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Scale-free networks are generically defined by a power-law distribution of node connectivities. Vastly different graph
topologies fit this law, ranging from the assortative, with frequent similar-degree node connections, to a modular
structure. Using a metric to determine the extent of modularity, we examined the yeast protein network and found it
to be significantly self-dissimilar. By orthologous node categorization, we established the evolutionary trend in the
network, from an ‘‘emerging’’ assortative network to a present-day modular topology. The evolving topology fits a
generic connectivity distribution but with a progressive enrichment in intramodule hubs that avoid each other.
Primeval tolerance to random node failure is shown to evolve toward resilience to hub failure, thus removing the
fragility often ascribed to scale-free networks. This trend is algorithmically reproduced by adopting a connectivity
accretion law that disfavors like-degree connections for large-degree nodes. The selective advantage of this trend
relates to the need to prevent a failed hub from inducing failure in an adjacent hub. The molecular basis for the
evolutionary trend is likely rooted in the high-entropy penalty entailed in the association of two intramodular
hubs.
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Introduction

Scale-free networks have been proposed as universal
models to describe diverse complex systems such as the
Internet, social interactions, and metabolic and proteomic
networks [1,2]. The scale-free ‘‘topology’’ is defined by a
power-law distribution: A(n) } n�c, where A(n) is the
abundance of n-degree nodes and c is a positive exponent.
It has been recently noted that such a generic definition does
not determine a unique graph topology [3,4]. Rather,
topologies ranging from the assortative [3,5], with frequent
like-degree node connections, to the highly dis-assortative [5],
with like-degree nodes avoiding each other, may fit the same
connectivity scaling law [3]. In a purely operational sense, a
highly self-dissimilar network is hereby regarded as modular
in the sense that high-degree nodes tend to avoid each other
[6], and, thus, highly interconnected regions are loosely
connected to each other. The definition hinges on the
assumption that highly interconnected regions are organized
around hubs (the nodes with high degree of connectivity)
which would be then characterized as intramodular [3,4].

To determine the graph topology of the yeast protein
network [6–10] beyond the power-law distribution and its
evolution from a primeval network, we make use of a metric
indicative of the degree of graph modularity [3]. The metric is
informative of network structure because it increases with the
frequency of like-degree connections, and decreases as the
graph topology approaches a modular organization in the
sense defined above. It should be noted that there is no
inherent contradiction in having a scale-free network
endowed with a modular topology that reflects a self-
dissimilar or dis-assortive structure, since the character-
ization of scale-free network is solely based on degree
distribution [3,6,9].

We found that the present-day network is actually a self-
dissimilar graph, most often linking nodes of dissimilar
degrees, thus revealing a marked avoidance of intramodular

hub connections in accordance with previous observations [6].
By contrast, ancestors of the network obtained through
orthologous categorization of the yeast open reading frames
(ORFs) [8] are progressively more assortative as we regress
toward the network of ancient proteins. The assortative
topology brings the ancient network closer to a physical
system, where assortativity becomes a generic attribute of the
statistical mechanics of phase transitions, and thus an emerg-
ing property more readily attainable than modularity [11].
The robustness of the present-day network is found to

differ from typical scale-free attributes, since it minimizes its
vulnerability to hub failure and not to random node failure
[2], with the former being more likely in protein interaction
networks, as shown below. The evolution toward self-
dissimilarity is shown to be reproducible through propaga-
tion laws of connectivity accretion that promote progressive
increase in modularity. Finally, the molecular basis for the
observed trend toward a scarcity of like-degree node
connections is delineated.

Results

A Graph Metric to Monitor the Evolution of Modularity
The metric S(G) (0 � S(G) � 1), for a graph G with scale-

free degree distribution is defined by [3]:
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SðGÞ ¼ sðGÞ=smaxðGÞ; sðGÞ ¼
X

ði;jÞ2EðGÞ
XiXj; ð1Þ

where E(G) is the set of graph edges, (i, j) is a generic edge
linking nodes i and j, Xi, Xj are the respective node degrees
(connectivities), and smax(G) is the maximum over all s(H)-
values, where H is a graph with the same connectivity
distribution as G obtained by connectivity rewiring. This
distribution-preserving rewiring is constructed following
[3,6].

