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Understanding the relationship between protein structure and function is one of the foremost challenges in post-
genomic biology. Higher conservation of structure could, in principle, allow researchers to extend current limitations of
annotation. However, despite significant research in the area, a precise and quantitative relationship between
biochemical function and protein structure has been elusive. Attempts to draw an unambiguous link have often been
complicated by pleiotropy, variable transcriptional control, and adaptations to genomic context, all of which adversely
affect simple definitions of function. In this paper, I report that integrating genomic information can be used to clarify
the link between protein structure and function. First, I present a novel measure of functional proximity between
protein structures (F-score). Then, using F-score and other entirely automatic methods measuring structure and
phylogenetic similarity, I present a three-dimensional landscape describing their inter-relationship. The result is a
‘‘well-shaped’’ landscape that demonstrates the added value of considering genomic context in inferring function from
structural homology. A generalization of methodology presented in this paper can be used to improve the precision of
annotation of genes in current and newly sequenced genomes.
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Introduction

Since the advent of biological data storage in digital
format, researchers have struggled to define quantitative
measures of comparison for sequence [1], structure [2], and
function [3–5]. While proximity measures for sequence and
structure are now well established, the problem of defining
functional distance has been particularly daunting. Existing
computational methods of describing function using ontol-
ogies are not a priori well suited for calculating functional
distance [3]. However, using mostly anecdotal evidence,
researchers have shown that sequences sharing key structural
characteristics often display common function [6].

Nevertheless, quantitatively relating structural homology to
function has been complicated by a dearth of functional
distance measures and numerous examples of folds perform-
ing many unrelated functions. This many-to-many relation-
ship between structure and function has been linked to
fundamental biological processes and characteristics such as
adaptation, specialization, pleiotropy, or differential regu-
lation [7–9]. Despite these difficulties, understanding the
relationship between structure and function is one of the
foremost challenges of post-genomic biology [10]. Since
protein function often depends on genomic context, defining
predominant trends in the coalescent evolution of organisms
and proteins may be instrumental in improving our under-
standing of the structure–function relationship [5].

Results/Discussion

I consider the protein domain universe as the set of all
structurally characterized domains [11]. I treat each domain
as a structural scaffold encoded by a set of homologous
sequences [4]. The power of this approach is its ability to

leverage the relative conservation of function inside the
structural scaffold [5] to statistically determine the relation-
ship between structure and function. Then, using informa-
tion about the distribution of the domain universe across the
evolutionary tree [12,13], I hope to improve the current level
of precision [4] of the structure–function relationship. Thus,
for each pair of domains, I start by defining and calculating
their structural, functional, and phylogenetic similarity (see
Materials and Methods and [5,14–16]).
First, I define a simple but quantitative measure of

functional comparison: F-score. F-score is defined as normal-
ized Euclidian distance between GO [17] trees built from
annotations of sequences coding for each structural scaf-
fold (see Materials and Methods and [17]). Formally,
FA;B ¼ 1=Lð

P
i2ff unctionsgðpA;i � pB;iÞ2Þ1=2 FA,B is the functional

distance between domain A and domain B, P[AjB],i is the
percentage of sequences that fold into structure A or B that
are annotated as function i, and L is a normalization constant
that accounts for different depths of annotation on the GO.
F-score measures similarity of paths on the GO tree between
two sets of homologous sequences. For example, if two
domains encode two sets of sequences that follow exactly the
same path, F-score will be zero. On the other hand, if the
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sequences encoding the two domains have no common
functional annotations, the F-score will be maximum.

Next, I set out to correlate F-score and structural similarity
(Z-score calculated using DALI [2]). I expect a general
correlation to hold, since previous research has shown that
domains sharing key structural characteristics often perform
similar functions [6,8]. Indeed, I observed a robust correla-
tion, on average between Z-score and F-score (Figure 1A).
However, the dynamic range of this correlation is small. The
difference in F-score between the closest and farthest
structures is only 30%. This small dynamic range most likely
stems from the ambiguous relationship between structure
and function.

