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Abstract

Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across
different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and
remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular
matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a
systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors,
and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel
multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling
environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial
growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of
enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model
was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular
behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of
polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular
disruption derived from in vitro chemical profiling using the EPA’s ToxCast high-throughput screening (HTS) dataset.
Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference
anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and
morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic
series of events and for the first time demonstrate the applicability of these models for predictive toxicology.
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Introduction

Vascular development is a complex process regulated by

biological networks that vary in topology and state across

different tissues and gestational stages. Initial stages of blood

vessel development in the embryo encompass a morphogenetic

series of events from angioblast differentiation into a self-

organizing endothelial cell (EC) plexus [1]. This process

requires coordinate regulation of complex cellular signals and

behaviors such as mitosis, migration, differentiation, adhesion,

contractility, apoptosis, and extracellular matrix (ECM) remod-

eling. A detailed computational model is therefore necessary to

understanding both normal embryonic vascular development

and how environmental or genetic factors may lead to a variety

of developmental defects. Further, due to the significant overlap

between developmental and pathological angiogenic signaling

[2], such a model could be potentially useful to a wide range of

applications in wound healing and tumor angiogenesis,

although that is beyond the scope of the current proof-of-

concept study.

The cardiovascular system is the first functional organ to

develop in the mammalian embryo, reflecting the limits of oxygen

diffusion at about 100–200 mm in size (3rd week of gestation in

humans, 10th day of gestation in rats, 8th day of gestation in mouse)

[1–3]. The embryonic vasculature forms through a semi-autono-

mous process in which EC derived from migratory angioblasts

assemble into a primitive multicellular network. This process,

vasculogenesis, occurs at different times and locations centrally

and peripherally in the embryo and is mediated by cellular

processes such as differential migration, proliferation, and

adhesion that may form polygonal (roughly hexagonal) whorls of

endothelial cords. The endothelial cords undergo tubulogenesis

and form a patent system of capillaries that eventually connect into

a primitive vascular plexus. Examples include the Perineural

Vascular Plexus (PNVP), precursor to the blood-brain barrier, and

the peripheral vascular plexus of the limb-bud mesenchyme [4–6].

Further growth and remodeling through angiogenesis supports the

development of tissues and organ systems through growth and

expansion of the primitive vasculature network via sprouting of

new capillaries, vessel stabilization and maturation, and flow-based

PLOS Computational Biology | www.ploscompbiol.org 1 April 2013 | Volume 9 | Issue 4 | e1002996



remodeling [7]. Perturbation of embryonic vascular development

has the potential to disrupt embryogenesis, leading to adverse

pregnancy outcomes such as low birth weight and birth defects [8].

For example, lack of PNVP invasion results in avascular neural

tissue, neurodegeneration and embryolethality [9], and inhibition

of limb-bud vascularization may contribute directly or indirectly to

the origins of phocomelia induced by thalidomide [10,11].

Analysis of the ToxCast Phase I high-throughput screening

(HTS) dataset on 309 environmental compounds, largely pesti-

cides with in vivo developmental toxicity information, revealed a

strong in vitro signature for vascular disruption based upon

chemical perturbation of multiple vascular targets and cell systems

[12]. The potential molecular targets and key events were further

elaborated as an ‘adverse outcome pathway’ framework based on

a critical review of literature for embryonic vasculogenesis and

angiogenesis [8]. A detailed computational model of critical

pathways in vasculogenesis and angiogenesis can thus advance the

science closer to predictive understanding of how putative vascular

disruptor compounds (pVDCs) might perturb embryonic devel-

opment [12].

Signals regulating de novo blood vessel formation (vasculogenesis)

and remodeling (angiogenesis) come from a myriad of biological

pathways linked to ECM biology and the local generation of

chemokines and growth factors. Vasculogenesis and angiogenesis

are regulated by these cell-cell and cell-matrix interactions. These

interactions occur between ECs, as well as between EC and other

cell types in the microenvironment that control the secretion and

release of vascular growth factors and chemokines and contribute

to vessel stabilization and sprouting behavior. Heterologous cell

types may include inflammatory cells (ICs) such as macrophages

and fibroblasts and mural cells (MCs) such as pericytes and

vascular smooth muscle cells [2,5]. Understanding these complex

interactions at a systems-level requires sufficient biological detail

about the relevant molecular pathways and associated cellular

behaviors, and tractable computational models that offset math-

ematical and biological complexity. The wide range of cell types,

signaling molecules and pathways involved in vascular develop-

ment necessitates a multi-scale modeling approach in which the

key molecular pathways and cellular events can be integrated to

simulate collective cell behaviors and higher order structure-

function.

Agent-based models (ABMs) provide one kind of computational

modeling approach that has been used to mathematically describe

key cellular events during vasculogenesis and angiogenesis.

Previous models have been applied to both developmental and

tumor angiogenesis, and have typically focused on one or two cell

types (EC, tumor cells), a specific behavior (elongation, ECM

interaction, tip cell selection) and the influence of one major

growth factor (vascular endothelial growth factor (VEGF)) via

either paracrine or autocrine signaling [13–18]. Cellular ABMs

can simulate discrete cellular behaviors in a multicellular field and

solve systems of complex partial differential equations (PDEs) to

mimic how cells interact with one another and their microenvi-

ronment [19]. In a cellular ABM, cells are represented as agents,

i.e., the smallest fundamental units capable of autonomous

decisions. Each agent and its interactions are coded into the

model based on biological knowledge and experimental data.

Emergent properties and phenotypes are then evaluated for

biological relevance and insight. One such model utilizing this

approach is the Cellular Potts Model, also known as the Glazier-

Graner-Hogeweg (GGH) model, implemented in CompuCell3D

(CC3D: http://www.CompuCell3D.org) [20]. The GGH method

has been extensively validated for multicellular morphogenesis

modeling by numerous comparisons between experimental and

simulated data for processes in developmental biology including

gastrulation, limb-outgrowth, chondrogenesis, angiogenesis, and

somitogenesis [16,21–26]. These models link the specific activities

of cell signaling pathways to discrete morphogenetic events, and

enable hypothesis generation concerning critical developmental

driving factors and effects of specific perturbations.

Dynamic cell ABMs have the ability to simulate complex

developing systems to a degree of detail that recapitulates tissue-

level observations and emergent behaviors [19]. Consequently,

there exists the potential to simulate adverse effects that may

emerge following exposure to environmental chemicals where

there is information on perturbation of the model parameters and

signaling networks controlling the simulation. This kind of

information can be readily provided via HTS data and in vitro

assays that are focused on key molecular targets and cellular

processes. Here, we present a novel multi-cellular, multi-scale

model of capillary plexus formation, implemented in CC3D, and

demonstrate the potential application as an in silico testing platform

for vascular disruption.

Methods

Model Topology
The model for embryonic vascular plexus formation was built in

CompuCell3D v3.6.0 (http://www.compucell3d.org). We used a

two-dimensional (2D) ABM lattice structure based on the

observation that lateral splanchnic mesoderm may be represented

as a planar surface upon which early embryonic blood vessels form

from isolated angioblasts [27]. We therefore neglect critical effects

of blood flow that influence arterial/venous specification and

shear-based growth or regression later in angiogenic remodeling

[28]. We also assume a heterogeneous cell population of

endothelial cells (ECs), inflammatory cells (ICs) and mural cells

(MCs). As such, we initialized the ABM to represent an

approximate distribution of these critical cell types involved in

vasculogenesis and angiogenesis in the mammalian embryo and

placenta.

e-Library Construction
An electronic library (e-library) for blood vessel development

and remodeling (AngioKB.v1, provided as Supplemental Tables

S1–S2) was built and curated semi-automatically from the open

scientific literature. Relevant articles were retrieved from PubMed

using ChemoText baseline version [29] and the keywords

‘‘Neovascularization, Pathologic’’, ‘‘Neovascularization, Physio-

logic’’, and ‘‘Blood Vessels’’. These references were then assigned

Author Summary

We built a novel computational model of vascular
development that includes multiple cell types responding
to growth factor signaling, inflammatory chemokine
pathways and extracellular matrix interactions. This model
represents the normal biology of capillary plexus forma-
tion, both in terms of morphology and emergent
behaviors. Based on in vitro high-throughput screening
data from EPA’s ToxCast program, we can simulate
chemical exposures that disrupt blood vessel formation.
Simulated results of an anti-angiogenic thalidomide
compound were highly comparable to results in an
endothelial tube formation assay. This model demon-
strates the utility of computational approaches for
simulating developmental biology and predicting chemi-
cal toxicity.