For a given scaling degree distribution, the metric is
informative of the graph structure, reaching its maximum
value (S(G) ¼ 1) in the case where edges are most frequently
connecting similar-degree nodes and decreases as the
frequency of dissimilar-degree connections increases [3,6].
Thus, a low S(G)-value is indicative of graph modularity in the
sense defined above, because the expected frequency of hub–
hub connections is low and because connections involving
hubs are always dominant contributors to the sum defining
S(G) (Equation 1).

Using this metric, we determined the modularity along the
natural evolution of the yeast protein interaction network.
Node ancestry classes are defined through orthologous
representativity in other genomes informative of the yeast
evolution (Methods). Ancestry classes are labeled using binary
vectors [8] and defined based on the existence of orthologs in
other fungi (00011) (36% of yeast proteome), in all other
eukaryotes diverging earlier than fungi (00111) (19%), in
eubacteria (01111) (9.5%), in archaea but not in eubacteria
(10111) (8%), in all ancestral groups (11111) (3.5%), and
exclusively in yeast (00001) (24%). Thus, a binary vector
denotes an ancestry class of proteins. The ancestry is given by
the extent of ortholog representativity. Thus, the binary
vector indicates from the right entry (yeast) to the left
(progressively more distant life domains) the ortholog
representativity of the proteins, with nth entry ¼ 1 if an
ortholog of the protein exists in life domain n, and ¼ 0

otherwise. Thus, the network evolution from the ancient-
protein (11111) network is retraced by trimming the present-
day network through progressive removal of ancestry classes,
starting with the most recent (00001). Although the network
still contains false-positive and false-negative data in spite of
state-of-the-art curation (Methods), the impact of these
factors is likely randomly distributed across classes [8] and
thus will not significantly affect our conclusions.
The trimming of the present-day network following the

schedule imposed by ancestry is based on the assumption that
a gene arising at a certain point in evolutionary time in an
ancestral organism will be detectable in all species diverging
thereafter. The ancestry of a yeast protein is thus defined by
the number of orthologous ORFs [8,12]. Thus, no effort is
placed in our study in reconstructing the ancestral sequence,
a daunting task at the proteomic scale, but rather in assessing
its ancestry by genomic comparison. Gene loss or interaction
loss due to deleterious evolutionary pressure is possible after
speciation, although very difficult to assess and typically
neglected in related evolutionary models [8,12].
The present-day and ancestral networks all fit the scale-free

connectivity scaling (Figure 1A). However, their graph top-
ologies are radically different. The ancient protein network
possesses a high probability of connection between similar-
degree nodes, as indicated by the large S(G)-value, and thus, it
is significantly scale-free and assortative. This topology
evolved into the scale-rich self-dissimilar graph (S(G) ¼ 0.32)
found at the present time (Figure 1B). In contrast with its
ancestors, the present-time network tends to connect higher-
degree nodes to lower-degree ones, as revealed by the low
S(G)-value. Thus, while the ancestral network is actually
endowed with the ‘‘emergent’’ properties commonly ascribed
to scale-freeness [1,2], such as robustness to random failure,
assortativity, and hub-like core, the present-day network is far
less generic, more modular [9], and more robust to hub
failures. This is evidenced by the dearth of inter-hub edges
subsumed in its lower S(G)-value. The selective advantage of
this trend relates to the need to prevent a failed hub from
inducing failure in an adjacent hub, as shown below.
There are 319 nodes with a present-day degree X . 8

incorporated along the evolution of the network that starts at
the ancient network (cf. [8]). All such nodes may be
characterized as intramodular hubs [13] that avoid each
other and make up for the increased level of scale-freeness in
the network topology (Figure 1B). The molecular basis for this
like-degree avoidance is described below.
We tested the sensitivity of the results to persistent noise in

interactomic data (see Methods for curation details). Thus, in
Figure 1B, we contrasted the previously reported behavior of
the scale-free metric against the results from progressive
trimming of a comprehensive interactome of protein com-
plexes in which ephemeral interactions and high-throughput
artifacts have been filtered out [14]. The S-values differ by less
than 9% along the entire evolutionary span. Furthermore,
the trend toward higher modularity (lower S-value) appears
to be commensurate with organismal complexity (Figure 1B),
as we incorporate the S(G)-values calculated for the inter-
actomes of Caernohabditis elegans (worm) [15] and drosophila
(fruit fly) [16].
The dynamics of node removal associated to the evolu-

tionary regression is indicated in Figure 1C, where the
percentage of node removal associated with each of the four
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Author Summary

