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Serial analysis of gene expression (SAGE) not only is a method for profiling the global expression of genes, but also
offers the opportunity for the discovery of novel transcripts. SAGE tags are mapped to known transcripts to determine
the gene of origin. Tags that map neither to a known transcript nor to the genome were hypothesized to span a splice
junction, for which the exon combination or exon(s) are unknown. To test this hypothesis, we have developed an
algorithm, SAGE2Splice, to efficiently map SAGE tags to potential splice junctions in a genome. The algorithm consists
of three search levels. A scoring scheme was designed based on position weight matrices to assess the quality of
candidates. Using optimized parameters for SAGE2Splice analysis and two sets of SAGE data, candidate junctions were
discovered for 5%–6% of unmapped tags. Candidates were classified into three categories, reflecting the previous
annotations of the putative splice junctions. Analysis of predicted tags extracted from EST sequences demonstrated
that candidate junctions having the splice junction located closer to the center of the tags are more reliable. Nine of
these 12 candidates were validated by RT-PCR and sequencing, and among these, four revealed previously
uncharacterized exons. Thus, SAGE2Splice provides a new functionality for the identification of novel transcripts and
exons. SAGE2Splice is available online at http://www.cisreg.ca.
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Introduction

The complexity of the transcriptome is significantly greater
than that of the genome due to alternative splicing. It is
estimated that between 35%–65% of human genes are
alternatively spliced [1,2]. The slo gene, for example, is
estimated to produce more than 500 distinct transcripts,
which regulate various responses of the hair cells of the inner
ear to sound [3]. Identification of the transcripts present
within a cell can provide insights into the regulatory processes
that control the cell-specific interpretation of the genome [4].

Serial analysis of gene expression (SAGE), in which a
representative tag (14 to 26 base pairs [bp]) is excised from
each transcript, is a powerful and efficient technology for
high-throughput qualitative and quantitative profiling of
global transcript expression patterns [5]. SAGE quantitatively
measures transcript levels, providing the absolute number of
each transcript-specific tag within a library of all tags. That
no prior knowledge of the transcripts being studied is
required makes SAGE advantageous over array-based meth-
ods for the discovery of novel transcripts [6–11].

An essential step in the analysis of SAGE data is the
assignment of each tag to the transcript from which it was
derived [10]. This process, termed tag-to-gene mapping, involves
comparison of tag sequences to transcript databases. A
commonly used technique is to compare SAGE tags to
predicted tags (also known as virtual tags). Based on known
transcript sequences, predicted tags are those expected to be
generated by a SAGE protocol [12]. Often, the predicted tags
closest to the 39 end of transcripts are emphasized, because
SAGE protocols impart a location bias. However, in a SAGE
experiment, due to alternative splicing or incomplete enzyme
digestion [13,14], tags can be excised from other positions.

The choice of sequence databases impacts the quality of tag-
to-gene mapping [10]. A highly curated and more complete
transcriptome database not only facilitates mapping of more
tags, but also increases confidence in the mappings. Many
resources have been developed for mapping SAGE tags to
genes, including SAGEmap from the National Center for
Biotechnology Information (NCBI) [15], the National Insti-
tutes of Health Cancer Genome Anatomy Project’s SAGE
Genie [16], the Mouse SAGE Site [17], Identitag [12], and
DiscoverySpace [18]. Despite these efforts, however, a major
problem of tag-to-gene mapping exists as approximately one
third of the tags are unmapped. Inability to map tags limits
the information obtained in SAGE studies [6,7,10]. The
identification of unmapped tags remains an active research
topic in SAGE analysis.
Recent studies have attempted to map SAGE tags that did

not match the known transcriptome. Chen et al. [19] studied
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1,000 unmapped SAGE tags from publicly available libraries
by generating longer cDNA fragments from SAGE tags for
gene identification (GLGI), and concluded that 67% of the
unmapped tags originated from novel transcripts. In an
analysis of unmapped long SAGE tags (21 bp), Saha et al. [20]
predicted 60% were from transcripts of novel genes and 40%
were from unidentified internal exons of predicted genes.
Gorski et al. [8] identified 225 cases of genes that previously
had been unidentified by gene prediction programs. Each of
these studies affirmed the capacity of SAGE profiling to
facilitate identification of novel transcripts.

