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Functional Alignment of Regulatory Networks:
A Study of Temperate Phages
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The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison
of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by
the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling
logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities
between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation
between phage L and 186, their networks are found to be similar when difference is measured in terms of global
signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the
network perspective.
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Introduction

The functioning of living organisms is based on an intricate
network of genes and proteins regulating each other. Various
organisms differ due to not only differences in the constitut-
ing components (genes/proteins) but also the organization of
these regulatory networks. It is, therefore, important to
address similarities and differences in not only protein
sequences but also the interaction patterns of the proteins.
Thus, large-scale analysis of protein-protein and protein-
DNA interactions have provided insight into the local design
features of subcellular signaling [1-3]; network alignment
based on sequence similarities permits alignment of related
motifs [4,5].

Here we suggest comparison of networks through an
alignment method that is based solely on network architec-
ture and signaling logic, which thus does not rely on sequence
similarity of the involved proteins.

As a case study, we considered the regulatory networks of
two well-characterized temperate bacteriophages of E. coli, A
and 186 (Figure 1). These two phages represent two distinct
classes of temperate bacteriophages: the lambdoid phages—
which include A, P22, 434, HK97, and HK022, and the P2
group—which includes P2, 186, HP1, K139, and PSP3. A and
186 are not detectably related in sequence and have different
genome organizations. Using tBLASTx [6] to compare all of
the reading frames, there are only two clearly homologous
protein pairs: the A endolysin R/186 (E-score = 107 and a
pair of early lytic proteins of unknown function (E-score = 2
X 107", No significant similarity was detectable at the
nucleotide level (using BLASTn, [6]). On the genome level,
the arrangement of genes, promoters, and operators is very
different [7-10]. As a control of methodology, we also
considered the P22 phage, which, as a member of the
lambdoid family, allows us to compare topologies of
evolutionarily related networks.

As a temperate phage, 186 and A each can be in two
states: a lytic state where many proteins are active in the
replication of the phage DNA and the construction and
release of virus particles; and a lysogenic state where the
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phage genome is integrated into the bacterial chromosome
and only a few proteins are active. For both phages, three
core proteins (CI, Cro, and CII in A, and CI, Apl, and CII in
186) do the main computations, with the switch into
lysogeny being coordinated by CII and the reverse switch
into the lytic mode initiated by activation of the host SOS
response recombination (RecA) protein. The gene-regula-
tory networks of all temperate phages have evolved to
provide lysogenic and lytic states, and, moreover, to switch
from one state to another when particular signals have been
received from bacterial proteins, and thus effectively
perform the same function.

Given that 186 and A are both temperate, i.e., performing a
similar function, but evolutionarily separated, we asked
whether we could detect structural similarities, and at what
scale these similarities were detectable.

Results

Visual comparison of the 186 and A networks (see Figure 1)
suggests both strong similarities but also major differences.
One way to quantify the similarity of two networks is by edit
distance [11]. Assume that we know which nodes (here,
proteins) in networks A and B should be paired. For networks
of the same size, we define edit distance as the number of
insertions or removals of edges (regulatory connections) one
has to perform on network A to obtain B. This is quantified as

Dg(A,B) = Z |A; — Bj| - (1)
&)
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The elements A; and Bj specify whether the direct
regulation of ¢ on protein j is positive, negative, or absent,
and are constructed such that each element can keep both
positive and negative links (for details, see equation 2
below).

In case we do not know which nodes in networks A and B

should be paired, we find the optimal identification by
minimizing Dy as described in the Materials and Methods
section. This yields the minimal distance between the
networks, as well as an optimal alignment of the individual
nodes. We call this distance the edit difference.