From an evolutionary perspective, the environment is
often important in defining the precise function of the
sequence. Consequently, sequences appearing in the same set
of genomes have been shown to perform similar functions
[18]. Thus, domains with similar phylogenetic profiles should
also display similar F-scores [18]. For a measure of phyloge-
netic similarity, I used the most commonly used mutual
information (see Materials and Methods) between phyloge-
netic profiles of domains (P-score). Since mutual information
is reflective, it is maximum when the two domains appear in
the same or exactly opposing subset of genomes, and
minimum when the overlap in appearance across the
genomes is random. I found that P-score is a slightly better
predictor of functional similarity than structural homology,
with dynamic range of 50% as measured by F-score (Figure
1B). This implies that genomic context, more than constraints
imposed by structure alone, may influence the precise
function of the gene.

Finally, quantitative definitions of structure, function, and
phylogenetic similarity allowed me to calculate the landscape
of F-scores for all pairs of domains with respect to their Z and
P scores (Figure 1C). Contrary to naı̈ve expectation of smooth
transitions across a small range of F-scores observed for

pairwise comparisons in Figure 1A and B, I found that the
combination of Z-score and P-score forms a well-shaped
functional landscape with a sharp transition in F-score. This
suggests that similar structures occurring in different
genomes often perform dissimilar functions (see Materials
and Methods). Alternatively, genes with similar structures are
more likely to perform similar functions if the distribution of
their orthologs on the evolutionary tree is also similar. This
finding is intuitive, since genes often adapt to the environ-
ment through mutation in sequence that alters function but
not structure.
The findings presented here suggest that both our under-

standing of the structure–function relationship and the
precision of functional annotation can be greatly improved
by considering structural homology in phylogenetic context. I
am currently involved in work trying to improve on my naı̈ve
measure of functional similarity and assess the robustness of
these results to arbitrary cutoff parameters. Furthermore,
using these results it may be possible to outline a novel,
optimal strategy with respect to functional annotation for the
currently ongoing structural genomics projects.

Materials and Methods

Evolution is, at its core, a science of comparison. In order to study
evolution, I needed to create a computational framework to
represent our current body of knowledge. I chose to approach this
problem from a graph-theoretic prospective in which nodes are the
basic units of evolution and edges are different comparison
measures. Aside from providing a unified framework, evolutionary
graphs like these provide a way to organize the diverse glut of
experimental data that has become the cornerstone of bioinformatics
research. In the case of molecular evolution, given that domains can
be functionally independent, can be expressed outside larger protein
complexes in genomes, and are often rearranged through alternative
splicing, I can define a domain as a good evolutionary basic unit
subject to structure–function pressures. Consequently, I chose to
work with annotations and comparisons of domains instead of whole
proteins.

Structural comparison and building of PDUG. I employed a Z-score
measure of structural proximity as weight for the edges to create a
protein domains universe graph (PDUG [19]). Formally, I created a
graph where the nodes are the representative set of recurring
structural domains identified previously by DALI [20,21], and the
edges are the structural comparisons between those domains weighed
by their respective Z-score. I used the above graph representation to
understand the role that pressure on structure plays in the evolution
of protein domains. Using this graph-theoretic paradigm, I could
investigate not only the topology of the graph but also the correlation
between the structural comparison graph and other dimensions of
the same graph based on comparison metrics, such as function and
phylogenetic proximity explained in detail below. The names of the
domains used in this study are available at http://romi.bu.edu/
phylo_context/domain_names.txt. The domain names refer to the
DALI nomenclature as described in [22].

After I defined a PDUG, I had to populate it using sequences, so as
to correlate the structures and the set of sequences that fold into
those structures. I used a non-redundant database of sequences,
NRDB [23]. This database straightforwardly uses sequence alignment
on all known sequence databases to remove neighbors with more
than 90% identity to a representative sequence, analogous to the
method described above for structures. In order to map the set of
recurrent domains onto sequence space, I used the now canonical
BLAST [24] sequence alignment algorithm to find homologous PDUG
nodes to all non-redundant sequence representatives obtained from
NRDB. For every sequence in NRDB, I found the best matching
sequences below 1e�10 threshold. Since structures from DALI
are themselves devoid of sequence homologs, at most one structure is
found for every non-redundant sequence from NRDB. Since each
sequence is annotated with the function that it performs, this yields a
mapping not only of non-redundant sequences but also of their
respective functions to nodes on PDUG. The distribution of
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Synopsis

The author provides a novel perspective on a key problem of
structural biology: the structure–function relationship in proteins.
While relatedness in protein structure correlates with general
description of function, attempts to use this relationship predictively
are often complicated by its ambiguous nature. A structure encoded
by a family of sequences may be implicated in a set of diverse
functions across a variety of organisms. The author outlines an
innovative approach that underlines the importance of considering
genomic context when using structure-comparison methods for
functional prediction.