The protein interaction network or interactome emerged as a
powerful descriptor in the large-scale phenotypic studies of the
post-genomic era. A major concern in such analysis is the
integration of interactomic information with other phenotypic
descriptors such as expression profile, co-localization, developmen-
tal phase, and large-scale protein–structure data. The latter aspect of
the integration is the focus of this contribution. We investigate the
molecular basis of network robustness to node failure in the most
thoroughly characterized interactome, the yeast network. Node
failure is by no means a random occurrence across the network as
often claimed, but likely to arise in the node-proteins which are
structurally the most vulnerable, that is, the ones most prone to
misfolding and to form aberrant associations, including aggregates.
Thus, network robustness mandates that such nodes not be directly
connected, as failure in one hub is likely to induce failure in an
adjacent hub. This observation led us to investigate the molecular
basis for the avoidance of connections between highly central
proteins and to delineate the graph topology resulting thereof. We
show how this topology arose in present-day networks and how it
differs from the more generic emerging topology of the ancestral
network.

Evolving Topology of Protein Network



successive trimming iterations is computed for each node
connectivity class in the present-day network. The node
removal becomes more severe for the nodes of low
connectivity and less pronounced as we approach a higher
degree of centrality, in accord with the likely higher level of
ancestry of high-degree nodes [17].

The trend toward increasing modularity associated with
evolutionary change was further validated by disproving the
null hypothesis that this trend holds irrespective of network

topology. Thus, in several computer experiments (cf. [3,6]) we
randomly rewired the present-day network while preserving
the present-day node-degree distribution indicated in Figure
1A. We then successively trimmed the rewired networks
following the orthologous classification scheme and com-
puted S(G)-values corresponding to the successive trimmings.
The results are shown in Figure 1D. We clearly see that the
monotonic and dramatic increase in modularity observed for
the real yeast network along the ancient ! present-day

Figure 1. Yeast Network Evolution

(A) Scale-free generic law fitting the present-day and ancestral yeast protein interaction network. Abundance of nodes as a function of connectivity
(node degree) in log–log scale for the present-day yeast network 00001 (filled diamonds); the fungal ancestral network 00011 (open squares); the
eukaryotic ancestral network 00111 (filled circles); the eubacterial ancestor 01111 (open triangles); and the ancient network 11111 (filled squares).
(B) Scale-free metric S(G) (blue line plot) indicating the actual graph modularity of the present-day and ancestral networks. Present-day data was cross-
validated with the APID database and filtered through iPfam representativity (Methods). The topology best approximated by a scale-free assortative
graph (S(G)¼ 0.82) is that of the primeval network, restricted to the (11111) ancestry class. This ancestral network possesses the emerging properties of
assortativity and hub-like core since the large S-value implies that hubs are highly interconnected. This network closely recapitulates typical scale-free
attributes. The other ancestral networks were obtained by progressive trimming of the present-day network through exclusion of ancestry classes. Two
networks are possible by incorporation of class (01111), with orthologs in eubacteria but not in archaea, or class (10111). Incorporation of the latter class
introduces a more pronounced decrease in S-value, implying a scale-richer network. A monotonic trend toward an increase in scale-richness
(progressively lower S-values) is apparent. Thus, the network becomes progressively more resilient to hub failures as more recent ancestry classes are
incorporated. Notice the dramatic enhancement of self-dissimilarity concurrent with eukaryotic divergence. The calculations using orthologous
trimming were repeated using the database of yeast protein complexes of Krogan et al. [14] (magenta plot). The S(G) computations on present-day
interactomes for C. elegans [15] (light turquoise blue) and drosophila [16] (black) were added for comparison.
(C) Percentage removal of nodes with each orthologous trimming iteration. Nodes are grouped in present-day connectivity classes. Node removal is
indicated for removal of class (00001) (black), (00011) (light blue), (00111) (red), and (01111) (lilac—light purple). The nodes retained after the final
iteration amount to 3.5% of the present-day proteome size.
(D) Evolutionary trend toward higher modularity in yeast network (blue line) contrasted with topological evolution of randomly rewired versions of the
present-day network (magenta plots). Random rewiring is of two types: degree-preserving and fully random (thick line).
(E) Topological evolution of the yeast network characterized by Newman’s modularity parameter Q.
doi:10.1371/journal.pcbi.0030226.g001
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evolution is not a generic network property, but very much
depends on the specifics of the network topology that
subsume the biological information. Alternatively, we also
randomly rewired the present-day network this time without
preserving the degree distribution and randomly and
successively trimmed it, removing an equal number of nodes
as in the orthologous classification procedure. Again, no
trend toward decreasing modularity could be associated with
the trimming or, conversely, no clear trend toward increasing
modularity is found upon network growth.