The minimal edit difference between related phages is small,
Dp (A, P22) = 18, compared with the larger scores for
evolutionarily separated phages (Table 1). Dy = 18 means
that the A network of 62 proteins and 144 connections can be
constructed by making 18 edits of the connections in a 62-
protein subset of the 67-protein P22 network (adding or
removing a link is a single edit; changing the sign of a
connection is two edits). To get an idea of the significance of
the obtained Dy values, we compared them with optimal
alignments of 500 randomized versions of the two networks.
The randomization procedure was designed to conserve the
local properties of the networks to try to keep their general
biological features. First, the core-hub topology common in
biological networks [3] was maintained by conserving for each
protein the number of its regulators (inputs) and the number
of proteins regulated by it (outputs). Second, the number of
each sign (positive and negative) of the input and output
connections was kept for each node.

The constraint of preserving the local properties does not
fix the network completely: while keeping the number of
positively or negatively regulated proteins, one can still
change which of them are being regulated. The structure of
the resulting random networks is rather different, as seen in
the examples shown in Figure 2.

Overall, we found that Dy scores between any pair of
randomized networks are similar. When comparing scores
between real networks with those of their random counter-
parts in Table 1, one sees no clear trend. In particular, the
differences between these randomized versions for A, and
186, were indistinguishable from those of the real networks:
Dy (186,, 1,) =32 = 2.

We reasoned that the functional similarity of networks
might be better reflected in a less local measure of
functionality. We therefore introduced a signaling difference,
Ds, which aims to capture both direct (as in Dg) and indirect
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regulation through a sequence of intermediate proteins. For
each pair of proteins (i, j), we considered whether ¢ sends a
signal to j, and if so whether the signal along the shortest path
is positive or negative. In this spirit, we define the sign of a
signal as the product of the signs of all links on the shortest
path from i to j. An example where this procedure nicely
reflects the functionality in terms of its Boolean logic [12] is
found in the pathway from RecA to CI in the two phages. In A,
active RecA directly catalyzes self-cleavage of CI [13]; whereas
in 186, RecA acts through the degradation of a repressor
protein (LexA), which in turn represses the protein Tum [9],
which in the absence of repression binds CI and prevents it
from performing its function. Thus, the simple —1 signal in A
is in 186 replaced by a signaling consisting of (—1) X (1) X
(=1)=-1. In other words, repressing a repressor is effectively
an activation.

Because the regulation of one protein by another may be
positive through one series of links and negative through
another, two matrices were used for each network, one for
positive signals (A" and B*") and one for negative signals (A%~
and BS_). If the effect of protein i on protein j is only positive,
then one is placed into A;;*' and zero into AS". If the effect is
only negative, then zero is placed into Agﬂ' and one into A;j-*.
If there are positive and negative signals along paths of equal
length (e.g., from RecA to A CII via LexA or CI), then one is
placed into both matrices. Observe that when positive and
negative signals come to the same node, they are not
canceling each other. This is intentional, as often signals will
arrive at different times or at different conditions. (An
example of this is the two paths from RecA to CII over CI and
LexA, respectively, of which only the RecA-LexA-CII path is
activated during lysis.)

The signaling difference between two networks A and B is
then defined as

DS(AaB) = Z |A;+ _B;§'+ + |A;§_ - Bg‘_|7 (2)
i

which takes into account differences in both positive and
negative signaling along the shortest paths between any pair
of nodes. Like Dy, the minimum difference Dy is calculated by
optimizing which proteins in 186 should be identified with
which proteins in A, and, in addition, which A proteins should
be excluded. Excluding a protein means that the signaling to
and from that protein is not counted in Ds, whereas signaling
across the excluded protein is included.

Optimizing protein alignment based on signaling, we
found that Dg (186, A) = 43. Again, the significance of this
difference was determined by repeatedly performing ran-
domization of the networks as described above, creating the
A%" and A% matrices and obtaining the minimal Ds. The
differences between random networks, Dg (186,, A,) = 109 =
33, is much larger than between the real networks. This is
further quantified by a P-score, P (Ds > Dy (random)) = 0.01,
defined as the probability that two randomized networks will
have a smaller difference than that between the real
networks.

