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Massive amounts of data are being generated in an effort to represent for the brain the expression of all genes at
cellular resolution. Critical to exploiting this effort is the ability to place these data into a common frame of reference.
Here we have developed a computational method for annotating gene expression patterns in the context of a digital
atlas to facilitate custom user queries and comparisons of this type of data. This procedure has been applied to 200
genes in the postnatal mouse brain. As an illustration of utility, we identify candidate genes that may be related to
Parkinson disease by using the expression of a dopamine transporter in the substantia nigra as a search query pattern.
In addition, we discover that transcription factor Rorb is down-regulated in the barrelless mutant relative to control
mice by quantitative comparison of expression patterns in layer IV somatosensory cortex. The semi-automated

annotation method developed here is applicable to a broad spectrum of complex tissues and data modalities.
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Introduction

High-resolution maps of gene expression provide impor-
tant information about how genes regulate biological
processes at cellular and molecular levels. Therefore, a
multitude of efforts are in progress to depict gene expression
at single cell resolution in specimens ranging from organs to
embryos (http:/mamep.molgen.mpg.de [1]; http://genepaint.
org/ [2]; http://brainatlas.org/ [3]; http://mahoney.chip.org/
mahoney/ [4]; http://[www.ncbi.nlm.nih.gov/projects/gensat/
[5]). Common to these genome-scale projects is that they
generate vast numbers of images of expression patterns that
reveal the presence of transcripts or proteins in a particular
cell or group of cells within a natural context. However, large
collections of images are of limited usefulness per se without
efficient means to mine these images and to characterize and
compare gene or protein expression patterns. In analogy to
the requirements for mining genomic sequence information,
meaningful retrieval of expression patterns requires suitable
annotation. By annotation, we mean associating sites and
strengths of expression with a digital representation of the
anatomy of a specimen.

The annotation approach taken by the Gene Expression
Database [6] is to hand-curate published gene expression
patterns using an extensive dictionary of anatomical terms.
This annotation is facilitated by the Edinburgh Mouse Atlas
Project (EMAP), which provides anatomical ontology rela-
tionships using a hierarchical tree [7]. Visualization is
achieved by associating these terms with locations in a
volumetric model [8]. The Edinburgh Mouse Atlas Project
also provides tools to map in situ hybridization (ISH) images
directly into a three-dimensional (3D) atlas [7]. Although
hand curation is an effective method for annotation, it is not
an efficient means for handling the large-scale datasets
systematically collected by robotic ISH [9]. In addition, if
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future changes are made to anatomical designations, updat-
ing the annotation may require a laborious review of
previously annotated data.

Here we present a completely novel approach that uses a
geometric modeling technique to create a digital atlas of the
postnatal day 7 (P7) mouse brain. This deformable atlas can
then be adjusted to match the major anatomical structures
present in P7 mouse brain tissue sections, accurately define the
boundaries between structures, and provide a smooth multi-
resolution coordinate representation of small structures.
When combining this technique with a method for detecting
strength of gene expression, one can efficiently and automati-
cally annotate a large number of gene expression patterns in a
way that subsequently allows queries and comparisons of
expression patterns in user-defined regions of interest.

P7 mouse brain was selected as the specimen because at this
developmental stage, many complex brain functions begin to
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be established yet the existing information on underlying
molecular mechanisms is still relatively limited. We describe
here the creation of a prototype 200-gene dataset generated
using robotic ISH, and the application of our deformable
atlas-based annotation method to this dataset. We then
demonstrate the utility of the approach with two examples:
searching for genes expressed in the substantia nigra, and
identifying genes potentially involved in functional region-
alization of the cortex.