Evolutionary Trend Described by a Measure of Modularity
An alternative indicator of modularity put forth by

Newman [18] has been also utilized to better describe the
evolutionary trend. Newman’s approach not only provides a
measure of topological dissimilarity but also identifies or
separates the dominant or tightest module, and ultimately—
through iteration of the separation procedure—provides a
modular partition of the network. The initial modular
partition of the network is dictated by the spectrum of a
symmetric graph-related matrix. Thus, the dominant module
M is associated with the largest positive eigenvalue, k1, of the
symmetric matrix B defined as:

Bij ¼ Aij � XiXj=2m; ð2Þ

where A is the adjacency matrix describing the edge set E(G)
(Aij¼1 if nodes i and j are connected, Aij¼0 otherwise) and m
¼ ½RjXj is total number of edges in the network. The
dominant module M is univocally defined by the character-
istic function vM(j)¼½(sj(u1)þ1), where u1 is the eigenvector
of B associated with k1 and sj(u1)¼ 1 if the j-th coordinate of
u1 is positive and ¼ �1 otherwise. In set-theory notation:
vM
�1(f1g)¼M. This constructive procedure reveals the most

densely connected group of nodes with only sparser
connections to the rest of the graph and may be further

iterated on GnM, etc., until a full modular partition of G is
achieved. A similar definition of the module is provided in
[10].
A modularity parameter Q is then defined as an indicator

of the number of nodes falling within modules minus the
expected number for a random rewiring of the network,
normalized to the total number of nodes in the network.
Thus, Q is given by:

Q ¼
X

n¼1;...
knðuT

n :sÞ
2=4m; ð3Þ

where the dummy index n ranges over all eigenvalues, un
T is

the transposed eigenvector of B associated with eigenvalue
kn, and s ¼ (sj(u1)).
The trend toward increasing modularity associated with

evolutionary change in the yeast network evolution is then
verified adopting the Q-measure, as shown in Figure 1E: in
the ancient network, 39% of the nodes were contained in a
module and this number increases to 54% in the present-day
network. The dominant module in the ancient network
comprises all its 19 ribosomal proteins (see also Protocol S1).
This network prevails until class 00111 is incorporated, at
which time the signaling module dominates and prevails as
dominant in the present-day topology.

Algorithmic Approximation to Network Evolution
The topological differentiation resulting from connectivity

accretion concurrent with progressive incorporation of node
classes in the order (11111)! (01111)! (00111)! (00011)!
(00001) may be algorithmically reproduced. Thus, the
primeval network of ancient nodes–proteins may be ab-
stractly developed, i.e., without reference to concrete
molecular features of the node, in a manner entirely
consistent with the S(G) behavior shown in Figure 1B.
The algorithmic behavior of network evolution is deter-

mined by the probability P(Xn)¼ G(n)p(Xn) that node n with
degree Xn would acquire a new connection. The p-factor is
associated with the rate of connectivity development, while G
penalizes like-degree connections that would increase assor-
tativity. The p-factor relates to a preferential attachment law
[1,17] in the sense that the probability that a node develops a
new connection depends on the number of its pre-existing
connections, satisfying:

pðXnÞ ! 1 for Xn ! ‘ ð4Þ

Two accretion laws have been investigated. While heuristic
in nature, their accurate reproduction of the evolving
network topology makes them worthy of examination:

