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For many years, studies of chromosome evolution were dominated by the random breakage theory, which implies that
there are no rearrangement hot spots in the human genome. In 2003, Pevzner and Tesler argued against the random
breakage model and proposed an alternative ‘‘fragile breakage’’ model of chromosome evolution. In 2004, Sankoff and
Trinh argued against the fragile breakage model and raised doubts that Pevzner and Tesler provided any evidence of
rearrangement hot spots. We investigate whether Sankoff and Trinh indeed revealed a flaw in the arguments of
Pevzner and Tesler. We show that Sankoff and Trinh’s synteny block identification algorithm makes erroneous
identifications even in small toy examples and that their parameters do not reflect the realities of the comparative
genomic architecture of human and mouse. We further argue that if Sankoff and Trinh had fixed these problems, their
arguments in support of the random breakage model would disappear. Finally, we study the link between
rearrangements and regulatory regions and argue that long regulatory regions and inhomogeneity of gene
distribution in mammalian genomes may be responsible for the breakpoint reuse phenomenon.
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Introduction

Genomes are constantly changing. If a genome is compared
to a continental landform, then one type of change—point
mutations—is analogous to gradual changes in the landscape
due to erosion by wind and water. A second type of change—
genome rearrangements—comprises evolutionary ‘‘earth-
quakes’’ that dramatically change the landscape. A funda-
mental question in studies of chromosome evolution is
whether these earthquakes are happening along evolutionary
‘‘faults’’ (hot spots of rearrangements) or at ‘‘random’’

genomic positions.
In a landmark paper in 1984, Nadeau and Taylor [1]

estimated that there are approximately 200 conserved
segments (synteny blocks) between human and mouse and
provided convincing arguments in favor of the random
breakage model of genomic evolution postulated by Ohno in
1973 [2]. Further studies of significantly larger datasets
(Copeland et al. in 1993 [3], DeBry and Seldin in 1996 [4],
Burt et al. in 1999 [5], Lander et al. in 2001 [6], Mural et al. in
2002 [7]) with progressively increasing levels of resolution
made the random breakage model the de facto theory of
chromosome evolution and the Nadeau-Taylor predictions
are viewed as among the most significant results in ‘‘the
history and development of the mouse as a research tool’’
(Pennisi [8]).

The random breakage model implies that there are no
evolutionary ‘‘faults’’ in mammalian genomes and rules out
the systematic reuse of breakpoints from the same genomic
regions. In 2003, Pevzner and Tesler [9] argued against the
random breakage model by showing that any transformation
of mouse gene order into human gene order would require a
large number of breakpoint reuses. This conclusion immedi-
ately implies that the rearrangement breakpoints form
clusters, a contradiction to the random breakage model.
The Pevzner and Tesler arguments do not reveal the specific
locations of the breakpoint regions where reuse occurred but

instead give a nonconstructive combinatorial proof that these
regions exist somewhere (at unknown locations) in the
genome. Based on this result, Pevzner and Tesler rejected
the random breakage model and proposed an alternative
‘‘fragile breakage’’ model of chromosome evolution. This
model assumes the existence of fragile regions in genomes
and postulates that the breakpoints occur mainly within these
relatively short fragile regions (hot spots of rearrangements).
In 2004, Sankoff and Trinh [10] argued against the fragile

breakage theory and raised doubts that Pevzner and Tesler [9]
provided any proof of the breakpoint reuse phenomenon.
They described an elegant computational experiment in
which a series of random rearrangements creates the
appearance of the breakpoint reuse phenomenon and argued
that Pevzner and Tesler’s arguments represent an artifact
caused by microrearrangements and synteny block identi-
fication algorithms. Sankoff and Trinh [10,11] made an
important contribution by raising awareness that synteny
block determination is an important and nontrivial aspect of
rearrangement analysis.
As a result, there is a controversy regarding the fragile

breakage model. For example, Bailey et al. wrote in 2004 [12]
that ‘‘our analysis supports a nonrandom model of chromo-
somal evolution that implicates a predominance of recurrent
small-scale duplication and large-scale evolutionary rear-
rangements within specific fragile regions.’’ Similarly, Zhao et
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al. [13] wrote that ‘‘independent mathematical modeling of
the syntenic block length distribution by us and others
supports the fragile breakage model, but not the random
breakage model for mammalian genome evolution.’’ On the
other hand, Trinh et al. [14] wrote, ‘‘Indeed, there is no direct
evidence for the fragile regions hypothesis, aside from the
well-documented tendencies for rearrangements in pericen-
tromeric and subtelomeric regions.’’

The question then arises as to whether the Pevzner and
Tesler [9] arguments were the first proof of breakpoint reuse
or arguments without any merit. This question is ultimately
connected to the question of whether Sankoff and Trinh [10]
revealed errors in the Pevzner and Tesler arguments or
whether the work by Sankoff and Trinh [10] represented an
artifact. In this paper, we demonstrate that (1) the synteny
block identification algorithm in [10] is flawed and (2) the
parameters in [10] do not reflect the realities of the
comparative genomic architecture of human and mouse.
We show that if Sankoff and Trinh [10] fixed problems (1) and
(2), their arguments against [9] would disappear.

In Section 1, we formally define the breakpoint reuse rate
(BRR). In Section 2, we describe Sankoff and Trinh’s synteny
block identification algorithm, which we call ST-Synteny. In
Section 3, we illustrate several shortcomings of this algorithm.
In Section 4, we reproduce Sankoff and Trinh’s simulations in
which they applied ST-Synteny to synthetic genomes, and we
perform the corresponding simulations using GRIMM-Syn-
teny, obtaining different results for the effect of parameters
on the breakpoint reuse rate. In Section 5, we show
illustrations of the different blocks identified by ST-Synteny
versus GRIMM-Synteny, using both synthetic data and using
real human/mouse X chromosome anchors.

The simulation in Section 4 does not take into account
issues from real-world data such as anchor lengths in
nucleotides and variable length microrearrangements. In
Section 6, we make an improved simulation that accounts for
these issues and seed it with simulated genomes based on

anchor lengths in the human/mouse X chromosomes and
human/rat X chromosomes.
In Section 7, we give the results for whole genome

comparisons of human and mouse, first based on alignments
and then based on genes.
In Section 8, we analyze an intergenic breakage model, in

which selection pressures prevent breaks occurring within
genes and within regulatory regions upstream from genes.