Computational Model of Vascular Disruption
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categories based on Medical Subject Headings (MeSH).Those

relating to development were parsed out by the following MeSH

terms: ‘‘Embryonic and Fetal Development’’, ‘‘Fetus’’, ‘‘Gene

Expression Regulation, Developmental’’, ‘‘Embryonic Develop-

ment’’, ‘‘Growth and Development’’, ‘‘Embryonic Induction’’,

‘‘Embryonic Structures’’, ‘‘[any MeSH heading]/embryology’’.

This body of literature was then used as a primary source of

information to construct the multicellular agent-based model for

normal vasculogenesis and for parameter determination. Because

our goal was to predict outcome following perturbation, we

adopted a general strategy to enable nascent formation of a

vascular network by the major cell signals and responses known in

embryonic vasculogenesis and angiogenesis (RTK, GPCR and

GPI pathways) [8]. Proteins with MeSH terms appearing in these

articles were automatically annotated, sorted by occurrence, and

cross-referenced with ToxCast assay targets (Table S2). Articles

were manually curated to extract relevant cellular biology and

parameters such as secretion, diffusion, decay, adhesion, size and

motility.

Mathematical Representations
CC3D represents cells as extended domains of pixels (~ii) on a

lattice, with cell index s(~ii) and cell type t(s(~ii)). The effective

energy, or Hamiltonian (HGGH), is computed for each cell in the

model based on physical features such as volume, membrane area

and cell adhesion, as well as dynamic inputs such as the response

of a cell to a chemotactic gradient. At every Monte Carlo Step

(MCS) or iteration, the effective energy is calculated for each

lattice site. The physical inputs into the effective energy are

represented in Equations 1–3 (below) where V (s) is the cell

volume, Vt(s) represents the target volume, and lV (s) denotes the

inverse compressibility (compliance) of the cell. Similarly, s(s) is

the surface area, St(s) is the target surface area and lS(s) is the

inverse membrane compressibility. The target volume and surface

area are average values around which the cells will fluctuate based

on experimental observations for each cell type, and are shown in

Table 1. In IC, MC, and EC-stalk cells, St(s) is calculated as

4
ffiffiffiffiffiffiffiffiffiffiffi
Vt(s)

p
. EC-tip cell filopodial extensions are reflected in the

higher target surface area (5
ffiffiffiffiffiffiffiffiffiffiffi
Vt(s)

p
) and increased lS(s) as

compared to EC-stalk cells. The presence of cellular adhesion

molecules is represented by the boundary energy J(t(s(~ii)),t(s(~jj)))
between cell types, shown in Table 2, where a more negative value

indicates a higher affinity.

The dynamic inputs into the effective energy (Equation 4)

depend on chemotactic responses to continuously varying concen-

tration fields, solved via reaction-diffusion systems of ordinary and

partial differential equations and explained in a subsequent

section. The total GGH effective energy (Equation 5) is a

summation of the physical and dynamic inputs.

Hvolume~
X

s
lV (s)(v(s){Vt(s))2 ð1Þ

Hsurface~
X

s
lS(s)(s(s){St(s))2 ð2Þ

Hadhesion~
X

~ii,~jj
J(t(s(~ii)),t(s(~jj)))(1{d(s(~ii),s(~jj))) ð3Þ

Hchemotaxis~{lchem(c(~ii){c(~jj)) ð4Þ

HGGH~HvolumezHsurfacezHadhesionzHchemotaxis ð5Þ

Cell motility is introduced into the simulation by allowing cells

(represented as groups of pixels) from neighboring lattice sites to

Table 1. Physical shape parameter values and equivalent values for each simulated cell type, where Vt represents the target
volume, lV denotes the inverse compressibility of the cell, St is the target surface area and lS is the inverse membrane
compressibility.

Cell Type Parameter Symbol Parameter Value Equivalent Value Ref

ECt Target volume Vt 30.00 270.00 [55]

Inverse compressibility lV 6.00

Target surface area St 27.39 82.17 [55]

Inverse membrane compressibility lS 8.00

ECs Target volume Vt 30.00 270.00 [55]

Inverse compressibility lV 6.00

Target surface area St 21.91 65.73 [55]

Inverse membrane compressibility lS 4.00

IC Target volume Vt 40.00 360.00 [83]

Inverse compressibility lV 6.00

Target surface area St 25.30 75.90 [83]

Inverse membrane compressibility lS 4.00

MC Target volume Vt 50.00 450.00 [32]

Inverse compressibility lV 6.00

Target surface area St 28.28 84.84 [32]

Inverse membrane compressibility lS 4.00

The simulation was run in 2D, and 1 pixel is assumed to correspond to 3 mm. 2D ‘‘volume’’ units are pix2 and mm2 and ‘‘surface area’’ units are pix and mm, for parameter
and equivalent values, respectively. ECt: endothelial tip cells, ECs: endothelial stalk cells, IC: inflammatory cells, MC: mural cells.
doi:10.1371/journal.pcbi.1002996.t001
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displace their neighbors (known as an index copy attempt) if it

lowers the effective energy. If the effective energy is not reduced

the displacement is accepted with a probability, P, that decays

exponentially in proportion to the effective energy cost, incorpo-

rating a stochastic framework into the model known as Metropolis

dynamics with Boltzmann acceptance [30]. This is represented in

Equation 6, where h is the Heaviside step function and T(s) is the

cell-type specific ‘‘temperature’’ value that represents motility

(Table 2).

P(s(~ii){s(~jj))~h(DH)e
{DH
T(s) zh({DH) ð6Þ

In concordance with experimental observation, ICs such as

macrophages exhibit the most exploratory behavior, followed by

EC-tip cells and MCs, with EC-stalk cells being the least motile

cell type. Apoptotic cells represent a special case where there is a

designated motility value to prevent apoptotic bodies from being

static as their volume decreases and they are processed by ICs.

Cell Types and Signals
The model cell types are endothelial tip cells (EC-tip cells),

endothelial stalk cells (EC-stalk cells), inflammatory cells (ICs),

mural cells (MCs), and apoptotic cells as well as a representation of

the ECM. There are 7 angiogenic signals (VEGF165, VEGF121,

CCL2, CXCL10, sVEGFR1, Proteases, and TIE2) that are

represented as biochemical fields whose spatial distribution is

directed by a system of reaction-diffusion equations overlaid onto

the cellular lattice. The remaining 5 angiogenic signals (ANG1,

uPAR, PAI-1, VCAM1, and VEGFR2) are represented by their

influence on specific cellular behaviors, such as adhesivity, motility

and proliferation rate. Table 3 shows the modeling rules applied to

the cell types, behaviors, and corresponding angiogenic signals

represented in the computational model of early embryonic

vascular plexus formation.

ICs are considered to represent generalized macrophage-like

cells, as defined by their migratory properties (high motility value)

and secretion of inflammatory chemokines [31]. MCs are also

represented as generalized cell types that associate with and

stabilize the vascular endothelium, including pericytes (e.g., blood-

brain barrier) and vascular smooth muscle cells [2,32]. The ECM

is modeled as an additional ‘cell type’ that remains static during

the simulation, but can sequester/release growth factors based on

protease and IC interaction. Apoptotic cells, regardless of their

original cell type, assume a cell type that precedes their breakdown

(via incremental decreases in target volume) into apoptotic bodies.

There is basal rate of apoptosis represented via cell type switching

based on a random number generator whose distribution is

tailored to correspond to a 2.5% probability of becoming

apoptotic (Papop(s)). This was the optimal rate of apoptosis derived

from parameter sweeps between 0–25% probability of apoptosis in

balancing cell density and overall VEGF concentration. Cytotox-

icity may be represented in the model as an increase in the

probability of apoptosis for a particular cell type. A basal rate of

proliferation is implemented for each cell type, modeled as an

incremental increase in the target volume of the cell DVt(s). A cell

reaching its doubling volume then undergoes mitosis into two

daughter cells of the same cell type as the parent. In the case of

ECs, there is a VEGF concentration threshold Cv:thr that must be

exceeded to stimulate cell growth. Conversely, there is a CXCL10

concentration CCx:thr threshold that, once exceeded, counteracts

VEGF-stimulated proliferation.

ECs occur as either EC-tip cells or EC-stalk cells, defined in the

model as separate cell types. The former are characterized by

migratory behavior (higher motility value and chemotactic

strengths), exploratory filopodial extensions (higher lS(s)) and

minimal potential for proliferation, whereas the latter are non-

exploratory and proliferative (increase in target volume in response

to VEGF) [33]. Each cell in the computational model is able to

keep track of its’ shared surface area with other cells, and this data

is used as an input to certain cellular behaviors. For example, EC-

stalk cells adjacent to EC-tip cells express higher levels of soluble

VEGFR1 (sVEGFR1), the decoy receptor that sequesters VEGF,

creates a ligand corridor for vessel sprouting, and buffers the

angiogenic response [34,35]. Similar to what has been observed

experimentally, model ECs are able to switch cell type (tip vs. stalk)

based on their local environment. An EC-stalk cell that has ,80%

shared surface ares with other cells may switch type and become

an EC-tip cell based on exceeding a VEGF concentration

threshold, leading to potential angiogenic sprout formation. An

EC that shares .50% of its’ surface area with an EC-tip cell, or is

surrounded by other ECs (no free surface area), cannot assume the

EC-tip cell type [36,37]. These rules attempt to mimic the effects

of Delta-Notch signaling without an explicit mathematical

representation of the intra-cellular molecular networks.