Results

Construction of an Atlas Using a Subdivision Mesh
Technique

In building the atlas of the P7 mouse brain, we first selected
a set of 11 cresyl-violet-stained standard sagittal brain
sections that approximate the 11 sagittal sections in Valve-
rde’s atlas of the postnatal mouse brain [10]. These standard
sections exhibit the hemi-brain by spanning from lateral
(section 1) to paramedial (section 11). The boundaries of 15
major brain structures (amygdala, basal forebrain, cerebel-
lum, cortex, globus pallidus, hippocampus, hypothalamus,
medulla, midbrain, olfactory bulb, pons, septum, striatum,
thalamus, and ventral striatum) were then delineated on each
of the 11 standard sections. (The boundaries for standard
section 4 are shown in Figure 1A.) For each of these major
structures in a standard section, we created a representation
using a coarse quadrilateral mesh. Figure 1B shows an
example of creating a coarse mesh for the thalamus in
standard section 4. The subdivision algorithm applies an
iterative refinement of this coarse mesh, resulting in a fine
mesh that both smoothly overlays internal regions of
structures and explicitly defines their boundaries (Figure
1C). The complete mesh across an entire section is an
accurate map representing all major anatomical structures
(Figure 1D). Performing the described process for all 11
standard sections resulted in 11 maps, which together
constitute an atlas of the P7 mouse brain (Figure S1).

Each of the 11 maps is deformable and hence can be
precisely fitted to an anatomically similar experimental
sagittal brain section (e.g., Figure 1E). The shape of the fine
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mesh is controlled by repositioning the vertices of the coarse
mesh (indicated by black squares in Figure 1B-1D). An
automated global fit of the map can be used for an initial
approximation of the related map to the experimental
section [11]. A manual adjustment by dragging vertices into
new positions then allows the map to fit the boundaries of the
anatomical structures in the experimental section accurately
(Figure 1F).

Anatomical substructures in the mouse brain maintain a
consistent spatial relationship with neighboring structures
when specimen age and strain do not change. Thus, the
location of any given substructure should be consistently
represented by a set of quadrilaterals in the fitted map. This
important property was examined by fitting standard map 6
to 59 different experimental sections and then determining
which quadrilaterals contained the dentate gyrus (DG), a
substructure of the hippocampus. Although the shape of the
DG and its relative position within the hippocampus varied to
some extent (e.g., because of tissue compression/stretching in
the sectioning process), the same four quadrilaterals always
contained most of the DG, with adjacent quadrilaterals
sometimes containing the edge of the DG (Figure 1G). This
suggests that the subdivision mesh-based atlas not only
explicitly delineates the boundaries between major struc-
tures, but can also be used to define the location of internal
substructures such as the DG.

Establishment of Annotated Gene Expression Patterns

Nonradioactive ISH data. We have assessed the subdivision
atlas with a comprehensive test dataset of ~5,000 images of
entire sagittal sections from P7 mouse brain produced using
robotic ISH for 200 different genes (Table S1). Each gene
expression image set spans the left half of the brain and
consists of at least 24 sections spaced a maximum of 200 um
apart. Digital images were captured in a bright field micro-
scope at 1.6 pm per pixel resolution. This resolution is
sufficient to view individual cell bodies and estimate the
strength of expression as reflected by the amount of
precipitate in each cell using a previously reported quanti-
fication algorithm, Celldetekt [12]. Figure 2 illustrates the
types of data—cellular resolution images with diverse
expression patterns (insets of Figure 2C and 2D)—that were
subjected to annotation by subdivision mesh fittings.

Linking expression levels to locations in the atlas. From the
~24 sections for each gene, we identified the sections that
best matched the anatomy represented by standard maps 2, 4,
6, 9, and 11, which collectively are sufficient to characterize
all 15 different major anatomical structures in the atlas. The
standard maps were deformed to fit appropriate tissue
sections (e.g., Figure 1D-1F). We applied Celldetekt to classify
the expression levels for cells in the tissue sections, and
associated the local levels of expression with the overlying
quadrilaterals in the finely subdivided mesh (e.g., Figure 1F).
This created a digital dataset of cellular expression levels at
all locations across 1,000 mesh-fitted experimental sections
representing 200 different genes.

Knowledge Discovery Using the P7 Mouse Brain Gene
Expression Patterns

Homologous pattern query. Within the context of an
anatomical atlas, comparison of expression patterns in a
region of interest provides a mechanism for identifying
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mesh deformed to fit to experimental section

Figure 1. P7 Mouse Brain Atlas Construction and Application
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(A) Standard Nissl-stained P7 sagittal standard section number 4 with major anatomical boundaries drawn in red: amygdala (am), basal forebrain (bf),
cerebellum (cb), cortex (ctx), globus pallidus (gp), hippocampus (hi), medulla (med), midbrain (mb), olfactory bulb (ob), pons (p), striatum (st), thalamus
(th), and ventral striatum (vst).