Thus, all three networks are similar in their signaling
pattern. To confirm that this signaling similarity is not
generally conserved among biological networks, we compared
the phage networks with other networks that perform
different functions (e.g., the Saccharomyces cerevisiae cell-cycle
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Figure 1. The Genetic Regulatory Networks for Phage 186, Phage X, and

Bacteriophage 186

0000 Phage P22, All of Which Are Temperate and Infect E. coli
E. coli proteins The proteins are colored according to their functions and expression
@® Regulatory proteins mode in the lysis-lysogeny life cycle of the phages. We summarize the
- ) : influence of one protein on another by either a green arrow (positive,
@ Early Iytic proteins : e.g., transcriptional activation) or a red arrow (negative, e.g., repression).
@ Late lytic proteins @ The dashed lines show relatively weak regulations.
@ Lysogenic proteins @ DOI: 10.1371/journal.pcbi.0010074.9001

network [14], and the Bacillus subtilis competence networks
[15]). We found that Dg is much larger and the P-scores are
close to one in these alignments, indicating that the low
signaling difference between the phage networks is a special
property of these functionally similar networks.

We also considered other variants of the difference
measures, in particular including all non-repetitive paths
between pairs of proteins, with all paths weighted equally. In
that case, we also found that Dg _ ,; (A, 186) =390 between real
networks is smaller than Dg _ ,; (A,, 186,) =583 * 122 between
the randomized counterparts. Also, using the shortest paths,
we investigated differences between networks where weak
links (see the dashed ones in Figure 1) are weighted less (by a
factor of 0.5 or removed altogether). Ds scores between
networks got smaller, but overall significance remained
similar.

Discussion

The pathway-related Dg score allowed us to identify
significant similarity between two distantly related biological
networks (see Table 1). In contrast, the edit difference
measure, which looks only at the local wiring structure, is
sometimes blind to this more global “homology.” Thus,
although edit difference partially captures network similar-
ities through a patchwork of local matchings, it is less
sensitive to pathway disruptions.

It is not clear whether the functional similarity between the
A and 186 networks detected by the Dy measure is a result of
convergent evolution or is a remnant of a shared ancestral
network. In either scenario, it is clear that the two network
structures must be strongly constrained by functional
requirements, given the evolutionary separation of the two
phages. A potential bias should be noted here: knowledge of
the three phage networks is not complete, even for A, and it is
thus possible that some of the observed similarity in the
networks is due to knowledge of connections in one phage
‘\\“}‘\“\.:_‘- Arc® network having influenced the discovery of connections in
\\\\“\““‘W\\ — the others.

: \ ! The Dy alignment allows us to address the role of various

\\:\\\\\\\\\ |/ A > proteins in pathway disruptions. Figure 3 lines up the A and

Q‘m\ ,:é‘—.é-:‘:&t“\\ 186 proteins on the basis of pre-existing knowledge of their

o ——— function or mode of expression and indicates the optimal Dg

:ﬁi\“ﬁl alignment and the contribution of each pair to the signaling
Y difference. The two alignments show good matches for late
lytic genes as well as for the regulators CI, CII, and B from 186
aligned with CI, CII, and Q in A. Thus, in general, functions of
proteins in one network teach us about protein properties in
the other network. The lack of a good match between Apl (in
186) and Cro (in A) is due to the weak links from Cro and
reflects a different functional role of Cro and Apl in the late

lytic development of phages. Insisting on alignment of Cro
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Table 1. The Overall Difference Measures, D¢, Ds, between the
Networks, with Respective P-Scores as Defined in Text

netA, netB Dg Pe Ds Ps
A 186 33 43

A, 186, 32+2 0.27 109 *+ 33 0.01
A P22 18 106

Ay P22, 334 0.00 255 £ 55 0.00
P22, 186 25 97

P22, 186, 31 =1 0.00 161 = 36 0.03

DOI: 10.1371/journal.pcbi.0010074.t001

with Apl results in Dg= 219, thus emphasizing the particular
role of Cro as a repressor of late lysis in A.