All cells in the model may differentially interact with the full

range of signals, detailed in Table 3, through a combination of

mechanisms including receptor expression, secretion, chemotaxis,

and uptake. VEGF is represented in the model as a freely diffusible

Table 2. Contact energies between cell types (ECt: endothelial tip cells, ECs: endothelial stalk cells, MC: mural cells, IC:
inflammatory cells, ECM: extracellular matrix) are shown, where a more negative number represents higher density of cell adhesion
molecules and higher adhesivity.

Adhesion Matrix (Contact Energies: J) Temperature

ECM ECt ECs IC MC Apoptotic (Motility: T)

ECM 0 24 24 24 24 22 0

ECt 27 28 25 24 22 20

ECs 28 22 26 22 10

IC 22 22 23 30

MC 24 22 20

Apoptotic 0 20

Right column gives the cell-type specific ‘‘temperature’’ value, where a higher value corresponds to increased motility [16,25].
doi:10.1371/journal.pcbi.1002996.t002
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isoform (VEGF121) and as an isoform that contains a heparin

sulfate binding domain (VEGF165). The latter isoform is liberated

from the ECM by proteases secreted by ECs, and by ICs and MCs

that interact with and break down the ECM. Sprouting EC-tip

cells express higher levels of proteases such as MMP7 than

quiescent EC-stalk cells [38]. Endothelial chemotaxis in response

to VEGF gradients occurs via VEGFR2-mediated downstream

activation of pathways leading to formation of filopodia, stress

fibers, lamellipodia and focal adhesion complexes that facilitate

migration along the ECM [39]. This is represented in the model

by a higher chemotactic strength for EC-tip cells in response to a

VEGF gradient. Previous CC3D models of early vascular

development have assumed either exclusively paracrine [15] or

autocrine [16] VEGF signaling as the driving factor for patterning.

Here, we propose both autocrine and paracrine contributions to

VEGF signaling whereby soluble VEGF121 is produced by EC-

stalk cells, MCs and ICs, and bound VEGF165 is secreted by MCs

and liberated from the ECM by ICs and EC-tip cell proteases.

This scenario is supported by experimental evidence for cell-

specific secretion of VEGF isoforms and by a demonstrated

necessity for both the heparin-bound form and the freely diffusible

form for correct spatial patterning [6,32,40–43].

The chemokine CCL2 is expressed at varying levels by all active

cell types in the model and causes chemotaxis in EC-tip cells and

ICs, and a mitogenic response in MCs [44,45]. An IC-MC

interaction has been shown to synergistically amplify CCL2

production [46], which is thus represented in the model as an

increase in CCL2 secretion on contact between the two cell types.

In addition to induction of a variety of angiogenic growth factors,

receptors and adhesion molecules, CCL2 is also thought to

enhance EC responsiveness to VEGF [47]. The anti-angiogenic

chemokine CXCL10 is expressed by ICs and inhibits EC-stalk cell

proliferation via a competitive mechanism with the heparin-

binding site on VEGF165, as well as via CXCR3-mediated

apoptosis at higher concentrations [48,49]. This activity is

represented in the model via a threshold-based approach where

a shift in the relative concentrations of CXCL10 and VEGF165

causes first a decrease in incremental EC-stalk cell growth and

subsequently an increase in EC-stalk cell apoptosis. Angiopoietin-1

(ANG1), a ligand for TIE2 expressed on the MC surface, binds its

cognate receptor on EC-stalk cells, represented computationally

via the boundary energy between these cell types. The association

between MC and EC-stalk cells provides structural support for the

nascent vessels, guidance cues from MC-derived growth factors,

Table 3. Cell types, behaviors, and associated angiogenic signals represented in the computational model of early embryonic
vascular plexus formation.

Cell Type Behavior Signal

Endothelial Tip Cell (ECt) migration up chemotactic gradients VEGF165, VEGF121, CCL2

secretion of proteases that break down ECM
and release growth factors

PAI1, Proteases, VEGF165

expression of chemokines CCL2

motility along the ECM uPAR, VCAM1

Apoptosis

Endothelial Stalk Cell (ECs) proliferation in response to growth factors VEGF165, VEGF121

inhibition of proliferation CXCL10

secretion of proteases that break down ECM
and release growth factors

PAI1, Proteases, VEGF165

secretion of soluble decoy receptors that bind
and sequester growth factor

sVEGFR1

adhesion to other cell types Tie2, VCAM1

assumption of tip cell type based on free surface
area and growth factor concentration

VEGF165, VEGF121

motility along the ECM uPAR, VCAM1

quiescence based on shared surface area with other cells

Apoptosis

Inflammatory Cell (IC) migration up chemotactic gradients CCL2

expression of chemokines/growth factors VEGF121, CCL2, CXCL10

interaction with the ECM to release bound growth factor VEGF165

adhesion to other cell types VCAM1

Apoptosis

Mural Cell (MC) expression of chemokines/growth factors VEGF165, VEGF121, CCL2

adhesion to other cell types ANG1, VCAM1

motility along the ECM PAI1

promotion of endothelial quiescence based on
shared surface area

Apoptosis

Signaling molecules diffuse uniformly and isotropically. Lattice boundary conditions are periodic.
doi:10.1371/journal.pcbi.1002996.t003

Computational Model of Vascular Disruption

PLOS Computational Biology | www.ploscompbiol.org 5 April 2013 | Volume 9 | Issue 4 | e1002996



and promotes endothelial quiescence [2]. The latter effect is

represented in the model by contact inhibition of EC-stalk cell

proliferation based on shared surface area with MCs.

The effects of the plasminogen activating system (PAS) are

represented partly by the aforementioned proteases and partly by

expression of the urokinase-type plasminogen receptor (uPAR) and

Plasminogen Activator Inhibitor 1 (PAI-1). Through interaction

with vitronectin (VN), uPAR influences EC motility and migration

along an ECM substratum [50]. PAI-1 has been shown to control

MC motility by a similar VN-dependent mechanism [51,52]. PAI-

1 also regulates protease secretion and thus may influence the

proteolytic balance of the system. Finally, cell surface expression of

the vascular cell adhesion molecule 1 (VCAM1) by ECs, MCs, and

ICs [53,54] is reflected in the model by differing contact energies

between cell types.

Biochemical Fields and Chemotaxis
As shown in Equation 4, chemotaxis is implemented as an

energy bias in the direction of higher concentrations, allowing cells

to preferentially move up or down a gradient based on the

chemotactic field strength lchem (Table 4). The majority of the fields

(VEGF121, CCL2, CXCL10, sVEGFR1, Proteases, and TIE2)

evolve according to the diffusion equation:

Lc(~ii)

Lt
~D(~ii)+2c(~ii){k(~ii)c(~ii)zs(~ii) ð7Þ

In Equation 7, c(~ii) is the field concentration, D(~ii) is the

diffusion constant, k(~ii) is the decay constant, and s(~ii) is the

secretion rate. In the case of the cell-surface receptor TIE2, the

decay rate is greater than or equal to the secretion rate for each

EC type, maximizing expression on the cell membrane and

minimizing it elsewhere in the ABM lattice. The secretion rate can

either assume a constant value for each relevant cell type

(sVEGFR1, TIE2, CXCL10) or it may include an additional

dependence on contact between specific cell types (VEGF121,

CCL2, Proteases). Uptake of the growth factor VEGF121 and

VEGF165 by EC-tip cells and EC-stalk cells is represented as a

negative contribution to the secretion rate. To solve the

concentration field for VEGF165 (CV (~ii) in Equation 8), there

are additional terms in the diffusion equation representing field

coupling.

LCV (~ii)

Lt
~D(~ii)+2CV (~ii){k(~ii)CV (~ii)zs(~ii)znrCr(~ii)znpCp(~ii) ð8Þ

The terms nr and np denote coupling coefficients for the

sVEGFR1 concentration Cr(~ii) and the protease concentration

Cp(~ii). The field coupling with sVEGFR1 is in the negative

direction, representing growth factor sequestration, and the

coupling with proteases is in the positive direction, representing

breakdown of the ECM and release of bound VEGF165.