ðIÞ pðXnÞ ¼ 1=½1þ ðkXnÞ�2�; k ¼ 0:08;

ðIIÞ pðXnÞ ¼ exp½�ðkXnÞ�1�; k ¼ 0:33 ð5Þ

Both laws have optimized parameters (Figure 2) and satisfy
the limit Equation 4.
To prevent similar-degree node connections, nodes are

‘‘tagged for kinship’’ at every stage of network propagation
taking into account the order assigned at that stage. This
order is obtained by preserving the order arbitrarily assigned
in the primeval network while incorporating new nodes in
consecutive order.
To define the accretion rules algorithmically, let n1 , n2

Figure 2. Algorithmic Model of Yeast Network Evolution

Natural evolution (black) of the protein network compared with
algorithmic network developments (red, blue, green) starting with the
network of ancient proteins (node class (11111)). Three algorithmic
network developments were computed, following preferential attach-
ment (blue), and laws of connectivity accretion (I in red, II in green)
subject to penalization for connection accretion within node kinships.
doi:10.1371/journal.pcbi.0030226.g002
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, . . . be an ordered set of nodes at a specific time in the
network development; Gn denote the n-centered subgraph,
that is, a subgraph containing node n, all nodes connected to
n, and the connecting edges; C(n)¼ fnodes connected to ng;
and fGng is a minimal covering of G satisfying G ¼ [[nGn.
Then, we may define nn¼Minimumn92C(n) jXn� Xn9j. Node n
is ‘‘tagged for kinship’’ with probability exp(�nn) provided no
node n9 2 C(n) with n9 , n has been tagged for kinship. A
node n tagged for kinship at a particular stage of network
development is assigned the kinship penalty factor

GðnÞ ¼ 1=½1þ ðknnÞ�2�: ð6Þ

In case of close kinship (nn ¼ 0), we get G(n) ¼ 0. The
creation of an internal connection linking node n with
another node already tagged to develop a connection is
governed by probability

PintðXnÞ ¼ 1=½1þ ðLnÞ�2�; ð7Þ

where Ln ¼ Maximumn92A(G) jXn � Xn9j, and A(G) ¼ nodes
tagged to develop a connection at the particular stage of
network development. If node n is tagged to develop a
connection, and an internal connection develops, then the
new edge connects n to existing node n*, with the latter
satisfying: n*2A(G); Ln¼ jXn�Xn*j.

The algorithmic network development that best fits natural
evolution (Figure 2) is given by accretion law (I) modulated by
precluding kinship connections according to Equations 4 and
5. While law (II) also produces a good fit, it does not portray
the sigmoidal behavior of S(G) followed by natural evolution.
Network development with an accretion law reflecting
preferential attachment (G(n) [ 1, law (I)) does not
significantly increase its self-dissimilarity relative to the
differentiating algorithms that enhance modularity.

Molecular Basis for Topological Self-Dissimilarity
What sort of selective advantage is associated with evolving

toward higher self-dissimilarity or dis-assortativity? We shall
show that this trend increases resilience to node failure which
is not random, contrary to general assumption [2]. We first
note that node failure may result from a loss of the
functionally competent structure in favor of a misfolded
state. The latter tends to aggregate into a generic aberrant
state dominated by the backbone generic information, rather
than by the side-chain information that encodes for the
native state [19,20]. We cannot assert that misfolding is the
sole reason for node failure but it certainly appears to be the
dominant one in the light of the results presented below.

Soluble proteins with high levels of backbone exposure are
prone to aberrant aggregation [20], and thus likely to ‘‘fail’’
since they would be removed from their normal interactive
context by relinquishing their native fold. Since, as shown in
Figure 3A, intramodular hubs possess a higher extent of
backbone exposure in their native soluble structure (the
extreme case of this exposure is represented by native
disorder) [16,20,21], we may conclude that failure propensity
likely correlates with centrality, at least in intramodular
organization.

