All parameters are constrained to be positive, with probabilities

and the density dependent parameter q further constrained to be

less than or equal to 1.

(PDF)

Figure S6 Target measures for the within-herd persistence of

bTB (2003–2005) and predictive distributions for SORI model. The

within-herd persistence of bTB in GB as measured by the

probability of breakdowns being prolonged (duration of greater

than 240 days) or recurrent within a 6, 12 and 24 month horizon.

The relationship of each target measure is plotted against herd size,

with breakdowns further stratified by parish testing interval (PTI 1

top row, PTI 2 middle row, PTI 4 bottom row) and confirmation

status (confirmed breakdowns: green, circles, unconfirmed break-

downs: magenta squares). Target measures are calculated from

breakdowns trigged within 2003–2005 by a routine surveillance test

(VE-WHT, VE-WHT2, VE-RHT, VE-SLH). The probability of

confirmation varies between PTI, as does the proportion of

confirmed breakdowns initiated by a slaughterhouse case (white

diamonds) and the mean number of reactors reported at the

disclosing test. Uncertainty in each (mean) target observation (thick

lines) is illustrated by an envelope (thin lines) of 61.96 standard

errors around the mean. Predictive distributions for each of these

target measures from the finalized within-herd transmission model

are plotted as shaded density strips where the intensity of color is

proportional to the probability density at that point.

(PDF)

Figure S7 Target measures for the within-herd persistence of

bTB (2006–2008) and predictive distributions for SORI model.

The within-herd persistence of bTB in GB as measured by the

probability of breakdowns being prolonged (duration of greater

than 240 days) or recurrent within a 6, 12 and 24 month horizon.

The relationship of each target measure is plotted against herd

size, with breakdowns further stratified by parish testing interval

(PTI 1 top row, PTI 2 middle row, PTI 4 bottom row) and

confirmation status (confirmed breakdowns: green, circles, uncon-

firmed breakdowns: magenta squares). Target measures are

calculated from breakdowns trigged within 2003–2005 by a

routine surveillance test (VE-WHT, VE-WHT2, VE-RHT, VE-

SLH). The probability of confirmation varies between PTI, as does

the proportion of confirmed breakdowns initiated by a slaughter-

house case (white diamonds) and the mean number of reactors

reported at the disclosing test. Uncertainty in each (mean) target

observation (thick lines) is illustrated by an envelope (thin lines) of

61.96 standard errors around the mean. Predictive distributions

for each of these target measures from the finalized within-herd

transmission model are plotted as shaded density strips where the

intensity of color is proportional to the probability density at that

point.

(PDF)

Figure S8 Burden remaining after resolution of a breakdown

using SORI model. redictive distributions for the probability of at

least one infectious bovine remaining within a herd after a

breakdown is resolved as a function of herd size, classified by PTI

(1,2,4 left to right) and confirmation status (Green circles

confirmed, magenta squares unconfirmed). Predictive distributions

are plotted as shaded density strips where the intensity of shading

is proportional to the probability density at that point. Solid lines,

and points for each herd-size category, indicate the median of the

predictive distribution to aid comparison between confirmed and

unconfirmed breakdowns.

(PDF)

Figure S9 Estimated Parameter Distributions from SOR model.

Distributions of parameters consistent with the persistence

measures and reactor distributions estimated from VetNet data

(Figure S7). The severe values of sensitivity and specificity are

constrained to be greater than and less than their respective values

at the standard interpretation. Likewise the probability of infected

animals being detected by routine slaughterhouse surveillance is

assumed to be less than or equal to the probability of confirmation.

All parameters are constrained to be positive, with probabilities

and the density dependent parameter q further constrained to be

less than or equal to 1.

(PDF)

Figure S10 Target measures for the within-herd persistence of

bTB (2003–2005) and predictive distributions for within-herd

transmission model using SOR model. The within-herd persis-

tence of bTB in GB as measured by the probability of breakdowns

being prolonged (duration of greater than 240 days) or recurrent

within a 6, 12 and 24 month horizon. The relationship of each

target measure is plotted against herd size, with breakdowns

further stratified by parish testing interval (PTI 1 top row, PTI 2

middle row, PTI 4 bottom row) and confirmation status

(confirmed breakdowns: green, circles, unconfirmed breakdowns:

magenta squares). Target measures are calculated from break-

downs trigged within 2003–2005 by a routine surveillance test

(VE-WHT, VE-WHT2, VE-RHT, VE-SLH). The probability of

confirmation varies between PTI, as does the proportion of

confirmed breakdowns initiated by a slaughterhouse case (white

diamonds) and the mean number of reactors reported at the

disclosing test. Uncertainty in each (mean) target observation

(thick lines) is illustrated by an envelope (thin lines) of 61.96

standard errors around the mean. Predictive distributions for each

of these target measures from the finalized within-herd transmis-

sion model are plotted as shaded density strips where the intensity

of color is proportional to the probability density at that point.

(PDF)

Figure S11 Target measures for the within-herd persistence of

bTB (2006–2008) and predictive distributions for within-herd

transmission model using SOR model. The within-herd persis-

tence of bTB in GB as measured by the probability of breakdowns

being prolonged (duration of greater than 240 days) or recurrent

within a 6, 12 and 24 month horizon. The relationship of each

target measure is plotted against herd size, with breakdowns

further stratified by parish testing interval (PTI 1 top row, PTI 2

middle row, PTI 4 bottom row) and confirmation status

(confirmed breakdowns: green, circles, unconfirmed breakdowns:
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magenta squares). Target measures are calculated from break-

downs trigged within 2003–2005 by a routine surveillance test

(VE-WHT, VE-WHT2, VE-RHT, VE-SLH). The probability of

confirmation varies between PTI, as does the proportion of

confirmed breakdowns initiated by a slaughterhouse case (white

diamonds) and the mean number of reactors reported at the

disclosing test. Uncertainty in each (mean) target observation

(thick lines) is illustrated by an envelope (thin lines) of 61.96

standard errors around the mean. Predictive distributions for each

of these target measures from the finalized within-herd transmis-

sion model are plotted as shaded density strips where the intensity

of color is proportional to the probability density at that point.

(PDF)

Figure S12 Burden remaining after resolution of a breakdown

using SOR model. Predictive distributions for the probability of at

least one infectious bovine remaining within a herd after a

breakdown is resolved as a function of herd size, classified by PTI

(1,2,4 left to right) and confirmation status (Green circles

confirmed, magenta squares unconfirmed). Predictive distributions

are plotted as shaded density strips where the intensity of shading

is proportional to the probability density at that point. Solid lines,

and points for each herd-size category indicate the median of

predictive distribution to aid comparison between confirmed and

unconfirmed breakdowns.

(PDF)

Figure S13 Impact of herd-level interventions on probability of

recurrence within 24 months. Change in the probability of a herd

experiencing a recurrent breakdown after application of a ‘perfect’

test (left column) or perfect isolation (right column). The perfect

test is assumed to have 100% sensitivity and specificity and no

occult period. Perfect isolation corresponds to setting the extrinsic

infectious pressure to zero at the end of a breakdown (x~0).

Plotted values correspond to the average % difference in the

probability of recurrence relative to the fitted SORI (Panel A) and

SOR models (Panel B). Separate series are plotted for herds in PTI

1 (lime green circles), 2 (magenta squares) & 4 (sky blue diamonds).

Predictive distributions are plotted as shaded density strips where

the intensity of shading is proportional to the probability density at

that point, with the mean of the predictive distribution plotted as a

solid line.

(PDF)
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