Comparison of molecular networks is becoming an
important element of modern systems biology, both with
regard to predicting eventual missing links [16], and to
increasing our understanding of functionality of information
processing in the networks. The alignment methods pre-
sented here address the similarities on a local, respectively
larger scale, associated with signaling across networks.

In this regard, we found that evolutionary relationships (A —
P22) imply similar local regulation, with a low Dg score. For
all temperate phages, evolved to do similar “computation,”
their regulatory networks are found to be similar when
viewed from a more global perspective where both direct and
indirect signals are included (low Dg score compared to
random expectation). Thus the mechanistic and structural
differences on the scale of genome and promoter organiza-
tion disappear when considering the large scale of the
protein regulatory networks. Going beyond immediate
regulations allows us to capture functional similarity in the

most robust way.

Figure 2. lllustration of the Differences between the Real 186 and A
Networks (Top) and an Example of Their Randomized Counterparts
(Bottom)

These examples of randomized networks show that it possible to

preserve local properties, yet obtain different network structures.
DOI: 10.1371/journal.pchi.0010074.9g002
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Figure 3. Alignment of Two Phage Networks

Placement of proteins is based on our knowledge [7-9,13,22], and the
lines connecting them are associated with the minimal Ds alignment.
Proteins that perform similar functions or are regulated similarly are
placed on the same level; thus, horizontal lines mark ideal matching. Blue
lines correspond to meaningful alignments, and red lines are the
misalignments. The numbers above the lines, d; reflect the differences
in signaling between the aligned proteins and are the contributions to
the minimal difference DS =12 ) i di =43. The numbers in the
parentheses indicate multiple equivalent proteins, making the sum of
all shown signaling differences equal to 2 X 43. The key regulators RecA,
LexA, and Cl are identified correctly, whereas the misidentification of ClI
with Clll is reasonable since both favor entry into lysogeny through the
same pathway. The major discrepancy is associated with the different
roles of Cro and Apl during lysis (the weak links from Cro to Q and N in A).
DOI: 10.1371/journal.pcbi.0010074.g003
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Materials and Methods

The present paper is based on the data on three bacteriophages: A,
P22, and 186. The regulatory networks were compiled from these
database entries and various literature sources: for A ([7,13,17,18,] and
references therein), for 186 ([8-10] and references therein), and for
P22 ([19] and references therein).

In the Results section, we define two differences scores, Dp and Dy,
between a pair of networks A and B. Provided that we know which
proteins in A should be identified with which in B, the scores are
calculated as in equation 1 and equation 2. In case we do not know
which nodes in networks A and B should be paired, we need to find
the optimal identification of nodes between them. To do so, we define
an alignment procedure through the Metropolis Algorithm [20],
designed to reach the minimal distance D between the networks:
given two nodes and their corresponding partners in the other
network, the elementary step is to switch partners and re-evaluate the
distance. Iterating this procedure and using simulated annealing [21],
the difference score between the two networks converges to a global
minimum.
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If the two networks are of different sizes, we count only the
contribution from a number of nodes given by the smaller of the two
networks. In the larger network, these nodes are selected to minimize
the distance using the above algorithm.

We would like to note that the above method is not intended to
reflect any evolutionary process, but is used to find the optimal
mapping of pairs of proteins that look similar from the network
perspective. The method is limited by the network size, and in
practice it works for networks of fewer than 200 nodes.

The realization of the alignment algorithm in the form of the Java
applet (Sun Microsystems, Santa Clara, California, United States) is
available at http://www.cmol.nbi.dk/models/compar/compar.html.

Supporting Information
Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov) accession numbers for
the genes and gene products discussed in this paper are: P22
(NC002371) and A (J02459).
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