Results

Section 1. Measuring the Breakpoint Reuse Rate
We study synteny blocks instead of conserved segments.

Synteny blocks do not necessarily represent areas of
continuous similarity between two genomes; instead, they
may consist of many short regions of similarity interrupted by
nonsimilar regions and gaps. Regions of similarity may be
identified via homologous genes, anchors (alignments present
in a single copy in both genomes), or other corresponding
markers; we will call these elements.
When comparing genomes, rearrangements of the ele-

ments within a synteny block are called microrearrangements, or
microinversions when we work in an inversions-only model.
Rearrangements of the order of whole synteny blocks are
called macrorearrangements.
Rearrangement distance is the minimum number of rear-

rangement operations required to transform one genome
into the other; in the unichromosomal case, the operations
are inversions, and in the multichromosomal case, the
operations are inversions, translocations, fissions, and fu-
sions.
Pevzner and Tesler’s arguments [9] are based on computing

the breakpoint reuse rate for the human and mouse genomes.
The breakpoint reuse rate is computed as twice the
rearrangement distance divided by the number of break-
points, where these are computed as described in [15]. (We
shall use the total number of breakpoints; a variant, using
only internal breakpoints and excluding those at chromo-
some ends, was also used in [9] and [16] but will not be further
considered here.)
The random breakage model implies a low breakpoint

reuse rate (close to one, the minimum possible value for the
breakpoint reuse rate), while the human/mouse rearrange-
ment analysis revealed a very high breakpoint reuse rate
(close to two, the maximum possible value for the breakpoint
reuse rate). Based on this observation, Pevzner and Tesler
rejected the random breakage model and proposed the
fragile breakage model (which is consistent with a high
breakpoint reuse rate) as a possible alternative.

Section 2. ST-Synteny: Sankoff and Trinh’s Synteny Block
Identification Algorithm
Sankoff and Trinh’s [10] simulations used a synteny block

identification algorithm that we refer to as ST-Synteny. We
emphasize that [10] used ST-Synteny to form synteny blocks,
while [9] used a different algorithm, GRIMM-Synteny. While
ST-Synteny appears to be a reasonable approach to synteny
block identification, it was never applied to real data, only
synthetic data. We compare ST-Synteny with GRIMM-
Synteny on synthetic and real data.
GRIMM-Synteny is a parameter-dependent procedure that

was designed to somewhat artificially separate microrear-
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Synopsis

Genomes are constantly changing. If a genome is compared to a
continental landform, then one type of change—point mutations—
is analogous to gradual changes in the landscape due to erosion by
wind and water. A second type of change—genome rearrange-
ments—comprises evolutionary ‘‘earthquakes’’ that dramatically
change the landscape. A fundamental question in studies of
chromosome evolution is whether these earthquakes are happening
along evolutionary ‘‘faults’’ (hot spots of rearrangements) or at
‘‘random’’ genomic positions. For many years, studies of chromo-
some evolution were dominated by the random breakage theory,
which implies that there are no rearrangement hot spots in the
human genome. In 2003, Pevzner and Tesler argued against the
random breakage model and proposed an alternative ‘‘fragile
breakage’’ model of chromosome evolution. In 2004, Sankoff and
Trinh performed a series of computational simulations that argued
against the fragile breakage model and raised doubts that Pevzner
and Tesler provided any evidence of rearrangement hot spots. The
authors show that Sankoff and Trinh’s simulation misidentifies
synteny blocks, that it does not accurately simulate what Pevzner
and Tesler (2003) did, and that the parameters of Sankoff and Trinh
do not reflect the realities of the comparative genomic architecture
of human and mouse.
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rangements and macrorearrangements found in real data. It
was used for synteny block identification in the mouse [17], rat
[16,18], and chicken [19,20] genomic projects. Since GRIMM-
Synteny was first proposed in 2002, a number of other synteny
block identification approaches were published and a recent
study revealed that they largely agree [18]. Since GRIMM-
Synteny was tested on many datasets and agreed with other
approaches, we argue that it currently represents a consensus
view on the synteny block identification approaches.

Below we show that ST-Synteny produces rather different
results than GRIMM-Synteny. Since ST-Synteny produces
results that are not consistent with the existing consensus
views of comparative genomic architectures, we argue that
their paper [10] revealed shortcomings of their own ST-
Synteny algorithm rather than a flaw in [9].

Sankoff and Trinh’s [10] arguments included a simulation
of random rearrangements combined with their algorithm
for synteny block identification (which we refer to as ST-
Synteny). This process follows the random breakage model
but somewhat surprisingly results in a high breakpoint reuse
rate. They thus argued that the Pevzner-Tesler result has
nothing to do with breakpoint reuse but is merely an artifact
of the synteny block identification.

To compare ST-Synteny with GRIMM-Synteny, we first
reproduced the procedure described in [10]. Although Sank-
off and Trinh presented it as a single procedure, we break it
into two phases: (1) a simulation to create synthetic
rearranged genomes, which we give in Section 4, and (2) an
algorithm to identify synteny blocks, which we present here.

Let p be a signed permutation on n elements (representing
genes, anchors, or markers). This represents a genome that is
rearranged as compared to a reference genome 1, . . . , n. Let
w, D be positive integers; w represents the maximum micro-
rearrangement span and D denotes the minimum number of
elements in a synteny block.

ST-Synteny(p, w, D)
Step 1: Define each element of p as a block and iteratively

amalgamate the resulting blocks as follows: two adjacent
blocks in p are amalgamated if they contain elements i and j,
where i or�i is in one block and j or�j is in another block and
ji� jj � w. Signs of the elements and blocks are recorded but
ignored during amalgamation.

Step 2: Delete any ‘‘short’’ block containing less than D
elements (D ¼ 3 in [10]).

Step 3: Sankoff and Trinh [10] did not specify how signs of
blocks were determined from their constituent elements. The
block signs are necessary and important for calculating
rearrangement distance. For example, reassignment of
‘‘random’’ signs (or assignment of all positive signs) to a
permutation with low breakpoint reuse rate will lead (with
high probability) to a permutation with high breakpoint
reuse rate, thus emulating a breakpoint reuse artifact.

This implementation assigned signs to synteny blocks
according to two different rules: the majority sign rule,
where a block is assigned to the majority sign of all its
elements; and the separable permutation rule described in
[15]. The majority sign rule appears to be what [10] used
(confirmed in private communication from Sankoff).