Tags that do not map to the transcriptome or to the
genome may span adjacent exons of which one or both were
previously unidentified [8]. We analyzed predicted tags
derived from known transcripts and observed that between
2% to 6% of these tags span a splice junction. Thus, even tags
that do not map to the genome are anticipated to be a
resource for the discovery of novel transcripts. To test our
hypothesis, we developed an algorithm, SAGE2Splice, for
mapping tags to potential splice junctions in a genome.
Applying this new method for tag-to-gene mapping, we
demonstrated that 5%–6% of unmapped tags span candidate
splice junctions.

Results

Some Predicted SAGE Tags Span a Splice Junction
We defined four distinct types of spliced tags, tags that span

a splice junction (Figure 1). A Type 0 tag matches portions of
two exons at a known splice junction. Type 0 tags were
identified by mapping to known transcripts. A Type 1 tag also
spans two known exons, but the junction is not present in the
transcriptome databases. A Type 2 tag spans a previously
known exon and a previously unknown exon. Both Type 1
and Type 2 tags indicate a novel transcript of a previously
characterized gene. A Type 3 tag spans two previously
unknown exons and indicates either two novel exons of a
characterized gene, or two exons of a novel gene.

To determine the portion of predicted tags that span splice
junctions of known transcripts, we studied the NCBI
Reference Sequences (RefSeq). From 17,848 sequences
studied, 198,419 predicted tags were extracted based on the
identification of all NlaIII restriction sites. A total of 193
RefSeq sequences (approximately 1.08%) did not contain a
NlaIII restriction site and thus were unable to give rise to a
SAGE tag. Among the predicted tags, 12,297 (6.2%) over-
lapped a splice junction (Type 0). In addition, 14 predicted
tags traversed two splice junctions (Table 1). These were due
to very small exons [21], between 1 bp and 4 bp in length.
Since the SAGE technique excises tags from the NlaIII
restriction site closest to the 39 end of transcripts, from the
RefSeq sequences, 17,655 predicted tags were extracted from
the 39-most position and investigated. Among these predicted
tags, only 292 (1.6%) were Type 0. The different Type 0
frequencies between the all-position set and the 39-most set
reflects that exons are generally longer at the 39 end of a
transcript [21]. In the analyzed RefSeq sequences, the average
length of all exons was 262 bp, whereas the average for all 39-
most exons was 1,068 bp. Hence, at the 39-most position, the

Figure 1. Tags That Span a Splice Junction May Reveal Novel Genes or

Novel Transcripts

This schematic demonstrates four known exons (1, 2, 3, and 4, boxes in
solid lines). The 39-most NlaIII enzyme restriction site (represented as ;)
lies near the 39 edge of exon 2 and a known predicted SAGE tag (long
black bar) spans exons 2 and 3 (Type 0 tag). Predicted exons (boxes in
dashed line) 3a and 3b are examples of exons predicted by SAGE2Splice.
Three other types of tags (Types 1 to 3) have been defined as potential
candidates in SAGE2Splice predictions. Tag portions arising from known
exons (short black bar), whereas tag portions arising from novel exons
(short gray bar). Solid lines connecting exons indicate known combina-
tions, whereas dashed lines indicate unknown combinations.
DOI: 10.1371/journal.pcbi.0020034.g001

Table 1. A Total of 6.2% of Predicted Tags from All NlaIII
Restriction Sites and 1.6% from 39-Most Sites Were Found to
Span a Known Splice Junction (Type 0 Tags)

Tag Position Number of

Predicted Tagsa
Number of

Type 0 Tags

Number of

Tags Spanning

Multiple Junctions

All NlaIII 198,419 12,301 (6.2%) 14

39-most NlaIII 17,655 283 (1.6%) 1

aCurated RefSeq cDNA collection was analyzed to detect NlaIII restriction sites and the
downstream 17-bp sequences (predicted SAGE tags). Predicted tags were extracted from
UCSC Annotation Database (16 July 2004).
DOI: 10.1371/journal.pcbi.0020034.t001
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Synopsis