Simulation Parameters
The initial configuration of our simulation is a heterogeneously

seeded cell field on a hexagonal lattice of 2006200 pixels with

periodic boundary conditions. There is a random seed number

that ensures that the spatial distribution of the cells varies among

simulations; however, the relative percentage of cell types is

constant at the start of each run. The starting configuration (,700

cells/mm2) and relative cell densities were estimated based on

experimental observation, where ECs constitute 75% (divided

between 62.5% EC-stalk and 12.5% EC-tip cells) and the

remaining 25% are evenly divided between ICs and MCs

[2,15,55]. Each pixel corresponds to ,3 mm in biological space,

and each MCS corresponds to ,1 sec real time. All secretion/

diffusion/uptake parameters are unique to each specific concen-

tration field and were informed by the open scientific literature

(Table 4). Parameters were converted from measured experimen-

tal values, as in the case of diffusion and secretion, or estimated

based on observed behaviors as in the case of field coupling and

chemotactic strength. When specific experimental values were not

available, parameter values were estimated to achieve relative

steady state concentrations that approximate measured serum

levels in humans. The total simulated time over 10,000 MCS

equates to roughly 3 hrs, which agrees with the estimated time

scale over which the primitive embryonic capillary plexus forms in

mammals in vivo [1].

ToxCast HTS Data
ToxCast Phase I profiled the biological activities of 309 unique

chemicals using over 600 HTS assays, including biochemical

assays (e.g., nuclear receptor binding, enzyme inhibition), cell-

based assays (e.g., cytotoxicity profiles, reporter gene assays),

complex culture systems (e.g., embryonic stem cell differentiation,

inflammatory/angiogenic signals), and chemical property infor-

mation. The public in vitro dataset and relevant publications can be

accessed at http://actor.epa.gov/actor/faces/ToxCastDB/

Home.jsp and http://actor.epa.gov/toxrefdb/faces/Home.jsp.

Several technology platforms in the ToxCast assay portfolio tested

for chemical effects on molecular targets that map to key signaling

pathways in vascular development [8,12]. The reference anti-

angiogenic compound, 5-Hydroxy-2-(2,6-diisopropylphenyl)-1H-

isoindole-1,3-dione (5HPP-33, $98%, Sigma-Aldrich, St. Louis,

MO) was identified in a previous structural development study on

thalidomide analogs to identify anti-angiogenic compounds in a

human umbilical vein endothelial cell (HUVEC) assay [56]. For

the present study, this compound was tested in the following HTS

assays as part of ToxCast Phase II (.800 chemicals, .650 assays).

The full ToxCast Phase II dataset will be available in mid-2013

(http://www.epa.gov/ncct/toxcast/).

Attagene platform. This is a cellular biosensor system for

rapid, high-content assessment of a compound’s impact on gene

regulatory networks, with combined libraries of cis- and trans-

regulated transcription factor reporter constructs and a homoge-

nous detection method enabling simultaneous evaluation of

multiplexed transcription factor activities [57]. We evaluated the

effects of 5HPP-33 on 25 nuclear receptors (TRANS) and 48

transcription factor response elements (CIS), with 10 correspond-

ing receptor family targets between the CIS and TRANS assays.

BioMAP platform. This assay system, developed by BioSeek,

models complex human disease and tissue biology with co-cultures

of primary human cells under various stimulatory conditions [58].

Cell types consisted of HUVECs, fibroblasts, bronchial epithelial

cells, smooth muscle cells, keratinocytes and peripheral blood

mononuclear cells in 8 different culture conditions. Cells were

stimulated with a variety of important biological effectors such as

TNF-a, LPS, IL-1b, IFN-c, EGF, TGF-b and increased or

decreased levels of downstream response proteins determined by

enzyme-linked immunosorbent assay. Measures of cytotoxicity

and proliferation are also used. The effects of 5HPP-33 on a total

of 87 BioMAP endpoints are reported here.

NovaScreen platform. This biochemical HTS assay portfo-

lio (Perkin-Elmer) was used to test 5HPP-33 in: 77 G-protein

coupled receptor (GPCR) binding assays; 10 CYP450-related
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Table 4. Dynamic simulation parameters affecting concentration fields and chemotactic responses.

Molecule Parameter Cell/Field Type Symbol Parameter Value Equivalent Value Ref

VEGF165 Diffusion ECM DV 4.061022 0.36 [15,25,41,84]

Decay ECM kV 1.061023 1.061023

Secretion IC SV:IC 6.061023 6.6761024 [85]

MC SV:MC 5.061023 5.5561024 [32]

Uptake ECt SV:Ect 22.061023 22.2261024

ECs SV:Ecs 22.061023 22.2261024

Field coupling sVEGFR1 nr 20.02 [34]

Proteases np 0.02 [86]

Chemotactic strength ECt lc:V:ECt 600 [43]

ECs lc:V:Ecs 300 [43]

VEGF121 Diffusion ECM DVf 0.18 1.62 [15,25,41,84]

Decay ECM kVf 1.061023 1.061023

Secretion ECs SVf:Ecs 2.061023 2.2261024

IC SVf:IC 5.061023 5.5561024 [85]

MC SVf:MC 5.061023 5.5561024 [32]

(on contact) ECs:MC SVf:Ecs:MC 4.061023 4.4461024 [32]

Uptake ECt SVf:Ect 22.061023 22.2261024

ECs SVf:Ecs 22.061023 22.2261024

Chemotactic strength ECt lc:Vf:ECt 400 [43]

ECs lc:Vf:Ecs 200 [43]

CCL2 Diffusion ECM DC 8.061022 0.72

Decay ECM kC 261023 261023

Secretion ECt SC:Ect 4.061023 4.4461024 [87,88]

ECs SC:Ecs 2.061023 2.2261024 [87,88]

IC SC:IC 6.061023 6.6761024 [87]

(on contact) MC:IC SC:MC:IC 1.061023 1.1161024 [46]

(on contact) IC:MC SC:IC:MC 1.061023 1.1161024 [46]

Chemotactic strength ECt lc:C:ECt 400 [39,45]

ECs lc:C:Ecs 200 [39,45]

IC lc:C:IC 400 [39,45]

CXCL10 Diffusion ECM DCx 8.061022 0.72

Decay ECM kCx 261023 261023

Secretion IC SCx:IC 5.061023 5.5561024 [87]

MC SCx:MC 3.061023 3.3361024 [87]

sVEGFR1 Diffusion ECM Dr 0.14 1.26

Decay ECM kr 461023 461023

Secretion ECs Sr:Ecs 2.061023 2.2261024 [38]

Chemotactic strength ECt lc:r:ECt 2200 [34]

Proteases Diffusion ECM Dp 0.2 1.8

Decay ECM kp 561023 561023

Secretion ECt Sp:Ect 1.061022 1.1161023 [89]

ECs Sp:Ecs 1.061023 1.1161024 [89]

(on contact) ECt:IC Sp:Ect:IC 1.061022 1.1161023 [31,38]

Chemotactic strength IC lc:r:IC 2200

TIE2 Diffusion ECM DT 0.1 0.9

Decay ECM kT 561023 561023

Secretion ECt ST:Ect 5.061023 5.5561024 [90]

ECs ST:Ecs 1.061023 1.1161024 [90]

Chemotactic strength MC lc:T:MC 100 [35]

Diffusion units are pix2/s and mm2/s, decay units are MCS21 and s21, and secretion and uptake units are c.u./pix2/s and c.u./mm2/s, for parameter and equivalent values,
respectively (c.u. is arbitrary concentration units). Parameter values were informed by experimental observations and in most cases estimated to achieve relative steady
state concentrations that approximated measured serum levels. References correspond to measured values (diffusion, secretion) or observed behaviors (field coupling,
chemotactic strength). ECt: endothelial tip cells, ECs: endothelial stalk cells, IC: inflammatory cells, MC: mural cells, ECM: extracellular matrix.
doi:10.1371/journal.pcbi.1002996.t004
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enzyme activities; enzymatic assays for 37 kinases, 19 phospha-

tases, 15 proteases, 2 histone deactylases, 3 cholinesterases and 16

other enzyme activities; 19 nuclear receptor binding assays; 20 ion

channel and ligand-gated ion channel activities; 9 transporter

proteins, 2 mitochondrial pore proteins and 2 other receptor types

for a total of 231 assay features described in [59].