Section 3. Shortcomings of ST-Synteny
We will show that ST-Synteny gives counterintuitive results

even on small toy examples and then analyze the problems

that occur as we scale up to larger synthetic or real-world
datasets.
The example in Figure 1 represents a genomic dot-plot for

two fictitious genomes and illustrates one of the shortcomings
of ST-Synteny. Finding synteny blocks for this permutation is
a trivial problem and all other synteny block identification
algorithms will output five synteny blocks, but ST-Synteny
will form a single synteny block for any setting of parameters.
Moreover, at the minimum setting of w ¼ 1 (see below), ST-
Synteny outputs a single block for 75% of all signed
permutations of order 5! For other settings of the parameter
w, the percentage of cases where ST-Synteny fails to reveal the
correct synteny blocks increases even further.
We will describe in detail issues concerning of the

granularity of blocks ST-Synteny forms. Given one inversion

1. . .100 101. . . 200 201. . .300

1. . .100 �200. . .�101 201. . .300

there should be three blocks and two breakpoints. However,
there is no setting of the parameters of ST-Synteny that
would do this. If w ¼ 0, it is left as 300 separate elements
(which are then deleted for being too small if D . 1). If w � 1,
ST-Synteny forms one large block, as follows. First, it
performs a number of amalgamation steps resulting in the
expected 3 blocks:

ð1:::100Þ ð�200:::�101Þ ð201:::300Þ

But the iterative amalgamation does not stop there. Since 100
and�101 are now in adjacent blocks and j101� 100j ¼ 1 � w,
it merges the first and middle blocks. Since�200 and 201 are
in adjacent blocks, they are also merged. The result is a single

Figure 1. Nested Inversions Are Always Amalgamated by ST-Synteny

The dot-plot of a signed permutation of anchors (green) between two
genomes is shown. Since the anchors are signed, they are represented as
645-degree segments. Blocks were constructed by ST-Synteny (red) and
GRIMM-Synteny (blue). ST-Synteny amalgamates everything into one
block. GRIMM-Synteny produces the correct blocks. If the genome on the
horizontal axis is taken to be the identity permutation 1 2 3 4 5, then the
genome on the vertical axis is the signed permutation�3 2�1�5 4.
DOI: 10.1371/journal.pcbi.0020014.g001
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block

ð1:::100 � 200:::�101 201:::300Þ

In fact, a signed permutation produced by applying any
series of nested inversions to the identity will be ream-
algamated into a single block by ST-Synteny whenever w � 1.
(For nonnested inversions, reamalgamations may also occur,
resulting in fewer blocks than appropriate. For w ¼ 1 and
large n, this happens in ST-Synteny for over 77% of the
signed permutations of length n that would not have any
reamalgamation if the signs were properly considered. A
paper is in preparation.) Inversions are nested when the two
breakpoints of each inversion both lie within any single
existing strip (as defined by the previous inversions) i, iþ1, iþ
2, . . . , j or �j,�(j � 1), . . . , �i; ‘‘lie within’’ includes reuse of
either or both endpoints of the strip. For example, consider
this series of inversions:

1 2 3 4 5 6

1 �6 �5 �4 �3 �2

1 3 4 5 6 �2

1 3 �6 �5 �4 �2

1 3 5 6 �4 �2

1 3 �5 6 �4 �2

When given the last line as input, ST-Synteny first combines
�5 and 6 into a block (�5 6). That block is amalgamated with
the �4 into (�5 6 �4). Then 3, �2, 1 are successively
amalgamated into that, resulting in a single block (1 3 �5 6
�4 �2).

In addition to the above-mentioned problems, if micro-
rearrangements have occurred or if there is noise in the form
of spurious elements, ST-Synteny tends to compute several
smaller blocks rather than a larger block with microrear-
rangements. ST-Synteny assumes that all markers (ortholo-
gous genes or sequence anchors) are direct descendants of the
most recent common ancestor of the two organisms being
compared. This may be a reasonable assumption in compar-
ing mitochondrial, chloroplast, or viral genomes, but between
free-living organisms, false orthologs are inevitable, no
matter how carefully the annotations are curated. Since the
computed blocks are smaller, it increases the chance of them
being deleted for being too short. It nonetheless increases the
number of reported blocks, decreases their size, and increases
the length of the breakpoint regions as compared to GRIMM-
Synteny, thus tending to increase the number of breakpoint
reuses even for ‘‘random’’ rearrangements. One may argue
that this excessive granularity can be fixed by simply changing
the parameters of ST-Synteny, but as we showed above there
is often no choice of parameters that resolves the problem.

The reason is spurious elements (which are shown as black
dots in the X chromosome illustration later in this paper in
Section 5). If ST-Synteny is given a permutation with stray
points 200 and 300

:::100 101 200 102 103 104 300 105 106 107:::

then (at small w and D ¼ 3) it first forms blocks

:::ð100 101Þ; ð200Þ; ð102 103 104Þ; ð300Þ; ð105 106 107Þ:::

Then it deletes small blocks (100 101), (200), (300), leaving
two blocks: (102 103 104) and (105 106 107). (There is no

rearrangement breakpoint between these two blocks, how-
ever.)
By contrast, GRIMM-Synteny does not require the elements

in a block to be contiguous in all species in the input data. It
first forms blocks

ð100 101 102 103 104 105 106 107Þ; ð200Þ; ð300Þ

and then it deletes the small blocks (200) and (300), leaving
one large block.
Another problem is that a synteny block identification

algorithm should produce the same blocks when the two
genomes are swapped. ST-Synteny, however, is not always
symmetric in the two genomes when w � 2. For example,
consider the following permutation and its inverse permuta-
tion:

p ¼ 1 3 6 9 2 4 7 10 5 8

p�1 ¼ 1 5 2 6 9 3 7 10 4 8

At w ¼ 2, the blocks output by ST-Synteny for p are

ð1 3Þ; ð6Þ; ð9Þ; ð2 4Þ; ð7Þ; ð10Þ; ð5Þ; ð8Þ

while the blocks output for p�1 are

ð1Þ; ð5Þ; ð2Þ; ð6Þ; ð9Þ; ð3Þ; ð7Þ; ð10Þ; ð4Þ; ð8Þ

This is illustrated in Figure 2.