B) The coarse mesh, shown here for the thalamus, is constructed by defining vertices of quadrilaterals.

C) Iterative application of subdivision generates smooth boundary curves and a smooth internal representation of smaller quadrilaterals. Fixed vertices
large squares) allow crease angles to be added to the otherwise smooth boundary curve.

D) The atlas for standard section number 4. Each coarse quadrilateral is associated with a particular anatomical structure, an association inherited
during subdivision.

(E) Expression pattern of Cannabinoid receptor 1 in a section similar to standard map 4.

(F) The atlas (D) is deformed by moving vertices so that the anatomical boundaries match those in the Cannabinoid receptor 1 section (E).

(G) Quadrilaterals overlying the DG (insert) were marked in 59 fitted maps using a mesh generated after two rounds of subdivision. In every section, the

(
(
(
(

same four quadrilaterals were found to overlap the bulk of the DG.
DOI: 10.1371/journal.pcbi.0010041.g001

candidate genes involved in regionalized biological or
pathological processes. Idiopathic Parkinson disease (IPD) is
a progressive neurodegenerative disorder characterized in
part by the loss of dopaminergic neurons in the substantia
nigra, resulting in decreased dopamine release in the
striatum and severe impairment of motor function. To search
for genes potentially involved in IPD, we performed a
homologous pattern query for genes in the dataset that best
match the expression pattern of dopamine transporter 1 (Slc6a3),
a marker for dopaminergic neurons, in the substantia nigra
(Figure 3A). Genes in the dataset were ranked by their
similarity to this query pattern, calculated as the weighted
sum of differences in detected cellular expression strengths

@ PLoS Computational Biology | www.ploscompbiol.org

across all selected quadrilaterals. The top 12 ranked genes are
shown in Figure 3B. Query patterns are not limited to genes
already in the dataset; as shown in the next example, queries
can be performed using user-created query patterns.
Expression difference detection. ISH can reveal changes in
gene expression that result from experimental or genetic
modification. The present dataset offers the opportunity to
obtain a list of genes expressed in a structure that is
presumed altered because of such modification. barrelless
(brl) was chosen to demonstrate this type of analysis. This
mutant lacks “barrels,” the discrete cylindrical structures in
layer IV of the primary somatosensory cortex that receive
sensory input from facial whiskers [13,14]. The phenotype
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Figure 2. Examples of Gene Expression Patterns

A Digital Atlas for the Mouse Brain Transcriptome

Shown are gene expression patterns revealed by nonradioactive robotic ISH on sagittal sections. Digoxigenin-tagged RNA probes hybridized to cellular
mRNA are visualized via a serial amplification that produces a blue-purple signal.

(A) Purkinje cell protein 4 in section 4.
B) Ly6/neurotoxin 1 in section 6.

C) 4931408A02Rik in section 9 with inset showing localized expression in midbrain neurons.
D) A230109K2Rik in section 9 with inset showing localized expression in hypothalamus.

F) Gastrin releasing peptide in section 2.

G) Nephroblastoma overexpressed gene in section 4.
(H) Somatostatin in section 6.

DOI: 10.1371/journal.pcbi.0010041.9002
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(E) RAS protein-specific guanine nucleotide-releasing factor 1 in section 11.
(
(

associated with brl results from a loss-of-function mutation in
calcium/calmodulin-stimulated adenylate cyclase 1 [15], a cAMP-
synthesizing enzyme.