The results of each assay with a corresponding molecular or

cellular target in vascular development were used to parameterize

the chemical-exposure model. Embryonic vascular exposure to

5HPP-33 was simulated using the lowest effective concentration

(LEC) values where a statistically significant difference from

control was observed. These values were in the micromolar range,

and the responses were measured primarily in fold-change of

protein expression. The concentration response data (Supplemen-

tal Table S3) were used to simulate chemical exposure during

embryonic vascular plexus development at low (,3–5 mM) and

high (,30–40 mM) test concentrations. Where possible, fold

changes in protein levels from the concentration response curves

were translated directly into parameter fold changes. For example,

a 2-fold decrease in the expression of a chemokine in a BioMAP

human primary cell system resulted in a 2-fold decrease in the

secretion rate parameter for the corresponding cell type and

concentration field. Changes in proliferation were equivalently

applied as adjustments to the change in target volume of the

respective cell types. Other parameter perturbations were more

complex, such as expression of surface adhesion molecules which

influence cell-cell adhesivity and must therefore be translated into

contact energies between cells, a dimensionless computational

parameter. Another example is receptor expression influencing

cell type-specific motility. In such cases it was not possible to

directly convert fold changes so a heuristic was applied in the form

of incremental decreases in computational parameters. The

specific parameters adjusted to simulate 5HPP-33 exposure,

corresponding to ToxCast assay perturbations, are detailed in

the Results. Publication and release of the entire ToxCast Phase II

dataset, including the subset of data for 5HPP-33 reported here, is

scheduled for early 2013. Quantitative analysis of simulated

vascular networks was performed using AngioTool (v0.5a, [60]),

and statistical analysis was done in R (v2.13.0).

Results

Normal Vascular Development (Control Model)
The cellular ABM was run for 10,000 MCS to simulate the

early stages of embryonic vascular plexus formation. Figure 1

displays the progression of the model as the simulation advances

over six time points. The model can be viewed as a 2D cross

section of a nascent capillary plexus comprising ECs (Figure 1, red

cells) supported by MC (green cells) and IC (yellow cells). ECs

initially elongate due to chemotactic forces leading to the

formation of vascular cords. Under the mitotic influence of

growth factors liberated from the ECM and secreted by the other

cell types, EC-stalk cells proliferate while EC-tip cells extend

exploratory filopodia into the microenvironment. This results in a

rudimentary capillary plexus co-opting all ECs into the network by

approximately 3000 MCS. At this stage, the model has achieved a

steady state in which the overall distribution of cell types and

general topology of the cellular network does not change

significantly throughout the remainder of the simulation. Howev-

er, the vascular network remains dynamic through 10,000 MCS

and continues remodeling via random apoptosis as well as

complex cell signal-response interactions leading to proliferative

vessel thickening and stabilization by MC adhesion. As such, the

capillary network is not programmed a priori but rather emerges

from the system of complex interactions enabled by heterogeneous

cellular properties and local environmental signals.

The emergent capillary network is locally regulated by

molecular signals in concentration fields that are determined by

different rates of diffusion, decay, secretion and/or uptake,

detailed in the Methods section and depicted graphically in

Figure 2. These signals may be freely diffusive (e.g., VEGF121 and

sVEGFR1) or tightly bound to the ECM (VEGF165) or cell

membrane (TIE2). Some signals depend on the presence of a

specific cell-type and are thus transitory in nature. Protease

expression in EC-tip cells is, for example, more prominent earlier

in the simulation when a significant amount of exploratory

behavior and vessel sprouting occurs. The visual outcome of the

simulation (Figure 3 A,B) recapitulated formation of the primitive

capillary plexus in an early embryo [13]. These features included

quasi-hexagonal lacunae formed by the vascular network, uniform

vessel thickness of 2–3 cells, regular branch points, and angiogenic

sprouts forming off the nascent vessels in response to local growth

factor gradients.

Emergent Properties
During nascent angiogenic sprout formation in the ABM, EC-

tip cells continually explore their environment via filopodial

extensions. This orients a tip cell chemotactically along a relevant

growth factor gradient, such as VEGF. In contrast, EC-stalk cells

follow and proliferate behind the exploratory EC-tip cells. In the

computational model, EC-tip cells responded chemotactically to

gradients of VEGF165, VEGF121 and CCL2 (see Table 4). These

molecules, plus the anti-angiogenic chemokine CXCL10, are

secreted by ICs; VEGF165 is also liberated from the ECM by

secreted proteases. The CCL2 chemokine also has a chemotactic

effect on IC. An interplay between concentration fields of these

signal molecules and the differential adhesion strengths between

cell types facilitated cell-cell interactions as the endothelial network

forms (Fig. 3C,D). This selective bridging of EC-tip cells,

encouraged by macrophages, brought spatially seperated EC-tip

cells into juxtaposition. This emergent property of the multicellular

model mimics a ‘bridging phenomenon’ observed in vivo in mice

during retinal angiogenesis, and in zebrafish vascular development

[31].

ToxCast Assay Results
To evaluate the performance of the cell ABM for predictive

toxicology, the anti-angiogenic reference compound, 5HPP-33

was tested across a series of HTS and HCS assay systems. Results

in the BioMAP system showed numerous targets relevant to

inflammatory and vascular pathways (Table 5). The lowest

effective concentration (LEC) is the in vitro test concentration at

which a response was observed that was significantly different

(P#0.01) from control. These are reported alongside the AC50

values, where available, based on the concentration response data.

A maximum response (Emax) of $2-fold change was required to fit

a curve and generate an AC50. Examples of the concentration-

response curves (for inhibition of proliferation in several BioMAP

vascular cell systems) are shown in Figure 4. 5HPP-33 invoked

EC-specific inhibition of proliferation at low concentrations (here

defined as LEC # 5 mM) and affected other cell types to varying

degrees at higher test concentrations (here defined as 5 mM #

LEC # 40 mM). There were a number of other targets affected by

5HPP-33 across the assay systems, including some that may be

relevant to vascular development but have not yet been

incorporated into the computational model. The full data set for

5HPP-33 is provided in Supplemental Table S3.
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Figure 1. Control model of early embryonic vascular plexus formation. Labels represent simulation time in MCS, where the simulation was
run for 10,000 MCS (,3 hrs). Frames display the progression of interactions between endothelial cells (red), mural cells (green), and inflammatory
cells (yellow) as a stable polygonal plexus of endothelial cords emerges. The movie file for the control model is provided as Supplemental Video S1.
doi:10.1371/journal.pcbi.1002996.g001

Figure 2. Control model of early embryonic vascular plexus formation at ,5000 MCS, showing the cellular lattice and overlaid
molecular signaling concentration fields. At this stage, there are low levels of protease expression though it can be seen around the sprouting
tip cells. The movie file for the control model with overlaid concentration fields is provided as Supplemental Video S2.
doi:10.1371/journal.pcbi.1002996.g002
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Anti-Estrogenic Activity of 5HPP-33
An unexpected result of the ToxCast HTS screening was the

strong activity exhibited by 5HPP-33 against the estrogen receptor

(ER). When tested in NovaScreen cell-free biochemical assays,

5HPP-33 exhibited concentration-dependent binding to estrogen

receptors from multiple species. The AC50 was 1.4 mM in mouse

ER-alpha, 1.5 mM in human ER, and 1.8 mM in bovine ER

binding assays (Fig. 5A). In the Attagene reporter assays, 5HPP-33

affected ER-alpha transcription factor activity (ERa_TRANS)

with an AC50 of 0.39 mM and the cis-regulatory estrogen response

element (ERE_CIS) construct with an AC50 of 4.4 mM (Fig. 5B).

The effect of binding to the estrogen receptor is represented

implicitly in the model via a surrogate effect on VEGF secretion

(SVf:ECs), based on the known transcriptional relationship between

ER and VEGF [61].

Adverse Outcome Pathway (AOP) for 5HPP-33
An AOP framework anchoring molecular initiating events

(MIEs) to adverse outcomes at the individual or the population

level was previously developed for embryonic vascular disruption

leading to developmental toxicity [8]. Based on that framework,

the putative AOP for embryonic vascular disruption by 5HPP-33

is shown in Figure 6. Examining the ToxCast HTS assay results

represented in the computational model, 5HPP-33 affected the

angiogenic switch via down-regulation of the VEGFR2 receptor

and the chemokine pathway via downregulation of CCL2,

CXCL10, IL1a, TNFa and other inflammatory signaling mole-

cules. It also targeted vessel remodeling via down-regulation of

TGFb and ECM matrix interactions through a variety of MMPs

and PAS targets, including uPAR, uPA and PAI-1. An additional

direct target in the biochemical cell-free assay platform was

thromboxane A2, which in addition to its’ role in clot formation,

regulates ECM gene and protein expression and migratory

capabilities of various cell types [62,63]. Based on the estrogenic

results across multiple assay types and platforms, we would also

hypothesize that 5HPP-33 influences VEGF transcription and

angiogenic growth factor signaling via an endocrine-regulated

pathway.