Section 4. GRIMM-Synteny versus ST-Synteny
In the previous sections, we described ST-Synteny, the

synteny block identification algorithm within Sankoff and
Trinh’s simulations. They generated synthetic genomes to
input to it as follows:
Simulation (n, m, k, w)
Step 1: Generate m¼ 150 random inversions of a reference

genome 1, 2, . . . , n with n ¼ 5,000 ‘‘genes’’ (elements).
Step 2: Generate k microinversions of exactly w elements,

each randomly placed throughout the genome.
Step 3: Output the resulting signed permutation p of n

elements.
Then they apply ST-Synteny(p, w, D) to identify synteny

blocks. Finally, they apply the GRIMM algorithm [21,22] to
the resulting synteny blocks to calculate the rearrangement
distance and the breakpoint reuse rate.
We reproduced the Sankoff-Trinh random simulations

with GRIMM-Synteny in place of ST-Synteny to verify
whether the appearance of the breakpoint reuses persists
under the random breakage model. To compare ST-Synteny
with GRIMM-Synteny on the same simulated permutations,
we had to determine the parameters that best match the
parameters used in Sankoff and Trinh [10]. This is a
nontrivial task since ST-Synteny is quite different from all
other synteny block identification algorithms. We also remark
that the description of ST-Synteny lacks some important
details. For example, while Pevzner and Tesler [15] empha-
sized the importance of signs in the synteny block analysis,
Sankoff and Trinh [10] do not even address this important
issue.
GRIMM-Synteny(p, G, C) has maximum gap size parameter

G (which is similar in spirit to w in ST-Synteny) and minimum
cluster span parameter C (which is similar in spirit to D in ST-
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Synteny). For comparison, ST-Synteny(p, w, D) was replaced
by GRIMM-Synteny(p, G, C) with ‘‘similar parameters,’’ to
identify synteny blocks and compute reversal distance and
breakpoint reuse rates. While we tried our best to match ST-
Synteny and GRIMM-Synteny parameters, we emphasize the
following concerns.

Our first concern is that Sankoff and Trinh regard
elements (genes or anchors) as individual points with length
1, and while the element orientations are recorded, they do
not make use of the orientations. Under these circumstances,

a gap threshold G¼wþ3 and minimum block size C¼D is the
best match.
In our simulations in Figures 3, S1, and S2, we used a

minimum of D ¼ 3 anchors per block in both programs,
instead of GRIMM-Synteny’s original definition of C as the
minimum size in terms of the ‘‘span’’ of a block; the plots (not
shown) on using the original definition of C ¼ 3 in GRIMM-
Synteny are similar to those shown using D ¼ 3 instead. This
isolates the differences in performance of the algorithms to
the methods used to join elements into blocks.
Our second concern is that ST-Synteny does not make use

of element signs or lengths, or gaps between elements;
GRIMM-Synteny does take them into account, and it does
affect whether the elements should be amalgamated into one
block. Normally, when dealing with gene orders with
unknown gene lengths and unknown intergenic gap lengths,
GRIMM-Synteny would assign a length of 2 to each gene
(element) so as to make the two ends distinguishable.
However, the simulations in Figures 3, S1, and S2 are done
with length 1 anchors in both programs for a more direct
comparison.
Breakpoint reuse rate as a function of the number of

microinversions is shown in Figure 3A (ST-Synteny, majority
sign rule), 3B (ST-Synteny, separable permutation sign rule),
and 3C (GRIMM-Synteny). Note that at k ¼ 0, there is no
microinversion. Although a microinversion of span w ¼ 1
changes the sign of an element, it is ignored by ST-Synteny, so
that w ¼ 1 serves only as the threshold for block amalga-
mation.
Notice that as the number of microinversion increases and

the span of inversion increases, the breakpoint reuse rate of
simulation with ST-Synteny increases much faster than that
of GRIMM-Synteny. Sankoff and Trinh [10] simulated micro-
inversion spans of up to ten or 15 elements, which
correspond to approximately 6 and 9 Mb of the human
genome, respectively; this is much larger than the average
inversion span of microrearrangements between human and
mouse computed by GRIMM-Synteny. These unrealistically
large spans are therefore excluded from our simulations. To
put things in perspective, the average size of microrearrange-
ments in the human/mouse comparison is 196 kb, corre-
sponding to ‘‘w ¼ 0.33’’ (although w can only be an integer),
and the median microrearrangement size is approximately 7
kb. It implies that the most realistic simulations in Sankoff
and Trinh [10] correspond to very small w (although even w¼
1, 2 correspond to rearrangements with longer average span
than in the case of human/mouse comparison). For these
parameters and with a correct synteny block identification
algorithm, the breakpoint reuse rate is low for the random
breakage model, negating the Sankoff-Trinh arguments
against the fragile breakage model.
To further contrast the two models, the percentages of the

breakpoint regions of the whole simulated genome, denoted
as bk, were computed and are shown in Figure S1 for ST-
Synteny and GRIMM-Synteny. The breakpoint regions from
ST-Synteny are much larger as compared to GRIMM-Synteny,
thus refuting another Sankoff-Trinh argument against the
random breakage reuse phenomenon (the larger the break-
point regions, the better are the chances to observe break-
point reuse, even in the random breakage model).
The number of elements kept by each model is shown in

Figure S2. As the number of microrearrangement grows, ST-

Figure 2. Asymmetric Treatment of Genomes by ST-Synteny

In comparing two genomes, ST-Synteny may produce different synteny
blocks depending on which one is chosen as the reference genome. The
synteny blocks produced by ST-Synteny are shown as red boxes around
the anchors.
(A) The genome shown on the y-axis is the reference genome 1, . . ., 10,
and the genome shown on the x-axis is represented as a permutation p
of this.
(B) The exact same anchor arrangement is shown, but the x-axis is taken
as the reference genome 1, . . ., 10 and the y-axis is the permutation p�1.
Although the anchor arrangements are identical, ST-Synteny with
parameters w¼ 2, D¼ 1 produces different blocks depending on which
genome is the reference genome.
DOI: 10.1371/journal.pcbi.0020014.g002
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Synteny deletes elements at a faster rate than GRIMM-
Synteny, as a result of deleting small blocks. That ST-Synteny
outputs fewer blocks than GRIMM-Synteny for relatively small
(although still unrealistically large from the perspective of real
human/mouse genomic architectures) w and large k (unpub-
lished data) can be explained by the combination of deleting
small blocks and mistakenly amalgamating large ones.