A search of our dataset for genes expressed more strongly
in layer IV of the barrel field than in layers I and II/III (Figure
4A) returned the transcription factor retinoid-related orphan
receptor beta (Rorb) (Figure 4B) and the metabotropic glutamate
receptor type 2 (Grm2) (Figure 4C). We then sought to determine
whether there were significant changes in the strength of Rorb
and Grm2 expression in brl mice. Three pairs of P7 brains
from brl mutants and their heterozygous littermate controls
(possessing intact barrel maps) were subjected simultaneously
to robotic ISH using Rorb and Grm2 riboprobes. Cellular
expression strengths were determined using Celldetekt [12].
Subdivision mesh atlases were fitted to five adjacent 25-pum-
thick tissue sections located between standard sections 2 and
3, and the identical 12 quadrilaterals were selected in each
mesh to define a common region of comparison in the barrel
field. Although the percentage of cells expressing Rorb was
similar in control and bl tissue (brl, 96% = 17% of control),
we found in the brl brains a significant (p = 0.02) decrease in
the relative percentage of cells expressing Rorb strongly (brl,
51% * 7% of control) (Figure 4D). By contrast, an identical
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analysis of Grm2 expression did not reveal differences in
either total expression (brl, 113% * 14% of control) or strong
expression (brl, 111% * 35% of control).

To validate the results of our method for difference
detection, we performed quantitative real-time PCR. Mice
homozygous for brl were paired with their heterozygous
littermates for Rorb expression analysis of the somatosensory
cortex containing the barrel region (Figure 4E). We found
that Rorb expression in the brl mice was consistently and
significantly lower (p < 0.01) than that in the control mice (brl,
79% * 4% of control) (Figure 4F).

Resources Available

To facilitate distribution and application of the methods of
this project, we have made the atlas, dataset, and demon-
stration queries publicly available online at http://lwww.
geneatlas.orgl. The atlas resources consist of the 11 Nissl-
stained standard sagittal section images with the major
anatomical regions labeled, and the corresponding 11 stand-
ard subdivision mesh maps. We also provide an interactive
demonstration that allows visitors to deform a map onto an
experimental section (as in Figure 1D-1F). All 1,000 reduced-
resolution images produced by Celldetekt for this project are
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Figure 3. A Search for Genes that Are Expressed in the Substantia Nigra

(A) The pattern of Slc6a3 gene expression in and around the substantia
nigra at standard section number 6 is set as the query pattern for a
search of all 200 expression patterns in the current dataset. Note the
color-coded shading of the query pattern, with red indicating the strong
expression of Slc6a3 in the substantia nigra, and grey indicating no
expression in the tissue surrounding the substantia nigra.

(B) The expression patterns in the substantia nigra pars compacta of the
12 genes found to match the search criterion best are shown: dopamine
receptor 2 (Drd2); vesicular monoamine transporter 2 (Slc18a2); tyrosine
hydroxylase (Th); alpha synuclein (Snca); a gene encoding a nuclear
orphan receptor (Nr4a2); limb expression 1 homolog (Lix1); a gene
encoding an aldehyde dehydrogenase (Aldhlal); protein tyrosine
phosphatase, receptor type L (Ptprl); chaperonin subunit 8 (Cct8); synaptic
vesicle glycoprotein 2c (Sv2c); transmembrane protein 1 (Tmem1); and LIM
homeobox transcription factor 1 beta (Lmx1b).

DOI: 10.1371/journal.pcbi.0010041.g003

also available at this Web site. In addition, most of the ~5,000
images of raw ISH data are available and viewable at http://
www.genepaint.orgl. The 1,000 images of gene expression
patterns can be queried using a graphical search tool that
allows users to duplicate the searches in Figure 3 and Figure
4A, as well as to specify different regions of interest and query
patterns for their own customized queries.

Discussion

In this study, we have constructed and applied a sub-
division mesh-based atlas to sagittal mouse brain sections
revealing the localization of transcripts visualized by ISH.
Expression patterns revealed with bacterial artificial chro-
mosome vectors [16], radioactive ISH [17], or immunohisto-
chemistry can readily be subjected to subdivision mesh fitting
and thus be represented in the atlas shown here. In addition,
it may be possible to capture the architecture of fiber tract
connectivity [10], micro MRI data [18], and “tissue voxel-
based” microarray-based expression profiles [19] in our
subdivision maps. Such multimodality will greatly enhance
the discovery power of such an atlas. The subdivision mesh-
based atlas can also be used to create tables with sites, levels,
and patterns of expression and thus can emulate a text-based
annotation procedure [20].