This finding prompts us to ask the question: Why would the
avoidance of hub–hub connections bring about resilience to
hub failure? Since hubs are characterized by their extent of
backbone exposure, they are highly reliant on binding

partnerships to preserve their structural integrity [16]. Thus,
by distorting its protein–protein interface, a misfolded
binding partner is likely to promote the hub failure. Hence,
to prevent a failed hub from inducing failure in another hub, it becomes
necessary to minimize the probability that the binding partner of a hub
is also a hub. This is precisely the trend reported in Figure 1B.
Thus, we showed that, unlike robustness to random failure,

present-day resilience to hub failure is a non-emergent
evolutionary trend achieved by enhancing the dis-assortativ-
ity of the graph under the generic scale-free degree
distribution (Figure 1A and 1B). Hence, the widespread
notion that scale-free networks are vulnerable in this sense
does not hold in this particular case.
The lower level of connectivity among nodes of similar

degree in the present-day network [6] has a molecular basis
that may be delineated and prompts us to invoke conforma-
tional entropy penalties. As indicated previously, there are
319 present-day hubs incorporated along the evolution of the
network. Of such nodes, 37 are represented in PDB
complexes (Protocol S1) and shown to contain an extent of
backbone exposure in over 50% of the molecule (Methods).
Typically, high intramodular centrality implies that protein
associations entail considerable induced fit, since the extent
of backbone exposure of such hub proteins is significant and
thus so is their conformational plasticity [16,21]. To quantify
this trend, we established a correlation between present-day
connectivity and extent of backbone exposure on PDB-
reported proteins incorporated to the ancient network
(Figure 3A, Pearson correlation coefficient r ¼ 0.78). This
class of nodes is the complement in yeast proteome of class
(11111), and thus it is denoted ‘‘n(11111)’’. We now examine
the molecular characteristics of the associations involving
proteins in class n(11111), that is, in the complement of the
set of oldest proteins, or in the set of proteins incorporated
to the ancestral network. This analysis is needed to rationalize
the topological difference between the ancient and present-
day network.
Induced fit entails a considerable entropic cost associated

with the structural adaptation, decreasing the stability of the
protein complexes [19]. Thus, induced fits form in the
ephemeral complexes typically found in signal-transduction
events. On the other hand, a prohibitively high entropic cost
would make it unlikely that protein associations would occur
if both partners must undergo induced fit. This is reflected in
the probability distribution f(Y, Y9) of binding partnerships
between pairs of proteins in class n(11111) with backbone
exposures Y and Y9 (f(Y, Y9)dY9 ¼ probability of connections
between proteins with backbone exposure Y and proteins in
the range [Y9, Y9 þ dY9]). Proteins with high backbone
exposure typically associate with those with low backbone
exposure, in an anticorrelated manner (Figure 3B and 3C).
Thus, direct comparison of Figures 2 and 3B–3C reveals that
high degree nodes in class n(11111) are unlikely to connect with nodes
of comparable degree because of the high entropic cost associated with
two concurrent induced fits. This anticorrelation (Pearson coefficient r
¼ �0.69) provides a molecular basis for the modularity and self-
dissimiliarity of the present-day network.
To extend the validity of the anticorrelation to the full class
n(11111), we also adopted a sequence-based predictor of
backbone exposure, taking advantage of a tight correlation
[16] between extent of backbone exposure and native
disorder content, and of the fact that the latter may be
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predicted directly from sequence [21] (Methods). As backbone
exposure in hubs from class n(11111) increases to accom-
modate interaction partnerships in the evolving network
(Figure 3A), their likelihood of mutual interaction decreases.
This trend is reflected in the present-day Y-Y9 anticorrelation
(r ¼ �0.72) for class n(11111), which evolved from a Y-Y9

correlation (r¼þ0.66) in the ancient network (Figure 4). This
qualitative change reflects the increasing entropy cost of the
reciprocal induced fits required to establish hub–hub
associations in the proteins incorporated to the ancient class.
Thus, the qualitative evolutionary change described at the
molecular level (Figure 4) fits the network’s seemingly
algorithmic progression toward modularity.