Section 5. GRIMM-Synteny versus ST-Synteny: Dot-Plots
We illustrate some of the differences between ST-Synteny

and GRIMM-Synteny with a synthetic dataset (Figure 4) and
real human/mouse data (Figure 5).
We constructed a synthetic genome p ¼ Simulation(5000,

15, 500, 5). The genomic dot-plot and synteny blocks output
by ST-Synteny and GRIMM-Synteny for this genome with one
setting of detection parameters are shown in Figure 4. The
breakpoint reuse rate is 1.31 and 1.09 from blocks output by
ST-Synteny and GRIMM-Synteny, respectively. Notice that
ST-Synteny amalgamated blocks that should be separate. For
each w from 1 to 5, we made ten simulated genomes p ¼
Simulation(5000, 15, 500, w). The average breakpoint reuse
rate from ST-Synteny(p, w, 3) rises from 1.07 to 1.30, while in
GRIMM-Synteny(p, w þ 3, 3), the breakpoint reuse rate
increases only from 1.03 to 1.09.
To further illustrate the difference between ST-Synteny

and GRIMM-Synteny in identifying synteny blocks, both
methods were applied to human/mouse anchors on the X
chromosome (National Center for Biotechnology Informa-
tion [NCBI] Human version 34, Mouse version 30). There are
58,930 anchors, and the human X chromosome has a length
of 153,692,391 base pairs (bp). The full version of GRIMM-
Synteny, which accounts for anchor coordinates, lengths, and

Figure 3. Breakpoint Reuse Rates in Simulations

The simulated number of microrearrangements is k, and the micro-
rearrangement size is w. The same simulated rearrangements were
analyzed three ways.
(A) ST-Synteny simulation, with signs of blocks determined using their
majority sign rule.
(B) ST-Synteny simulation, with signs of blocks determined using GRIMM-
Synteny’s separable permutation rule.
(C) GRIMM-Synteny simulation. Anchors have length 1 for comparison
with ST-Synteny.
DOI: 10.1371/journal.pcbi.0020014.g003

Figure 4. GRIMM-Synteny and ST-Synteny on the Same Simulated Data

The genomic dot-plot is shown in thick green. The synteny blocks
identified by GRIMM-Synteny are shown as blue rectangles, and the ones
from ST-Synteny are dashed red rectangles. When block coordinates
coincide, this appears as dashed blue/red. Signs of the blocks are shown
as diagonals. Tiny blocks have been artificially enlarged for visibility and
do not actually protrude into other blocks. The simulated human
genome has anchors 1 through 5,000. The simulated mouse genome
was generated as p¼ Simulation(5000, 15, 500, 5). Blocks were identified
via GRIMM-Synteny(p, 8, 3) and ST-Synteny(p, 5, 3).
DOI: 10.1371/journal.pcbi.0020014.g004
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signs, was used with minimum block size threshold of 1 Mb
and maximum gap threshold of 1 Mb. ST-Synteny was run
with w ¼ 378 and D ¼ 379. Since ST-Synteny uses only the
permutation of the anchors, we plot the resulting blocks from
both programs together superimposed with anchor permu-
tations. Results are shown in Figure 5 and Table 1. GRIMM-
Synteny identified ten blocks with microinversion distance of
825. ST-Synteny identified many more synteny blocks than
did GRIMM-Synteny. The number of blocks in ST-Synteny
did not reduce dramatically when the threshold w was
increased (data not shown).

If one compares Figures 4 and 5, one will notice that ST-
Synteny outputs more blocks than GRIMM-Synteny in Figure
5 but fewer in Figure 4. Neither the order of magnitude
difference in the number of markers (5,000 genes versus
59,000 anchors) nor the random versus fragile breakage
model is responsible for this ‘‘role reversal.’’ As noted in
Section 3, one of the tendencies of ST-Synteny is to
amalgamate blocks that should be separate, and another is
its inability to merge synteny blocks in the presence of short
‘‘out-of-place’’ inversions or false orthologs. In Figure 4, the
numbers of macrorearrangements and microrearrangements
were chosen to be much smaller than the previous simu-
lations in order for the synteny blocks to be legible; in this
case, the first deficiency of ST-Synteny dominates, resulting
in fewer blocks than that from GRIMM-Synteny. When the
number of rearrangements becomes large or when data
become noisy (as in the case of real genomic data [Figure 5]),
the second deficiency of ST-Synteny dominates. By contrast,
GRIMM-Synteny was designed to filter out noise, thereby
identifying more realistic synteny blocks.

Section 6. Improved Simulation including Varying Length
Anchors and Microrearrangements

In the previous simulations, the length and coordinate
distributions of anchors were ignored, and permutations

were performed on unit-length anchors (elements). To better
simulate randomized rearrangements, GRIMM-Synteny was
applied to simulated unichromosomal and multichromoso-
mal genomes with anchors of varying lengths. In the
simulated genome, randomized scenarios of rearrangements
were generated at the level of nucleotides. The details of the
simulation are as follows.
Step 1: Take the human coordinates of human/mouse

alignment anchors derived from NCBI Human version 34 and
Mouse version 30. In the unichromosomal genome simula-
tion, anchors from the X chromosome were used. In the
multichromosomal genome simulation, all anchors were used.
Step 2: For the unichromosomal simulation, generate six

inversions at random locations. Inversions in this genome
represent true inversions since ‘‘What breaks in the X
chromosome, stays in the X chromosome.’’ For the multi-
chromosomal simulation, generate 150 pairs of breakpoints
at random locations in the genome. When a pair of break-
points lie on the same chromosome, perform an inversion,
and when they lie on different chromosomes, perform a
translocation. If a breakpoint resides within an anchor, the
breakpoint is moved at random to the immediate left or right
of the anchor; anchors are not split.
Step 3: Generate kmicroinversions randomly located in the

genome. The spans of inversions are randomly distributed
between 1 and W nucleotides. Since the distribution of the
spans of inversions is unknown, the uniform distribution used
in the simulation is chosen somewhat arbitrarily.
Step 4: Add noise to the simulated genomes as follows.