5HPP-33 Simulations
The ToxCast data for 5HPP-33 were translated into model

parameter perturbations, as shown in Table 5 and detailed in the

Methods section, based on the LECs for each target. Where

possible, fold changes in protein levels from the concentration

Figure 3. Phenotypic and emergent properties of simulated capillary plexus. (A,B) The hexagonal lacunae formed by the control vascular
network model are marked by asterisks, and the arrowheads indicate angiogenic sprouts forming off the nascent vessels. In the computational
model, these were seen in response to a local VEGF gradient (green to red color scale indicating low to high concentration). (C,D) Details of EC-tip cell
interactions during vascular network formation. Mural cells (green) and inflammatory cells (yellow) interact with endothelial tip cells (dark red) to
facilitate bridging between nascent vessel sprouts (arrowheads); endothelial stalk cells (light red) follow and later in time (D) the connection is
formed. Macrophage-tip cell bridging (arrow) is an emergent feature of the in silico model and mimics events described during embryogenesis in vivo
[31].
doi:10.1371/journal.pcbi.1002996.g003
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response curves (Supplemental S3) were translated directly into

parameter fold changes. For example, a 2-fold decrease in CCL2

levels resulted in a 2-fold decrease in the CCL2 secretion rate

parameter for each corresponding cell type. Changes in prolifer-

ation were equivalently applied as adjustments to the change in

target volume of the respective cell types. For example, at 40 mM

5HPP-33 caused ,7-fold inhibition of endothelial cell prolifera-

tion (Fig. 4, 3C system) vs. ,3-fold inhibition of smooth muscle

cells (Fig. 4, CASM3C system) at the same concentration;

equivalent decreases were directly applied to DVt(ECs) and

DVt(MC), respectively, as shown in Table 5. Others were not as

straightforward, such as VCAM1, which influences cell-cell

adhesion and transendothelial leukocyte migration and therefore

is translated into contact energies between cells and cell type-

specific motility, dimensionless computational parameters. In such

cases there was no way to directly translate fold changes so a

heuristic was applied in the form of incremental decreases in

parameters. A 2-fold decrease in VCAM1 caused a drop in the

contact energy between EC and IC from 25 to 24, for example.

The proposed decrease in VEGF secretion by ECs due to ER-

binding and VEGFR2 inhibition (a 10-fold drop in EC-specific

VEGF secretion, without affecting secretion by the other cell types)

was implemented at the highest test concentration of 40 mM. The

XML and Python configuration files used to parameterize and run

each simulation are included in the Supplemental Material, and

the parameters adjusted to mimic 5HPP-33 exposure were

commented at the relevant places in the code.

The simulations of 5HPP-33 exposure during early embryonic

vascular patterning were compared to similar test concentrations

with HUVEC cultures stimulated to undergo vasculogenesis [56],

to qualitatively assess the degree of vascular disruption and cellular

pathophysiology. The experimental images were taken after

6 hours of chemical exposure (0.5% DMSO vehicle control,

3 mM 5HPP-33, or 30 mM 5HPP-33), a similar time scale to the

simulations (10,000 MCS or ,3 hours). Although the time points

are not identical, and the computational model includes additional

cell types (IC and MC), the EC patterning (red cells) may be

compared with HUVEC vascular network formation in order to

identify similar features. The normal (control) simulation showed

typical plexus formation and patterning, with a high degree of

connectivity and regular branching (Fig. 7A, D) similar to what

was observed in vitro. The low concentrations (3 mM in vitro,

compared to 4.44 mM in silico) showed partial disruption of plexus

formation (Fig. 7B, E) that was more evident in the experimental

images than the in silico results. There were isolated segments that

form vessel networks but with a slightly lower degree of

connectivity, and cellular clustering was observed in both cases.

The high concentrations (30 mM in vitro, compared to 40 mM in

silico) showed little to no vessel formation and a high occurrence of

cellular clustering (Fig. 7C, F). The concordance between the

Table 5. 5HPP-33 results in the BioMAP system measuring fold change levels for downregulation/upregulation of protein levels in
human primary cells.

Assay Gene AC50 LEC Emax Model Parameter

BSK_3C_Proliferation_down NA 4.9 1.5 7.03 DVt(ECs)

BSK_LPS_VCAM1_down VCAM1 17 4.4 3.55 J(IC:ECs), J(MC:ECs), T(ECs)

BSK_hDFCGF_Proliferation_down NA 18 4.4 12.1 DVt(IC)

BSK_hDFCGF_VCAM1_down VCAM1 19 4.4 4.4 J(IC:ECs)

BSK_SAg_Proliferation_down NA 24 4.4 10.3 DVt(ECs)

BSK_CASM3C_Proliferation_down NA 30 4.4 2.76 DVt(MC)

BSK_4H_SRB_down NA NA 13 1.44 Papop(EC)

BSK_3C_SRB_down NA 16 13 2.09 Papop(EC)

BSK_hDFCGF_PAI1_down SERPINE1 17 13 3.53 T(MC)

BSK_hDFCGF_IP10_down CXCL10 19 13 5.47 SCx:IC

BSK_CASM3C_VCAM1_down VCAM1 NA 13 1.55 J(MC:ECs)

BSK_3C_uPAR_down PLAUR 20 13 2.6 T(ECt), T(ECs)

BSK_3C_VCAM1_down VCAM1 20 13 2.03 J(MC:ECs)

BSK_4H_uPAR_down PLAUR 23 13 2.33 T(ECt), T(ECs)

BSK_KF3CT_IP10_down CXCL10 23 13 7.16 SCx:IC

BSK_LPS_SRB_down NA NA 13 1.87 Papop(EC)

BSK_SAg_PBMCCytotoxicity_up NA NA 13 1.14 Papop(IC)

BSK_SAg_SRB_down NA NA 13 1.9 Papop(EC)

BSK_4H_MCP1_down CCL2 NA 40 1.43 SC:EC

BSK_4H_VEGFRII_down KDR NA 40 1.45 J(ECs:ECs), J(ECt:ECs),
Cv:thresh, SVf:Ecs

BSK_4H_VCAM1_down VCAM1 24 40 2.2 J(MC:ECs)

BSK_SAg_MCP1_down CCL2 28 40 4.61 SC:EC, IC

BSK_LPS_MCP1_down CCL2 29 40 2.69 SC:EC, IC

The corresponding gene targets and computational model parameters are shown. SRB represents total protein levels, and is taken as a cytotoxicity measure. AC50: half-
maximal activity concentration, LEC: Lowest Effective Concentration, Emax: Maximal response.
doi:10.1371/journal.pcbi.1002996.t005
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simulated results and the experimental images suggests that the cell

ABM had sufficient complexity and detail to learn new informa-

tion about an important biological response.

Quantitative Analysis with AngioTool
Vascular network images generated from multiple simulations

(n = 30) for each exposure scenario (control, 5HPP-33_LC

(4.44 mM), and 5HPP-33_HC (40 mM)) were analyzed using the

automated image processing software AngioTool (v0.5a). This tool

was originally designed for use on experimental images such as

allantois explants [60] and was adapted here for use with the in

silico outputs from the cell ABM. The images were ‘‘stained’’ for

ECs such that the simulated cell type colors were adjusted so that

non-ECs appeared black to facilitate automated image processing.

The first panel of Fig. 8A shows representative simulation outputs

after they have been ‘‘stained’’ for ECs in silico, segmented and

analyzed by AngioTool. Figure 8B shows a graphical representa-

tion of the distribution of various quantitative metrics of

angiogenesis for 30 simulations in each exposure scenario (control,

5HPP-33_LC, and 5HPP-33_HC). The coefficient of variation

(CV) in almost all cases was ,10%, except in the case of

branching index for all three conditions and lacunarity and

number of vessel segments at the simulated high test concentra-

tion. The total explant area showed a significant decrease

(p,0.0001) between the control model and the 5HPP33_LC,

while the area occupied by the vessels was equivalent. This could

be due to mild inhibition of proliferation of multiple cell types at

the low test concentration, resulting in slightly stunted angiogenic

outgrowth. The total explant area was increased for 5HPP33_HC,

due to inhibition of cellular adhesion molecules and complete lack

of vascular organization, as is evidenced by the large decrease in

vessel density from ,58% (control) to ,29% (5HPP33_HC,

p,,0.0001). Both 5HPP33_LC and the control scenario usually

resulted in a fully developed and interconnected plexus (one vessel

‘‘segment’’), whereas the number of vessel segments was signifi-

cantly increased (p,,0.0001) to .50 after simulated exposure to

the high test concentration. The lacunarity, an index for vascular

structural nonuniformity, was shown to increase significantly at the

Figure 4. 5HPP-33 results in the BioMAP system measuring fold change levels for inhibition of proliferation in (a) endothelial cells,
(b) fibroblasts, (c) a co-culture of endothelial cells and peripheral blood mononuclear cells and (d) smooth muscle cells. Blue
diamonds represent half-maximal activity concentrations (AC50) with standard error bars.
doi:10.1371/journal.pcbi.1002996.g004
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high concentration, consistent with what has been observed in the

case of other known VDCs [60,64].