First, the author defines two distance measures: in genomic space
and in function space. Then, the author describes a landscape of
functional distance based on both structural and phylogenetic
relatedness.

It turns out that this landscape forms a ‘‘functional well’’ where
proximity occurs when the structures are similar and occur in the
same set of genomes. This result may have implications in future
research into functional prediction. With the increasing pace of
sequence deposition into databanks, this result suggests a simple
way to improve functional prediction via structure homology by
complementing existing methods with emerging techniques from
comparative genomics.



sequences from NRDB that are homologous to DALI structures is
given in Figure S1.

Functional domain universe graph. Since I was interested in the
most general description of functionality of protein domains, I
defined the function of each domain as the weighted set of functions
performed by all the sequences that align to it. Thus, the
functionality of the domain is represented by a probabilistic GO
[25] tree. This tree is populated by taking all non-redundant
sequences matching each PDUG node (as described above) and
placing their functional annotations into the canonical GO. I rebuilt
the whole GO tree by following all paths that led to root node from
the functional annotations mined out of NRDB sequences. I
increased the count of a node each time I visited it. Afterwards, all
counts were turned into probabilities by normalizing the number of
times that I visited each node on every level of the GO tree by the
total number of times I visited that level. I ended up with a
probabilistic representation of function for each structure at various
levels of specificity.

Each node on PDUG now had the representative structure, the set
of sequences that fold into that structure, and the set of functions
performed by those sequences in the form of a probabilistic,
hierarchical GO [25] tree. The benefit of representing functionality
in terms of a probabilistic GO tree is that I could now compare
functionality of domains by simply comparing their GO trees. If I
wanted to understand the ‘‘difference’’ in function between two
domains, I needed to take into account all functions that this
structure was implicated in. For example, some sequences for a given
structure may be involved in creatine phosphorylation, and others
can be involved in arginine phosphorylation, as in the case of 1qh4
(Figure S2) [26].

Thus, in order to compare the GO trees, I calculated the Euclidian
distance between the nodes on each level of the GO hierarchy by
using Equation 1.

FA;B ¼
1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i � ff unctionsg

ðpA;i � pB;iÞ2
s

ð1Þ

Here FA,B is the functional distance between domain A and domain
B, pA,i is the percentage of sequences that fold into structure A that
are annotated with function i, and the sum is taken over all annotated
functions. F-score measures similarity of paths on the GO tree
between two sets of homologous sequences. For example, if two
domains encode two sets of sequences that follow exactly the same
path, the F-score will be zero. On the other hand, if the sequences
encoding the two domains have no common functional annotations,
the F-score will be maximum. Using the above functional distance
measure, I created another dimension of PDUG. In this dimension,
the edges are functional comparisons between the domains and are
weighed by the F-score.

Phylogenetic distance P-score. Phylogenetic context (the subset of
genomes where the domain is found) can have a profound effect on
the function and overall evolution of that domain. Knowing this, I
created another dimension of PDUG where each node was annotated
with the genomes where it was present. This is done by simply
BLASTing [24] the set of non-redundant sequences found in each
node in PDUG against all fully sequenced and mapped genomes. This
yields a mapping of structural space into genomic space. Thus, each
node is annotated with a vector where columns represent the
different genomes and the values are zero or one, depending on
whether the domain exists in that genome.