Randomly choose 0.2% of the anchors to be noisy anchors.
Move each noisy anchor to a random location in the genome
and chose its sign at random.
Step 5: Apply the GRIMM-Synteny algorithm to identify

synteny blocks and compute the inversion or multichromo-
somal distance and breakpoint reuse rate between the human
and the simulated genomes. Both block size and gap thresh-
olds were set to 1 Mb.
The results of the unichromosomal simulation are listed in

Table 2, and the results of the multichromosomal simulation
are listed in Table 3. As in the previous section, bk is the
percentage of the genome in breakpoint regions. re is the
percentage of blocks that have at least one of the two ending
anchors of the simulated genome out of order as compared to
those of the original human anchors of the block.
A similar simulation was also performed on mouse/rat X

chromosome alignment anchors, which presumably have
more signal and less noise than human/mouse alignment
anchors. The anchors were derived from mouse NCBIM33
and rat RGSC3.4 using BLASTZ [23]. GRIMM-Synteny
identified 18 synteny blocks, with microinversion distance

Figure 5. Synteny Blocks between Human and Mouse X Chromosomes

Blocks for the X chromosomes were constructed by GRIMM-Synteny
(blue) based on anchor coordinates and ST-Synteny (red) based only on
anchor permutations. Anchors are shown in green. Small blocks deleted
by ST-Synteny are shown in black.
DOI: 10.1371/journal.pcbi.0020014.g005

Table 1. GRIMM-Synteny versus ST-Synteny Applied to Human
and Mouse X Chromosomes

Characteristic GRIMM-Synteny ST-Synteny

Number of blocks 10 44

Total block length (bp) 139,781,782 95,317,543

Breakpoint region (% of chromosome length) 9.05% 37.98%

DOI: 10.1371/journal.pcbi.0020014.t001
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of 4,287. The breakpoint reuse rate is 1.58. Using these
parameters as a reference, the simulated genomes started
with the mouse coordinates of the mouse/rat X chromosome
anchors, followed by nine macroinversions and up to 5,000
microinversions based on the random breakage model.
GRIMM-Synteny was applied to the resulting genomes. The
results are listed in Table 4. Notice that when the maximum
inversion span is W ¼ 1 Mb, the breakpoint reuse rate is
mostly 1.00, the theoretical value under the random breakage
model.

One may notice that in Table 3, the reuse rate is at least
1.12 under random breakage model while theoretically it
should be 1.00. The difference is explained by the block size
and gap thresholds used in GRIMM-Synteny. To show the
effect of thresholds on the breakpoint reuse rate, GRIMM-
Synteny was performed on the simulated dataset with 150
macroinversions and without microinversion. The block size
and gap threshold were decreased from 1 Mb to 10 kb. The
resulting breakpoint reuse rates are shown in Table 5. As the
threshold decreases from 1 Mb to 10 kb, the breakpoint reuse

rate decreases from 1.12 to 1.02. The side effect of the
thresholds is small, however, and does not itself explain the
high breakpoint reuse rate found in real human/mouse
genome data if the random breakage model is to be assumed.

Section 7. Analyzing Whole-Genome Rearrangements in
Human and Mouse
All of the simulations, whether permutation or sequence

based, were based on randomized rearrangements. How do
they compare to human/mouse rearrangements? Applying the
GRIMM-Synteny algorithm to the real human/mouse align-
ment data with block size and gap threshold of 1 Mb yielded
294 synteny blocks and genome distance of 262. The break-
point reuse rate was 1.67.
We further studied the starting and ending anchors within

each synteny block to arrive at realistic parameters for
microrearrangements. In the absence of microrearrange-
ments, the ending anchors of every synteny block are
conserved between two genomes. Microrearrangements act-
ing on ends of synteny blocks destroy this conservation; e.g.,

Table 2. Randomized Unichromosomal Rearrangement Simulation with Human X Chromosome Anchors

k W ¼ 0.5 Mb W ¼ 1 Mb

Number of Blocks bk (%) re (%) Reuse Rate Number of Blocks bk (%) re (%) Reuse Rate

0 9 3.5 0.0 1.25 12 2.9 0.0 1.09

100 9 3.5 55.6 1.25 12 3.5 33.3 1.09

200 9 3.5 55.6 1.25 12 3.6 83.3 1.09

300 9 3.5 66.7 1.25 12 3.5 100.0 1.09

400 9 3.5 88.9 1.25 12 3.3 91.7 1.09

500 9 3.5 88.9 1.25 16 4.3 100.0 1.20

600 9 3.5 100.0 1.25 13 4.1 100.0 1.17

700 9 3.5 100.0 1.25 13 3.6 100.0 1.17

800 9 3.5 100.0 1.25 13 3.3 92.3 1.17

900 9 3.5 100.0 1.25 13 3.8 92.3 1.17

1,000 9 3.5 100.0 1.25 13 4.1 92.3 1.17

DOI: 10.1371/journal.pcbi.0020014.t002

Table 3. Randomized Multichromosomal Rearrangement Simulation with Human Anchors

k W ¼ 0.5 Mb W ¼ 1 Mb

Number of Blocks bk (%) re (%) Reuse Rate Number of Blocks bk (%) re (%) Reuse Rate

0 282 6.7 0.0 1.12 286 6.9 0.0 1.12

1,000 282 6.7 18.1 1.12 286 7.0 28.0 1.12

2,000 282 6.7 30.1 1.12 284 7.1 44.4 1.12

3,000 282 6.7 37.2 1.12 283 7.4 60.8 1.12

4,000 282 6.7 44.7 1.12 284 7.6 70.1 1.13

5,000 282 6.7 52.8 1.12 285 7.7 75.8 1.13

6,000 282 6.7 58.9 1.12 283 7.9 78.8 1.14

7,000 282 6.7 66.0 1.12 283 7.6 82.0 1.14

8,000 282 6.7 72.7 1.12 284 7.7 88.7 1.14

9,000 282 6.7 75.2 1.12 290 7.6 91.4 1.14

10,000 282 6.7 76.6 1.12 293 7.6 93.2 1.14

11,000 282 6.7 79.8 1.12 292 7.6 93.2 1.14

12,000 282 6.7 81.2 1.12 293 7.5 95.2 1.14

13,000 282 6.8 80.9 1.12 297 7.5 95.6 1.14

14,000 282 6.8 83.3 1.12 297 7.5 95.6 1.16

15,000 282 6.8 85.8 1.12 298 7.4 96.6 1.17

DOI: 10.1371/journal.pcbi.0020014.t003
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an ending anchor in a human synteny block may not be an
ending anchor in a mouse synteny block. The percentages of
blocks that have at least one of the two ending anchors out of
order is denoted as re. Of 294 human/mouse synteny blocks,
115 had anchors at one or both ends out of order; together
these give an re of 39.1%.