Generating unbiased portraits of gene expression patterns
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and placing these into a common spatial framework greatly
facilitates the discovery of biologically important informa-
tion. In the case of the brl mice, we first searched our 200-
gene dataset for genes that are expressed in the developing
barrel field region (see Figure 4A). The subsequent detection
of down-regulation of the transcription factor gene Rorb in
brl cortex (Figure 4D) raises the possibility that activity-
controlled signaling, mediated by adenylate cyclase 1 in cortical
map formation, converges on gene transcription. This
discovery also establishes that our annotation can both
identify cortical-layer-specific marker genes and estimate
quantitative differences in the level of gene expression.
Differences in expression levels were more dramatic when
using the histology-based method, which accurately de-
lineated the region of interest, than when using quantitative
real-time PCR on RNA isolated from a block of cortical tissue
(Figure 4D-4F).

The ability to align multiple known expression patterns is
the strength of the method described here. We exploited this
by searching for genes expressed in a pattern similar to that
of Slc6a3, which encodes a dopamine transporter and is
transcribed in the substantia nigra (see Figure 3). Twelve
genes were identified with our homologous pattern search.
Seven of these have been previously connected to IPD. alpha
synuclein and a nuclear orphan receptor (Nr4a2) are causative
genes in some forms of familial IPD [21,22]. dopamine receptor 2
and tyrosine hydroxylase have been implicated in IPD on the
basis of polymorphisms [23,24]. LIM homeobox transcription
factor 1 beta regulates domamineric neurogenesis [25].
Expression of an aldehyde dehydrogenase (Aldhlal) has been
shown recently to be decreased markedly in individuals with
IPD [26]. One gene, vesicular monoamine transporter 2, is similar
to the gene used as the query pattern in that both are
involved in monoamine transport.

The five other identified genes have not been previously
connected to IPD. synaptic vesicle glycoprotein 2c¢ regulates
synaptic vesicle exocytosis and has a particularly restricted
expression pattern in comparison to other genes in its family,
suggesting a potential relationship to the substantia nigra and
IPD [27]. The product of chaperonin subunit 8 is involved in
protein folding and assembly [28]. This biochemical property
may be a link to IPD because one aspect of this disorder is
protein aggregation, mostly of alpha synuclein in Lewy bodies.
protein tyrosine phosphatase, receptor type L encodes a trans-
membrane receptor with tyrosine phosphatase activity that
has been implicated in cell-cell contact [29]. limb expression 1
homolog and transmembrane protein 1 are genes with completely
unknown functions. limb expression 1 homolog is initially
expressed in the precursor cells of the substantia nigra and
later in its pars compacta [30]. These results suggest that it is
worth considering synaptic vesicle glycoprotein 2c, chaperonin
subunit 8, protein tyrosine phosphatase, receptor type L, trans-
membrane protein 1, and limb expression 1 homolog as candidates
for further investigation into their relationship with IPD.
This prototype dataset demonstrates the usefulness of this
approach even with a dataset of only 200 genes. By extending
this dataset to thousands of genes, our approach would yield a
more comprehensive set of candidate genes involved in brain
functions and disease mechanisms.

Although the atlas can reliably detect expression in
substructures such as the substantia nigra (see Figure 3),
cortical layers (see Figure 4A and 4B), and the DG (see Figure
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Figure 4. Quantitative Analysis of Rorb and Grm2 Expression in Control
and brl P7 Brains

(A) The dataset of 200 genes was searched using a query pattern defined
as strong expression in layer IV of the somatosensory cortex (SsCx) (red)
and no expression in layers | and Il/lll somatosensory cortex (grey) for
standard section 2. Rorb and Grm2 were two of the top matches
returned.

(B) The strong expression Rorb in control somatosensory cortex layer IV
coincides with the anatomical shape of the barrels that are absent in the
brl mouse. For both genotypes, cellular expression was detected and
color-coded by signal strength using the Celldetekt software, followed
by fitting of the appropriate subdivision mesh to the shape of the cortex.
A row of 12 quadrilaterals in the subdivision mesh defines the area of
comparison in the somatosensory cortex layer IV. Note the greater
prevalence of strongly expressing cells (red) in the control tissue.
Moderately expressing cells and weakly expressing cells are indicated by
blue and yellow, respectively.