Discussion

Using a metric to quantify the extent of modularity, we
examined the evolution of the yeast protein network and
found significant topological differences along evolutionary

time that reflect a considerable increase in modularity
concurrent with evolutionary change. Thus, aided by orthol-
ogous node categorization to trace network evolution [8], we
established a trend from an ‘‘emerging’’ assortative network
[5] to the present-day modular topology [3]. This evolution
implies a progressive enrichment in intramodular hubs that
avoid each other (cf. [6]), thus increasing resilience to hub
failure. This trend is algorithmically reproducible through a
network-growth law that disfavors like-degree connections.
The molecular basis for the evolutionary trend toward

higher modularity is rooted in the high-entropy cost of the
reciprocal induced fits arising from the association of any two
intramodular hubs, an event likely to entail structural
adaptation in both proteins. Thus, the avoidance of like-
degree of nodes of high connectivity is directly related to the
extent of backbone exposure and conformational plasticity of
hubs, making it entropically costly for them to adapt to
binding partners.

Figure 3. Wrapping, Connectivity, and Ancestry of Yeast Proteins

(A) Extent of backbone exposure in yeast proteins from present-day class \(11111) correlates with node connectivity. Backbone exposure is given as
percentage of full contour length of the protein (Methods).
(B) Distribution probability of connections between yeast proteins in present-day class \(11111) either reported in PDB or natively ordered (Methods)
with backbone exposures Y and Y9. The present-day class \(11111) is represented in the region Y . Y9 and the older network up to class (00011), in the
region Y9 . Y.
(C) Connections between yeast PDB proteins in present-day class \(11111) with backbone exposure levels Y and Y9. Each connection is represented as a
point in the Y-Y9 plane, revealing that backbone exposures are significantly anticorrelated across protein–protein interactions.
doi:10.1371/journal.pcbi.0030226.g003
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This molecular justification of modularity may be com-
plemented by an evolutionary observation. As shown in [8],
proteins tend to interact with partners with the same level of
ancestry more frequently than with those outside their
ancestry class. Thus, the probability that an ancient hub
from class (11111) interacts with another hub from the same
class is higher than the probability that it would interact with
a more recent hub. This effect may in part account for the
higher assortativity of the primeval network and for the
evolutionary trend toward higher modularity reported in this
work. However, a countereffect is also apparent since, by the
same token, the probability that a hub from class (11111)
interacts with a low-degree node in the same class is also
higher than the probability that it interacts with a low-degree
node from a more recent class. The relative contribution of
each effect is actually subsumed in the computation of
evolving modularity reported in this work.

In an alternative molecular approach [22], it was proposed
that the number of interactions of a protein is proportional
to the number of exposed hydrophobic residues on its
surface. This finding would imply that hubs would need to be
so hydrophobic that they would hardly qualify as soluble
proteins or they would need to be enormous to accommodate
all of their binding partners. Furthermore, if this were the
case, hub–hub connections would be highly favored through
hydrophobic associations, while in known networks this is
clearly not the case [6]. Rather, the structural or molecular
characteristic of intramodular hubs [17,21] and the attribute
that enables them to avoid each other in the network is their
likelihood of conformational plasticity and—in the extreme
case—native disorder, as demonstrated in this work.

Lacking expression, localization, and developmental coor-
dinates, the protein interaction network provides an incom-
plete large-scale description of protein–protein associations.
Such a study would likely require integration of the
interactome and the transcriptome. Thus, the avoidance of
like-degree hub connections shown in this work may often

materialize in a lack of spatial or temporal correlation
between the nodes, a subject of forthcoming work.

Methods

Network trimming based on node ancestry classes. Ancestors of the
present-day yeast network were obtained by progressive trimming
realized through exclusion of node ancestry classes [8]. Node ancestry
classes were determined based on across-species ortholog grouping of
yeast proteins. Thus, the primeval network is restricted to nodes with
orthologs in all domains of life, while the present-day network
incorporates all yeast proteins regardless of their level of ancestry. In a
preliminary network curation, connections in the present-day net-
work were only included if independently identified in two sources:
Comprehensive Yeast Genome Database from the Munich Informa-
tion Center of Protein Sequences (http://mips.gsf.de/proj/yeast/CYGD/
db/index.html) [23], and reliable subsets of high-throughput screening
data [24]. In a second level of curation, the data collected was cross-
validated using the APID database that integrates five different
repositories for protein interactions including more up-to-date two-
hybrid high-throughput data [25]. Finally, the interactomic data was
filtered through iPfam representativity (homologous PDB interactiv-
ity) [26]. We used iPfam as a database of structurally reported
interactions and mapped all interacting Pfam domains onto yeast
ORFs using the HMM (hidden Markov model)-profile based mapping
available from the Pfam MySQL database. We then retained only the
interactions between two ORFs whenever both ORFs contained Pfam
domains that are seen to interact in iPfam. The resulting dataset
comprises an intersection of iPfam and the APID-curated inter-
actome. The annotation with Pfam domains entails a substantial
filtering (from 14,437 APID-based interactions to 6,971 interactions)
and hence represents a high-confidence network.