The 294 human/mouse synteny blocks contained 10,900
microrearrangements. Of these microrearrangements, the
average span of inversion was 196 kb, the median was 7 kb,
and the maximum was 13.9 Mb. In terms of the number of
anchors, the average span of inversion was 78, the median was
four, and the maximum was 7,632. The breakpoint regions
comprised 9.06% of the human genome. For a comparable
breakpoint reuse rate, the span of microrearrangements
would have to be unrealistically large. The values of k and re in
the human/mouse data are much higher and the value of bk is
much lower than those from the simulated genomes
generated with the random breakage model. This may suggest
that rearrangements, or breakpoints, are not randomly
distributed across the whole genome.

As shown in the randomized rearrangement simulations,
breakpoint reuse increased with the number of micro-
rearrangements and the length of microinversions. In
sequence-based human/mouse rearrangement analysis, ap-
proximately 10,000 microrearrangements were found inside
294 synteny blocks. When the human/mouse comparison was
performed based on gene order, only 98 microrearrange-
ments were found inside 373 synteny blocks. The breakpoint
reuse rate of microrearrangements was only 1.02. Data from
sequence- and gene order–based comparison are listed in
Table 6.

Section 8. Intergenic Breakage Model
What makes certain regions break and others not? Is it a

biophysical constraint or a selection constraint? One obser-
vation we can make is that breaks are less likely to occur
within genes (and within regulatory regions) since selection
usually works against such breaks. The average length of
intergenic regions of the human genome (NCBI version 34) is
approximately 80 kb, much smaller than the average length of
breakpoint regions. There are a total of 21,911 intergenic
regions within synteny blocks, with an average length of 77
kb, while the average length of the 2,116 intergenic regions
within breakpoint regions is a much higher 100 kb. The
distributions of length of human intergenic regions are
shown in Figure 6. While the majority of the intergenic
regions are short and reside within synteny blocks (Figure
6A), notice in Figure 6B that of 241 long intergenic regions
with length greater than 1 Mb, 32 reside within breakpoint
regions or across breakpoint regions and synteny blocks. If we
assume that breakpoints occur randomly within intergenic
regions (and are nearly forbidden inside the genes), then the
gene-dense regions with small overall lengths of intergenic
regions will rarely break simply by chance, thus mimicking
what was referred to as ‘‘solid regions’’ in [9].
To investigate the hypothesis that long intergenic regions

may be potential hot spots of rearrangements, we performed
the following simulation. Assume that the genome consists of

Table 4. Randomized Unichromosomal Rearrangement Simulation with Mouse X Chromosome Anchors from Mouse/Rat Alignment

k W ¼ 0.5 Mb W ¼ 1 Mb

Number of Blocks bk (%) re (%) Reuse Rate Number of Blocks bk (%) re (%) Reuse Rate

0 15 3.9 0.0 1.29 18 2.2 0.0 1.00

1,000 15 3.9 100.0 1.29 18 3.6 94.4 1.00

2,000 15 3.9 100.0 1.29 18 2.5 100.0 1.00

3,000 15 3.9 93.3 1.29 16 3.6 100.0 1.00

4,000 15 3.9 100.0 1.29 17 3.4 100.0 1.06

5,000 15 3.9 100.0 1.29 16 3.6 100.0 1.00

DOI: 10.1371/journal.pcbi.0020014.t004

Table 5. Breakpoint Reuse Rate versus Block Size and Gap
Threshold Used in GRIMM-Synteny on Simulated Genome-Based
Random Breakage Model

Threshold (kb) W ¼ 0.5 Mb W ¼ 1 Mb

10 1.02 1.02

50 1.02 1.02

100 1.03 1.04

300 1.04 1.05

500 1.06 1.06

1,000 1.12 1.12

DOI: 10.1371/journal.pcbi.0020014.t005

Table 6. Sequence-Based versus Gene-Based Rearrangements

Characteristic

Sequence-

Based

Gene-

Based

Number of elements 1,433,472 anchors 19,598 genes

Block size threshold 1 Mb 3 genes

Gap threshold (sum) 1 Mb 4 genes

Number of blocks 294 373

Breakpoint reuse rate 1.67 1.61

Total human block length (bp) 2.746 3 109 2.509 3 109

Human breakpoint region 9.43% 16.48%

Human breakpoint region

(except telomeres) 5.71% 12.34%

Microrearrangements 10,900 98

Microrearrangement breakpoints 15,842 192

Microrearrangement reused breakpoints 5,958 4

Microrearrangement breakpoint reuse rate 1.38 1.02

Data derived from NCBI Human version 34 and Mouse version 30.

DOI: 10.1371/journal.pcbi.0020014.t006
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Gþ I nucleotides, where G is the total size of genes extended
by upstream regulatory regions and I is the total size of
remaining intergenic regions. To account for upstream
regulatory regions (which are also unlikely to be broken),
we artificially extended every gene by a region of length R
upstream, thus reducing the sizes of corresponding intergenic
regions by R nucleotides. Although regulatory regions in
mammalian genomes are often located far from the gene
starts, the average size of such regulatory regions remains
unknown. We remark that genome rearrangement studies
may shed light on the size of regulatory regions. For example,
if there was a rearrangement (or even a microrearrangement)
between human and chimpanzee R nucleotides from a gene
start, it is likely that the regulatory region for this gene is

shorter than R (otherwise, the rearrangement would disrupt
the regulatory region). Although such conclusions should be
taken with caution (e.g., they do not apply if the human and
chimpanzee genes exhibit very different regulatory patterns),
they are useful as the first approximation for the otherwise
difficult problem of delineating regulatory regions. Below we
address an even more difficult problem of estimating the
average size of regulatory regions R based on rearrangement
analysis.
We remark that if the length of regulatory regions is set to

be R, the intergenic regions shorter than R may disappear
(depending on the orientation of the genes), thus leading to
‘‘merging’’ genes separated by short intergenic regions and
promoting breakpoint reuse elsewhere. As a first approx-
imation, we assume that the probability of breakage at each
nucleotide within genes and regulatory regions is 0 and the
probability of breakage at each nucleotide in intergenic
regions is 1/I (note that I decreases as R increases). We
performed 240 random macrorearrangements with break-
points chosen by this distribution and applied GRIMM-
Synteny (using minimum block size threshold of 1 Mb and
maximum gap threshold of 1 Mb) to compute blocks and then
the breakpoint reuse rate. We contrasted this intergenic
breakage model against the standard random breakage model
(same simulation except the probability of breakage is
uniform at all nucleotides in the genome). Figure 7 shows
how the breakpoint reuse rate changes as the size, R, of
regulatory regions is increased. One can observe that break-
point reuse rate is already significant (approximately 1.5)
even for relatively modest sizes of regulatory regions. More-
over, for R ’ 90 to 140 kb, the breakpoint reuse rate is similar
to the human/mouse breakpoint reuse rate of 1.65 we
reported in [16]. We therefore argue that long regulatory