(C) Quantification of Grm2 expression in somatosensory cortex layer IV as
described for Rorb showed no difference in expression strength
distribution between control and brl.

(D) Statistical comparisons between control and brl revealed no
significant changes in the percentage of somatosensory cortex layer IV
cells expressing either Rorb (p = 0.8) or Grm2 (p = 0.5). However, a
significant decrease in the percentage of strongly expressing cells was
found for Rorb in brl (p = 0.02), but not for Grm2 (p = 0.8).

(E) The somatosensory cortex containing the barrel region was dissected
as indicated (highlighted and boxed) and used for quantitative real-time
PCR analysis.

(F) Consistent with the ISH data, a statistically significant decrease in Rorb
expression was found in brl by quantitative real-time PCR (p = 0.008).
DOI: 10.1371/journal.pcbi.0010041.g004

1G), there are limitations in how small a structure the
subdivision mesh can consistently locate. This can be
addressed by increasing the complexity of the mesh through
additional control points. The disadvantage of increased
complexity is that fitting the mesh to experimental sections
will become more time-consuming. This can be alleviated by
focusing on specific anatomical substructures (e.g., just the
thalamus), for which new specialized maps could be created.
One of the greatest strengths of the subdivision-based atlas
is the ability to fit the maps efficiently and accurately to tissue
sections, despite the varying section-to-section deformations
introduced by tissue fixation, sectioning, and transfer of
sections to slides. By applying this mesh-fitting process, an
individual can easily map the expression patterns of 10-20
genes per day. For application of the method to the entire
transcriptome, future development efforts should focus on
reducing the time involved in the mesh fitting process, e.g.,
automated fitting based on associating anatomical landmarks
with each mesh vertex [31]. In addition, the subdivision
method can be extended to create a 3D volumetric subdivision
atlas. When coupled with a robust method to stack tissue
sections into a 3D volume of gene expression patterns, a 3D
subdivision atlas may allow more efficient alignments of
expression patterns than a set of two-dimensional maps.

Materials and Methods

Non-radioactive ISH. Tissue preparation, riboprobe preparation,
automated ISH, and digitization were performed as previously
described [9,32-34] and as described online at http://lwww.genepaint.
org/RNA htm. Briefly, brains were embedded in OCT and fresh frozen
in a chamber that allows stereotaxic alignment of the specimen.
Serial sagittal sections at 25 pum thickness were cut with a cryostat
through the left half of the brain to just past the midline. Sections
from a single specimen were alternately distributed into eight
different sets, resulting in a spacing of 200 um between sections
within a set. Each set consisted of approximately 24 sections (four per
slide, six slides). Slides were assembled into a flow-through hybrid-
ization chamber and placed into position in a Tecan (Mannedorf,
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Switzerland) Genesis liquid-handling robot, which performs ISH on
192 slides in less than 24 h. Digoxigenin-tagged riboprobes were
produced by in vitro transcription from PCR-generated DNA
templates using bacteriophage RNA polymerases. Probes were
detected by a dual amplification procedure [35].

Microscopy. After ISH, slides were cover-slipped and digitally
scanned at 1.6 um/pixel using a custom-made automated Leica
(Wetzlar, Germany) microscope [9]. Images were cropped and stored
in TIFF format with LWZ lossless compression.

Atlas creation. Each standard cross-section was modeled using a
Catmull-Clark subdivision mesh [36] partitioned by a network of
crease curves. Our subdivision method [37] consisted of two simple
transformations: bilinear subdivision that splits each quadrilateral
into four subquadrilaterals followed by centroid averaging to
reposition vertices (Figure S2). Each quadrilateral in the coarsest
mesh was associated with the appropriate anatomical structure. This
association is maintained during subdivision.

Atlas fitting. ISH sections most similar to the selected maps were
visually selected. This was a rapid step requiring less than 1 min for
each gene. Standard atlas meshes were then deformed to fit ISH
sections using a semi-automated process of computing an affine fit
using principal component analysis, performing a local fit using
iterated least squares, and verifying visually [11]. Because of the
intuitive flexibility of the subdivision meshes, any necessary manual
corrections of the mesh fitting were simple and could be performed
in 2-5 min per ISH section.