Orthologous classification and grouping of the annotated yeast
ORFs (http://www.yeastgenome.org/) were determined from the
clusters of ortholog groups [27]. Network representations were
performed using standard routines from the program PAJEK [28].

Quantifying backbone exposure of a protein chain. Backbone
exposure for node n, denoted Yn, is given as a percentage of contour
length of the protein corresponding to under-protected residues, as
defined below. The data were obtained from 488 yeast proteins (out
of 6,199) reported in PDB complexes and four natively disordered
yeast proteins [21]. The extent of backbone exposure at a particular
residue was determined by counting the number of nonpolar
carbonaceous side-chain groups contained within a 6.2 Å radius
sphere (;thickness of three water layers) centered at the a-carbon
[17]. The extent of backbone shielding, g, within a structured region
averaged over a nonredundant curated PDB database (1,662 proteins,
free from redundancy and homology) is g ¼ 14.2, with Gaussian
dispersion ¼ 7.2. Thus, a residue or backbone site with g , 7 is
regarded as exposed. The statistics vary as other desolvation radii in
the range 6Å , r , 7Å are adopted, but the tails of the distribution
identify the same exposed residues. The structural integrity of soluble
proteins requires that most backbone amides and carbonyls be
protected from hydration. Thus, residues with absent backbone
coordinates in a PDB entry (natively disordered [21,29]) are regarded
as exposed and so are residues from entirely disordered proteins.

Sequence-based inference of backbone exposure. We adopt an
established relationship between backbone exposure, g, and a
structural parameter, kD, that can be reliably determined from
sequence: the propensity for inherent structural disorder in a region
of a protein domain [17,29]. The latter parameter is assessed with a
high degree of accuracy by the program PONDR-VLXT, a neural-
network predictor of native disorder [29]. Thus, a disorder score kD
(0 � kD � 1) is assigned to each residue within a sliding window. This
value represents the predicted propensity of the residue to be in a
disordered region (kD¼1 indicates full certainty). Only 6% of .1,100
nonhomologous PDB proteins give false positive predictions of
disorder [17,29]. The correlation between propensity for disorder
and wrapping implies that it is possible to predict backbone exposure
directly from sequence. The correlation was originally established
between the PONDR-VLXT score at a particular residue site and the
extent of intramolecular protection, q, of the backbone hydrogen
bond engaging that residue (if any). The latter quantity is operation-
ally defined as q ¼ g þ g9, where g and g9 correspond to the two
residues paired by the hydrogen bond. The strong correlation implies
that we can infer the existence of residues with backbone exposure
from the PONDR-VLXT score with 94% accuracy for regions with kD
. 0.35. The correlation implies that the propensity to adopt a
natively disordered state becomes pronounced for proteins that,

Figure 4. Wrapping Anticorrelation of Pairwise Connected Yeast Proteins

Connections from the full yeast interactome plotted in the Y-Y9 plane of
sequence-based predicted backbone exposures (Methods) for interact-
ing protein partners in the present-day class \(11111) (Y . Y9) and
ancient network (class (11111), Y , Y9).
doi:10.1371/journal.pcbi.0030226.g004
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because of their chain composition, cannot fulfill a minimal
protection of their backbone hydrogen bonds.

Supporting Information

Text S1. PDB-Reported Intra-Modular Hubs in Yeast Class n(11111)
Supplementary results.

Found at doi:10.1371/journal.pcbi.0030226.sd001 (121 KB PDF).
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