Serial analysis of gene expression (SAGE) analysis is used to profile
the RNA transcripts present in a cell or tissue sample. In SAGE
experiments, short portions of transcripts are sequenced in
proportion to their abundance. These sequence tags must be
mapped back to sequence databases to determine from which gene
they were derived. Although the present genome annotation efforts
have greatly facilitated this mapping process, a significant fraction of
tags remain unassigned. The authors describe a computational
algorithm, SAGE2Splice, that effectively and efficiently maps a
subset of these unmapped tags to candidate splice junctions (the
edges of two exons). In two test cases, 7%–8% of analyzed tags
matched potential splice junctions. Based on the availability of RNA,
sufficient information to design polymerase chain reaction (PCR)
primers, and the confidence score associated with the predictions,
12 candidate splice junctions were selected for experimental tests.
Nine of the tested predictions were validated by PCR and
sequencing, confirming the capacity of the SAGE2Splice method
to reveal previously unknown exons. Using recommended high
specificity parameters, 5%–6% of high-quality unmapped SAGE tags
were found to map to candidate splice junctions. An Internet
interface to the SAGE2Splice system is described at http://www.
cisreg.ca.

SAGE2Splice for Transcript Discovery



probability of finding a splice junction within a tag is lower
than that from the set of all NlaIII positions.

Intron Properties
In our development of SAGE2Splice, an important search

criterion was to determine the maximum length the
algorithm should allow for candidate introns. Previous
studies have shown that, although a typical intron is 40–125
bp in length, the average length is approximately 1,000 bp
because the sizes of introns vary over a very wide range
[21,22]. In our studies of the RefGene annotations, we
confirmed that within the known splice junctions, introns
vary from 6 to 1,195,292 bp in length, with a median of 1,271
bp (Figure 2). Ninety percent of introns were smaller than
10,000 bp and 95% were smaller than 20,000 bp. We
incorporated 10,000 bp as the default for maximum intron
size in the search for candidate splice junctions.
To gain a more detailed understanding of the sequence

patterns of splice junctions, we examined 10 bp flanking each
side of the donor junctions and 10 bp flanking each side of
the acceptor junctions. For each junction type, we con-
structed a matrix representing the frequency of each
nucleotide at each position. Position weight matrices (PWMs)
were constructed by converting the frequencies into scores
relative to the expected frequency of a randomly selected
nucleotide (see Materials and Methods). By using these
scoring matrices, we generated genuine score distributions
for true splice junctions in RefSeq and empirical score
distributions for randomly selected sequences from the
genome. By superimposing the genuine distribution on the
empirical distribution, it was shown that genuine splice
junctions typically had high scores and were located on the
far-right end of the empirical curve (Figure 2). Hence, we
incorporated these properties into our SAGE2Splice algo-
rithm for ranking and determining the likelihood of
candidates.

The SAGE2Splice Algorithm
Pre-processing the input SAGE tags. In a 21-bp SAGE tag, if

a splice junction exists within the sequence, one of the two
portions is no shorter than 11 bp in length. Each 21-bp tag is
therefore split into two equal portions of 11 bp (overlapping
by one bp), which are used as search strings simultaneously.
We term these equal-sized portions as the halftags. Prior to a
search, complementary sequences for the halftags were
constructed because genes can be located on either strand
of the genome. The program reads the sequences of each
chromosome one segment of 100,000 bp at a time. To