Pattern query scoring. As part of an expression pattern similarity
query, a total difference score in relation to the query pattern is
calculated for each pattern in the dataset. This score, S, is the sum of
the individual differences, d, for each quadrilateral pair within the
region of the search, j: § = Zj dj. Each d is calculated as a weighted L,
norm between the vector of the number of cells at different
Celldetekt-calculated expression strength levels, ¢ = [strong, moder-
ate, weak, none] for the query pattern quadrilateral, ¢, and the
current dataset pattern quadrilateral, p. Specifically,d = [w o (¢; — ¢,)],
with weights w=[9, 4, 1, 0].

Rorb and Grm2 analysis. Each brl and littermate control mouse
brain pair was subjected to ISH simultaneously. Prior to Celldetekt
analysis, image intensity level adjustment was performed on pairs so
that the percentage of strongly expressing cells was approximately
equivalent from pair to pair. All p-values were calculated using two-
tailed paired ¢-tests that compared brl brain section sets in relation to
their control pairs.

RNA extraction and cDNA generation. The somatosensory cortex
was isolated from bl mice (n = 16) and heterozygous littermate
control mice (n = 22) in a total of six group pairs as previously
described [38]. Total RNA was extracted, cleaned with DNase I, and
then reverse transcribed. Conventional PCR for Rorb was performed
in samples from heterozygous control and homozygous brl animals.
The PCR amplicons were sequenced to confirm their identity across
control and brl samples. The resulting sequences were used for the
design of TagMan (Roche Molecular Systems, Alameda, California,
United States) primers and probes for quantitative real-time PCR.

Quantitative real-time PCR. The TaqgMan probe and primer pair
for Rorb were as follows: probe, 5'-FAM TCAGAAGAACCACC-
TGGATGATGAGACCC TAMRA-3'; forward primer, GAT-
TTATTTTGCACTGCAACATGTG; and reverse primer,
ACTGCCGTGATAGTTGGTATCTTG. Relative quantification of Rorb
expression was performed with 18S rRNA as an endogenous control.
Each sample was run in triplicate to reduce pipetting error and
increase consistency of the results. PCR was carried out at 50 °C for 2
min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C
for 1 min. The expected size of the PCR products was confirmed by
gel electrophoresis. In addition, a conventional PCR omitting the
hybridization probe was run on a thermocycler to verify PCR
specificity. Equal amplification efficiency of Rorb to 18S rRNA was
achieved, validating the relative quantification.

Animals. C57BL/6 wild type mice from Jackson Laboratory (Bar
Harbor, Maine, United States) were the source of the line of mice
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Figure S1. The Subdivision-Based Anatomical Atlas of the Postnatal
Mouse Brain

Eleven sagittal maps compose this subdivision-based postnatal mouse
brain atlas. The 15 major anatomical structures are color-coded as
indicated.
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Figure S2. Subdivision Mesh

(A) An initial coarse mesh (left). The two transformations of
subdivision: bilinear subdivision (middle) and then centroid averag-
ing (right).

(B) The mesh subdivided twice (left), thrice (middle), and four times
(right).

Found at DOL 10.1371/journal.pcbi.0010041.sg002 (453 KB TIF).
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The Entrez (http://lwww.ncbi.nlm.nih.gov/gquery/) accession numbers
for the genes discussed in this paper are 4931408A02Rik
(XM__354970), A230109K2Rik (AK020723), Aldhlal (NM__013467),
alpha synuclein. (NM_009221), cannabinoid receptor 1 (NM__007726),
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(NM__010077), gastrin releasing peptide (NM__175012), Grm2
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limb expression 1 homolog (NM__025681), Ly6/neurotoxin I
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specific  guanine mnucleotide-releasing factor 1 (NM__011245), Rorb
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Synaptic vesicle glycoprotein 2¢ (XM__127490), transmembrane protein 1
(XM__125775), tyrosine hydroxylase (NM__009377), and wvesicular mono-
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