AngioTool analysis was also performed on representative

experimental HUVEC images (Fig. 8A, lower panel) for control

(DMSO vehicle), 3 mM, and 30 mM 5HPP-33 exposure condi-

tions. Because the computational model was not parameterized to

match these experimental conditions and contains additional cell

types, measured values such as explant area or branching index

would be expected to differ. However, parameters such as

lacunarity and vessel density show a similar concentration

response trend, where the lacunarity was equivalent in the control

and the 3 mM case (0.16 and 0.17, respectively), and increased

after exposure to 30 mM to 0.27, similar to what was predicted in

silico. The vessel density also changed very little after exposure to

the low test concentration, going from 32% in the control image to

30% in the 3 mM image, while it dropped to 20% in the 30 mM

case. While the vessel density was estimated to be higher in the

computational model (,60% for control and 5HPP33_LC), the

concentration response trend was predicted where the vessel

density remained almost unchanged at the low concentration and

showed a strong decrease at the high concentration. The full set of

AngioTool image data (computational and experimental) and

statistical analyses are provided as Supplemental Datasets S1–S4

and Supplemental Table S4.

Discussion

Results from this study show that a cellular ABM with sufficient

molecular complexity and mathematical detail can: (a) effectively

simulate early embryonic vascular development including emer-

gent properties such as macrophage bridging [13,31]; (b)

recapitulate the topology of a functional angiogenesis assay in vitro

[56]; (c) incorporate HTS data to quantitatively predict the higher-

order effects on vascular network formation [12]; and (d) simulate

key events from molecular perturbations to tissue disruption in an

Adverse Outcome Pathway (AOP) for embryonic vascular

disruption [8]. Taken together, these results for the first time

demonstrate the translation of a mathematical model into

Figure 5. Modulation of the estrogen receptor (ER) by 5HPP-33. (A) 5HPP-33 results exhibiting binding of the ER in human (NR_hER), mouse
(NR_mERa) and bovine (NR_bER) in NovaScreen system. Blue diamonds represent half-maximal activity concentrations (AC50). (B) 5HPP-33 targeted
estrogen receptor alpha transcription factor activity (ERa_TRANS) and the cis-regulatory estrogen response element (ERE_CIS) construct in the
Attagene system. Blue diamonds represent half-maximal activity concentrations (AC50). Overt cytotoxicity is seen at higher test concentrations; these
points are flagged as outliers so that they do not contribute to the reported AC50 estimate.
doi:10.1371/journal.pcbi.1002996.g005
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predicted biological responses utilizing computer simulation and in

vitro HTS data.

The computational model simulated here includes a number of

critical cell types and molecular signals needed for vasculogenesis

and angiogenesis. Other studies have modeled vascular network

formation using a cell agent-based strategy although have

excluded control from the range of molecular signals possible in

an embryological system. For example, previous models typically

focused on one or two cell types (ECs, tumor cells), detailed

analysis of a specific behavior (elongation, ECM interaction, tip

cell selection) and/or the influence of one major growth factor

(VEGF) via either paracrine or autocrine signaling [14–

16,18,21,65]. There are significant advantages and important

insights gained from concentrating on a small number of cell

types/signals/behaviors; however, for our purposes we strove to

achieve a balance between sufficient degrees of biological

complexity and simplifying assumptions that would allow for

adequate recapitulation of embryonic vascular biology and

subsequent prediction of chemical perturbation. This model

expands upon a number of established models of plexus formation

and incorporates the lessons learned and insights gained from

previous approaches [14,15,16,18]. Previous work done also

provided excellent starting points for parameter range-finding

and sensitivity analysis, and assisted in choosing values that would

minimize computational artifacts. The current model does not

assume exclusively paracrine or autocrine signaling, but rather a

combination of both, to best mimic an in vivo scenario. In addition,

rather than one growth factor driving the patterning of a single cell

Figure 6. Proposed Adverse Outcome Pathway (AOP) for embryonic vascular disruption by 5HPP-33. Boxes on the left represent
molecular initiating events, leading to adverse prenatal outcomes via the associated pathways. The hypothetical linkage between the estrogen
receptor (ER) and the angiogenic switch is based on the ToxCast assay results and the known transcriptional relationship between ER and VEGF. In
the graphic at right, the colored slices corresponding to each assay are scaled so that more potent (i.e. lower AC50) results extend further from the
origin.
doi:10.1371/journal.pcbi.1002996.g006
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type, here there were several molecular signals and cell types

interacting to provide both pro- and anti-angiogenic cues. The net

outcome is a stable capillary plexus that phenocopies what can be

observed in the early embryo, but with subtle emergent features

such as nascent vessel stabilization/remodeling and macrophage-

tip cell bridging [31,32] that may be important to the timing and

patterning of embryonic vascular development, and to the genetic

or environmental determinants of susceptibility.

Genetic studies have shown that perturbing vascular signals

can lead to varying degrees of adverse consequences, ranging

from congenital angiodysplasia to fetal malformations and

embryolethality. Furthermore, evidence for chemical disruption

of vascular developmental processes is available for thalidomide,

estrogens, endothelins, dioxin, retinoids, cigarette smoke, and

metals among other compounds. Exposure to these ‘Vascular

Disruptor Compounds’ (VDCs) has been shown to cause a wide

range of developmental adverse outcomes (phocomelia, cleft

palate, neural tube defects, preeclampsia, embryolethality, fetal

weight reduction, etc.) in a variety of in vivo animal models and

human epidemiological data [8]. This provides compelling

evidence for the value of computational models and simulations

to predict effects of chemical exposure; however, their value

should not be judged solely on the biological complexity and

mathematical detail, but on what can be learned from them.

Models that work, and that work for the right reason, offer the

potential use as an in silico platform in predictive toxicology for

assessing the potential consequences of drug or chemical

exposure to embryonic vascular development. First-generation

predictive models built from ToxCast HTS data and linked to

apical in vivo endpoints include chronic liver cancer in rodents

[66], reproductive toxicity in rats [67], prenatal developmental

toxicity in rats and rabbits [68], and multi-organ carcinogenesis

[69]. We previously performed a biologically-based analysis of the

data assisted by semi-automatic knowledgebase curation that

revealed a number of angiogenic targets in inflammatory

chemokine signaling, the VEGF pathway, and the PAS were

strongly perturbed by some environmental compounds with

positive correlations to developmental effects. This led to the

development of a predictive model for ‘putative VDCs’ (pVDCs)

based on ToxCast Phase I HTS data [12] and expansion of this

model into a conceptual AOP framework for embryonic vascular

disruption [8]. The cell types and molecular targets identified as

Figure 7. Consequences of 5HPP-33 exposure on vasculogenesis: phase-contrast photomicrographs of human umbilical vein endothelial
cells (HUVEC) exposed to 5HPP-33 in vitro (A–C); previously unpublished HUVEC images were graciously donated by Prof. Hashimoto [56] and show
monolayers plated at 5.06105 cells/well grown in DMEM containing angiogenic growth factors (hEGF, VEGF, hFGF-B, and R3-IGF-1) and treated with
test compounds (0.5% DMSO vehicle control, 3 mM 5HPP-33, or 30 mM 5HPP-33) for 6 hours. Images are compared to in silico results predicted by the
cell-ABM simulation with ToxCast HTS data after 10,000 MCS (D–F). (A,D) Control (DMSO vehicle): demonstrates the polygonal organization of
endothelial cells (arrows) in silico (A) or 6 hr HUVEC culture (0.5% DMSO); bar = 100-mm (D). (B,E) Low-concentration 5HPP-33: simulation of ToxCast
HTS data for features altered at or below 4.44 mM 5HPP-33 (B); a slightly less connected endothelial network is also observed following exposure to
3 mM 5HPP-33 (E). (C,F) High-concentration 5HPP-33: simulation of ToxCast HTS data for features altered at or below 40 mM 5HPP-33 (C); dispersion
and inhibition of vessel formation is also observed following exposure to 30 mM 5HPP-33 (F).
doi:10.1371/journal.pcbi.1002996.g007
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Figure 8. Quantitative analysis of 5HPP-33 exposure on simulated vascular plexus formation. (A) Upper panel shows representative
images of AngioTool analysis performed on control, 4.44 mM (5HPP-33 LC) and 40 mM (5HPP-33 HC) simulation outputs. Lower panel shows
AngioTool analysis performed on donated experimental images for control, 3 mM 5HPP-33 and 30 mM 5HPP-33 exposure conditions. (B) Graphical
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critical to early embryonic vascular patterning were incorporated

into the cellular ABM, and comprised a sufficient level of

biological complexity to reproduce normal capillary formation

and chemical disruption.