Figure 6. Distribution of Human Intergenic Regions within Synteny

Blocks or within Breakpoint Regions

(A) Regions of length �1 Mb and (B) length .1 Mb that are within
synteny blocks (blue) and within breakpoint regions or across breakpoint
regions and synteny blocks (red). Data derived from NCBI Human version
34 and Mouse version 30.
DOI: 10.1371/journal.pcbi.0020014.g006

Figure 7. Breakpoint Reuse Rates as a Function of Upstream Regulatory

Region Size in Intergenic Breakage Model Simulations

Genes from NCBI Human version 34 were each extended by length 0 to
210 kb upstream, thus shortening or eliminating the intergenic regions.
In the intergenic breakage model, simulated reversals were performed
with breakpoints chosen uniformly among the nucleotides remaining in
the shortened intergenic regions, while in the random breakage model,
breakpoints were chosen uniformly among all nucleotides in the
genome. Then blocks were derived, and the breakpoint reuse rate was
computed.
DOI: 10.1371/journal.pcbi.0020014.g007
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regions and inhomogeneity of gene distribution in mamma-
lian genomes may provide at least a partial explanation for
the fragile breakage model. A more realistic explanation,
however (in view of the fact that the estimate R ’ 90 to 140
kb seems to be rather high), is that a combination of long
regulatory regions, uneven distribution of sizes of intergenic
regions, and other (still unknown) factors triggers high
breakpoint reuse.

Discussion

The GRIMM-Synteny algorithm in Pevzner and Tesler [9] is
a parameter-dependent procedure that was designed to
somewhat artificially separate microrearrangements and
macrorearrangements. An important contribution of Sankoff
and Trinh [10] is to draw attention to the fact that these
parameters may affect the robustness of the rearrangement
analysis. There is no doubt that discarding small blocks affects
the rearrangement inference and offsets the breakpoint reuse
calculations. This paper studies the question of whether this
offset is large enough to create an appearance of a large
breakpoint reuse even in the random breakage model. We
demonstrate that this offset is relatively small as compared to
the Sankoff and Trinh [10] computational experiment and
explain why our simulation and the Sankoff and Trinh [10]
simulation disagree.

The Pevzner and Tesler [9] work is based on the reversals/
translocations/fusions/fissions model of genome rearrange-
ments and ignores other types of rearrangements, e.g., large-
scale transpositions, which are believed to be rare. They do
not attribute the breakpoint reuse phenomenon to a
particular type of rearrangement and do not rule out the
possibility that a significant portion of breakpoint reuse is
caused by yet another rearrangement operation. For exam-
ple, if one assumes that transpositions are frequent, then they
may account for a significant portion of breakpoint reuse
since every transposition creates three (rather than two)
breakpoints, immediately increasing breakpoint reuse rate as
we defined it. In this case, an analysis of giant cycles in the
breakpoint graph may be necessary to evaluate the break-
point reuse rate parameter (a series of transpositions in a
random model would not lead to the giant cycles that we
observed in the human/mouse breakpoint graph).

Evolutionary breakpoints are often confused with cancer
breakpoints. We emphasize that the well-established recurrent
breakpoints in cancer and infertility have nothing to do with
evolutionary breakpoints and do not provide corroborative
evidence for fragility in an evolutionary context. Pevzner and
Tesler [9] did not answer the question, ‘‘Where are the
recurrent breakpoints in mammalian genomes?’’ and studies
are under way to determine comparative genomics and
phylogenetic evidence for breakpoint reuses. For example,
Murphy et al. [24] recently analyzed genomic architectures for
eight mammalian genomes derived from either sequence or
large-scale radiation hybrid mapping experiments and ob-
served breakpoint reuse in independent lineages.

Another open question is how many fragile sites are in the
human genome. Pevzner and Tesler [9] did not rule out the

possibility that most breakpoint reuses are caused by very few
fragile sites. For example, one can envision a model with just
one or two fragile sites with all rearrangements having one
end in the fragile region and another end chosen randomly.
Such a fragile hubs model is not inconsistent with the Pevzner
and Tesler [9] analysis. Studies of giant cycles in the
breakpoint graph may again shed light on whether the fragile
hubs model is correct.
Sankoff and Trinh’s work is an insightful contribution to

studies of chromosome evolution that raised awareness about
the importance of synteny block identification and micro-
rearrangement analysis. Unfortunately, their rebuttal of the
breakpoint reuse phenomenon was plagued by shortcomings
of their own synteny block identification algorithm and
unrealistic choices of parameters in their simulation proce-
dure. We therefore argue that the breakpoint reuse phenom-
enon is real until the next critical argument against it
emerges.

Materials and Methods

We repeated Sankoff and Trinh’s simulation [10] by breaking it
into two parts, Simulation and ST-Synteny, as described in Section 2
of this paper.

We compared the synteny block identification algorithms of
Pevzner and Tesler’s with those of Sankoff and Trinh on simulated
data from Simulation (Section 4) using GRIMM-Synteny [9] and ST-
Synteny (Section 2). Breakpoint reuse rates were computed with
GRIMM [21,22].

In the analysis and simulations based on real genome data (Section
7), we used human/mouse anchors derived from NCBI Human version
34 and NCBI Mouse version 30. Mouse/rat X chromosome anchors
were derived from NCBI Mouse version 33 and the Rat Genome
Sequencing Consortium assembly RGSC version 3.4. NCBI Human
version 34 was also used in the intergenic breakage model simulation
(Section 8).

Supporting Information

Figure S1. Breakpoint Region Size in Simulations

Ratio of length of breakpoint region to length of genome in
simulations as a function of number of microrearrangements k and
microrearrangement size w for (A) ST-Synteny and (B) GRIMM-
Synteny.

Found at DOI: 10.1371/journal.pcbi.0020014.sg001 (11 KB PDF).

Figure S2. Number of Elements Retained in Simulations after
Deletion of Small Blocks

Number of elements retained by (A) ST-Synteny and (B) GRIMM-
Synteny, as a function of the number of microrearrangements k and
microrearrangement size w in the simulated data.

Found at DOI: 10.1371/journal.pcbi.0020014.sg002 (12 KB PDF).
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