Figure 1. The Correlations between Z, F, and P Scores

(A) The correlation between structural comparison Z-score and functional distance F-score. (Pearson’s r¼ 0.96 and slope¼ 0.007.) Each bin contains at
least 200 observations. It is worth noting that the average functional distance (F-score) falls from 0.48 to 0.30, only by a third during two decades of
structural similarity [14].
(B) The correspondence between phylogenetic profile distances calculated using mutual information and F-score. Slope of the linear fit is 0.36, with
Pearson’s r ¼ 0.96. The correlation is averaged, i.e., each data point represents a bin containing 150–200 domains, and the functional distances are
averaged inside the bin [14].
(C) The landscape of functional distance with respect to Z and P scores. An average F-score is calculated for each of the 36 bins; each bin contains 100–
200 observations. Since F-score is a distance metric, hotter colors represent domains that are farther away and cooler colors represent those that are
closer.
DOI: 10.1371/journal.pcbi.0010009.g001
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The calculation of distance in genome space is non-trivial and is
subject to all kinds of qualifications, such as relative distance between
genomes on the tree [27,28]. However, I simplified the calculation by
employing mutual information as a first-order approximation to
distance between every two phylogenetic vectors. The distance
between any two nodes in phylogenetic space is then just the mutual
information between their vectors, as defined by

P ¼
X

i;j �f0;1g
pijLog½

pij
pipj
�;
X
i

pij ¼ pj
X
j

pij ¼ pi ð2Þ

where pij is the frequency of occurrence of all four possible
combinations of presence or absence in the same genome for nodes
i and j, and pi and pj are the marginal probabilities of seeing those
domains in all genomes. Mutual information is a reflexive measure,
insensitive to correlation or anti-correlation. Thus, mutual informa-
tion will be maximal if the two phylogenetic vectors are either
perfectly correlated or perfectly anti-correlated while the norm of
that vector is half the length. This is a useful property for evaluating
P-score, since genes that appear in a completely disparate set of
genomes have been shown to perform similar functions in a process
dubbed ‘‘non-orthologous gene displacement’’ [29]. Using this
distance measure, I created the third and final dimension of PDUG
where the nodes are the domains with redundant sequences and
functional trees, and the edges are weighed by the mutual informa-
tion measure between the phylogenetic profiles of the nodes.

Looking through the dimensions. Finally, I correlated all three
dimensions of PDUG, by observing the F-score between two nodes
with respect to both the structural proximity and the phylogenetic
distance (Table S1). The striking observation was that resolution of
functional distance increases by almost 100% when considering
structural proximity and phylogenetic distance over using any one of
these measures alone. The combination of phylogenetic distance and
structural similarity differentiates structures with close functional
similarity from similar structures without functional similarity, and
analogous behavior is observed for sets of domains sharing
phylogenetic profiles (data not shown). The protein domains that
run contrary to this trend are good candidates for investigating
convergent evolution.

Robustness analysis. To evaluate the robustness of the results
reported in Figure 1C, I performed a jackknife analysis to evaluate

the standard deviation of each data point on the graph. I sampled
60% of the data 150 times. I then gridded those points, as in Figure
1C, and then I conglomerated the results. The means and standard
deviations of F-scores for each pair of Z and P scores can be ac-
cessed directly from http://romi.bu.edu/phylo_context/z_p_f_
landscape_stat_sig.dat. The difference in the functional similarity
score is several standard deviations away from random and is highly
significant. Moreover, the overall nature of the results does not
depend on the binning, or the way that the jackknife procedure is
performed (data not shown).

Supporting Information

Figure S1. The Distribution of Sequences from NRDB That Are
Homologous to a Structure

The data are available online from http://romi.bu.edu/phylo_context/
count_seqs.out. The structures may be downloaded from the PDB
directly and from the ASTRAL compendium using the domain names
provided in http://romi.bu.edu/phylo_context/domain_names.txt.

Found at DOI: 10.1371/journal.pcbi.0010009.sg001 (4.2 MB TIF).

Figure S2. Example of Uneven Scaffold Annotation on the
Functional GO Tree

Found at DOI: 10.1371/journal.pcbi.0010009.sg002 (1.3 MB TIF).

Table S1. Use of Phylogenetic Distance for a Particular Structural
Similarity Score Differentiates Functionally Related Proteins from
Those That Are Not

Found at DOI: 10.1371/journal.pcbi.0010009.st001 (449 KB TIF).
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