Here, we followed this conceptual framework and developed an

AOP for embryonic vascular disruption by the anti-angiogenic

thalidomide analogue 5HPP-33 based on the ToxCast HTS data

for targets in angiogenic growth factor signaling, chemokine

pathways, ECM interactions, and vessel remodeling, and simulat-

ed it using the cellular ABM. The simulation predicted an initial

effect at the low test concentration on EC proliferation, motility

and adhesion. The multi-faceted impact on EC resulted in a more

rigid cell shape, as shown in Figure 7B, which is consistent with

another proposed mechanism of 5HPP-33, microtubule stabiliza-

tion [70]. At higher test concentrations, there were additional

targets controlling ECM interactions, growth factor and chemo-

kine signaling, and proliferation of other cell types. The presence

of MC and IC in the simulation appeared to partially rescue early

vascular cord formation, especially in the areas of high cell density,

but this occurred over a much slower time scale than in the control

model. Following image analysis by AngioTool, we were able to

assess the variability in our model and make quantitative

predictions showing significant changes in metrics of angiogenic

disruption such as explant area, vessel density, number of segments

and lacunarity, following exposure to increasing concentrations of

5HPP-33. The branching index, measuring the number of

junctions per unit area, did not show a significant concentration

dependent response and was also the metric that exhibited the

most variability. This may be because the image segmentation

skeleton was not properly optimized for each exposure scenario

(the same analysis parameters were used for each case to minimize

sources of uncertainty) and the number of junctions was

overestimated for the 5HPP33_HC outputs. Interestingly, at the

low concentration the model predicted a slight decrease in

lacunarity and increase in branching index (due to a similar

number of junctions over a smaller area), that is likely due to the

inhibition of proliferation of various cell types observed in the

ToxCast assays, but may also correlate with the mechanism of

microtubule stabilization. This demonstrates the need for further

targeted assays providing insight on how biological information

flows from one cellular property to another, and how it is

influenced by local factors such as cell density and heterogeneity.

The disruptive effects of 5HPP-33 on EC proliferation and

vascular network formation may also occur in part via estrogen

receptor (ER) dependent signaling and a decrease in VEGF

transcription. The AC50 values for the cell-free, biochemical

ToxCast assays measuring ER binding and gene transcription

were less than or equal to the concentrations at which significant

changes in protein levels were observed. Hormonally controlled

vascular changes are known to play a key role in endometrial

development and blastocyst implantation, and estrogen-dependent

VEGF is known to be a central regulator of uterine vasculature

permeability, placentation and angiogenesis during the peri- and

post-implantation period [71]. While there is a clear potential for

adverse developmental outcomes that may follow from endocrine-

mediated disruption of angiogenesis, the mechanisms are not yet

known. Estradiol has been shown to promote EC migration,

proliferation and inhibition of apoptosis through ERa-mediated

pathways, while the estrogen metabolite 2-methoxyoestradiol has

demonstrated potent anti-angiogenic properties mediated by

cytoskeletal actions and an increase in EC apoptosis, and several

non-steroidal anti-estrogens (clomiphene, nafoxidine, tamoxifen);

pure ER antagonists inhibited angiogenesis in the chick chorio-

allantoic assay [61]. Estrogenic compounds have been shown to

modulate VEGF transcription and secretion via ERa and ERb in

both a positive and negative direction in various cancer cell lines

[72–74], as well as in mesenchymal stem cells and murine

embryonic lung cells [75,76]. Estrogens and selective ER

modulators have been shown to inhibit vascular smooth muscle

cell proliferation and endothelial VCAM1 expression [77,78]. In

the present HTS study data, at test concentrations #5 mM, 5HPP-

33 down-regulated VCAM1 expression in ECs and ICs, repre-

senting a possible downstream target of this partial/selective ER

agonist. A postulated AOP for embryonic vascular disruption by

5HPP-33 therefore includes the molecular initiating event of ER

binding leading to inhibition of growth factors and cell adhesion

molecules.

The computational model of early embryonic vascular devel-

opment includes the key cell types and molecular signals that

cooperate to promote initial capillary plexus formation. There are

a number of extensions to the model under consideration,

including the incorporation of intracellular signaling networks

[79] and additional components such as the ER, identified here as

a novel target of the thalidomide compound 5HPP-33. Another

limitation of the model that remains to be addressed is the lack of

blood flow, which can be incorporated when the model is

expanded into three dimensions. A comprehensive sensitivity

analysis of every parameter was outside the scope of the present

study; however, the vast body of vascular modeling literature that

exists informed parameter range estimates for secretion rates,

chemotaxis, motility and so forth. For stochastic cell-level

behaviors such as cell growth and apoptosis, the present study

performed parameter sweeps to optimize cell number and VEGF

concentration for model development. An examination of varying

patterns of chemical perturbations in future work will shed more

light on which molecular targets, both uniquely and in combina-

tion, are predicted to have the most impact on plexus formation.

However, while the current 2D model makes a number of

simplifying assumptions, the degree of biological complexity was

sufficient to reproduce key morphological features and emergent

behaviors during vascular development. This in silico model also

demonstrates a novel approach using in vitro assay data on a

cellular and molecular scale to accurately predict qualitative

phenotypic changes on a tissue scale with increasing concentra-

tions of an anti-angiogenic compound. The quantitative outputs

from the AngioTool analysis show a high degree of reproducibility

across multiple simulations for each scenario, and, when combined

with the qualitative comparisons to experimental results, provide

new biological insight and quantifiable predictions relating

molecular and cellular changes to disruption of vascular develop-

ment. Although we have framed the current vascular model in the

context of embryonic development, there is significant overlap

between developmental and pathological angiogenic signaling [2],

and such a model could be potentially useful to a wide range of

applications in wound healing and tumor angiogenesis.

Traditional in vivo animal testing, usually at high test doses, is

low-throughput and costly both in terms of financial and animal

resources. These restrictions result in a relatively low number of

representation of explant area, vessels area, vessels percentage area, number of vessel segments, branching index, and lacunarity values for the
control model, 4.44 mM (5HPP-33 LC) and 40 mM (5HPP-33 HC). N = 30 simulations for each exposure scenario.
doi:10.1371/journal.pcbi.1002996.g008
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compounds that have sufficient in vivo data to assess the potential

for adverse effects on human development. Toxicity testing in the

21st century is moving toward using HTS assays to rapidly test

thousands of chemicals against hundreds of molecular targets and

biological pathways, to provide mechanistic information on

chemical effects in human cells and small model organisms, and

to construct predictive and mechanistic models [80,81]. Virtual

tissue simulations may someday serve as a surrogate to animal

testing by providing in silico testing platforms based on computa-

tional systems biology [82]. In conjunction with ToxCast HTS

data, the model presented here has the potential to predict toxic

effects caused by exposure to anti-angiogenic compounds,

comparable to in vitro and in vivo angiogenesis assays.

Supporting Information

Dataset S1 Quantitative metrics of angiogenesis from Angio-

Tool analysis of the output of the control model, n = 30

simulations.

(XLSX)

Dataset S2 Quantitative metrics of angiogenesis from Angio-

Tool analysis of the output of the model of 5HPP-33 exposure, low

concentration (4.44 mM), n = 30 simulations.

(XLSX)

Dataset S3 Quantitative metrics of angiogenesis from Angio-

Tool analysis of the output of the model of 5HPP-33 exposure,

high concentration (40 mM), n = 30 simulations.

(XLSX)

Dataset S4 Comparison of AngioTool metrics (mean, std. dev.)

between the control model, 5HPP-33 low concentration, and

5HPP-33 high concentration.

(XLSX)

Software S1 XML and Python code for computational model of

early embryonic vascular plexus formation. Files included for

control model, 5HPP-33 low exposure of 4.44 mM (LD), and

5HPP-33 high exposure of 40 mM (HD) are labeled accordingly.

(ZIP)

Table S1 AngioKB.v1 (divided into parts A and B, due to file

size) electronic library for blood vessel development and

remodeling, built and curated semi-automatically from the open

scientific literature.

(ZIP)

Table S2 Concentration response data for 5HPP-33, tested in

274 ToxCast assays across the Attagene, Novascreen, and Bioseek

platforms.

(XLSX)

Table S3 Comparison of selected AngioTool metrics between

the simulation outputs (control model, 5HPP-33 low concentra-

tion, and 5HPP-33 high concentration) and representative

experimental images. Significance was calculated based on

student’s t-test p-values.

(XLSX)

Video S1 Control model of early embryonic vascular plexus

formation over 10,000 MCS (,3 hours). Red cells are endothelial

cells, green cells are mural cells and yellow cells are inflammatory

cells.

(GIF)

Video S2 Control model of early embryonic vascular plexus

formation over 10,000 MCS, showing the cellular lattice and

overlaid molecular signaling concentration fields.

(GIF)

Video S3 Control model of early embryonic vascular plexus

formation over 10,000 MCS showing ‘‘in silico staining’’ of

endothelial cells, where mural cells and inflammatory cells are

present but colored black.

(GIF)
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