Figure 2. Length and Boundary Nucleotides of Introns Are Important

Properties for Detecting a Splice Junction

(A) Fewer than 10% of introns in RefGene annotation were greater than
10,000 bp in length. PWMs for splice junctions with respect to true
donors (B) and true acceptors (C) were applied to true splice junctions
defined by RefGene annotations and to randomly selected genome
sequences containing the canonical dinucleotide pair at the appropriate
position. The scores, which were computed based on the profile model,
for donors and acceptors were plotted and showed that true splice
junctions acquired high scores. The information content and the relative
frequency of nucleotides at each position are measured in bits (vertical
axis of the sequence logo diagrams) to indicate the strength of signals.
Two bits of information are required to determine the content of a DNA
sequence.
AU, arbitrary units.
DOI: 10.1371/journal.pcbi.0020034.g002
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perform a complete search, the algorithm holds three such
segments in memory at any one time: the previous segment,
the current segment, and the next segment. Searching for a
candidate splice junction in SAGE2Splice consists of three
progressive levels (Figure 3). At each level, only if the defined
matching criteria are fulfilled will the algorithm proceed to
the next level. Otherwise, the algorithm imports a new
segment of the genome into memory, and the search starts
over from the first level.

Search Level 1: Matching halftags. In Search Level 1,
SAGE2Splice searches each halftag against the current
segment by using the pattern-matching function built into
the Perl programming language (version 5.6). Positions of all
matches are stored as a tab-delimited string. A complemen-
tary halftag match, indicating a position on the complemen-
tary strand, is stored as a negative position. If at least one
halftag match is found, the algorithm proceeds to Search
Level 2. Otherwise, the next segment of the chromosome is

imported, and the search for candidate splice junctions
returns to Search Level 1.
Search Level 2: Extending halftags. SAGE2Splice searches

for one boundary of a potential candidate intron before
searching for the other boundary. During Search Level 2,
SAGE2Splice attempts to find, for each halftag match, one of
the edges of a potential intron. From Search Level 1, a 59

halftag match to the genomic segment indicates a search of a
potential donor intron-exon boundary in Search Level 2.
Conversely, a 39 halftag match suggests a search for the
acceptor boundary. Hence, in the second level, the SAGE2-
Splice algorithm extends the first level halftag match, base by
base against the original tag. At every base extension,
depending on whether or not the halftag match is 59 or 39,
the respective intron boundary dinucleotide is added and
matched to the genome segment. As a result, all potential
candidates for one edge of an intron are discovered for every
halftag match. For the 59 halftag match, the extension is
toward the 39 end and the donor dinucleotide is GT, whereas

Figure 3. SAGE2Splice Algorithm Searches the Genome for Novel Splice Junctions

By splitting each tag into two halftags and making complementary copies, the algorithm searches for candidate splice junctions against continuous
segments of the genome in three progressive steps. After each level, if the matching criteria are fulfilled, the algorithm goes on to the next level. If
criteria are not fulfilled, the algorithm analyzes the next tag. Once all tags have been analyzed, the next genomic segment is read, and the algorithm
returns to the first level.
DOI: 10.1371/journal.pcbi.0020034.g003
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for the 39 halftag match, the extension is toward the 59 end
and the acceptor dinucleotide is AG. A match of the
complementary halftags indicates a potential candidate on
the complementary strand of the genome sequence and, thus,
the base extension direction is opposite that of the sense
strand. If a potential intron–exon boundary is found, the
algorithm continues to Search Level 3. Otherwise, SAGE2-
Splice reads the next genomic segment and returns to Search
Level 1.

Search Level 3: Searching remaining portions. In Search
Level 3, the remaining tag portion for the corresponding
candidate splice junction is sought within 10,000 bp, or a
maximum distance set by the user. If the preceding level
found a candidate donor junction, the search looks for
candidate acceptor junctions with the conserved dinucleo-
tide, AG, toward the 39 direction, in accord with the
definition of splice junctions [22]. If, on the other hand, the
previous search returned a candidate acceptor junction, the
search for candidate donors is toward the 59 direction and the
conserved dinucleotide is GT. Searches for the remaining tag
portions for the complementary halftag are in the opposite
direction. When a candidate splice junction is returned, the
algorithm proceeds to scoring and ranking the candidate.
Because a match in Search Level 1 could be close to the edges
of the current genomic segment, having the previous and the
next segments in memory allows for potential matches
located beyond the current segment. If, however, Search
Level 3 does not return a candidate splice junction, the search
returns to Search Level 1 to start on a new segment of the
chromosome.

Scoring Candidate Splice Junctions
Once a candidate is discovered and returned by Search

Level 3, for both the donor and the acceptor, 10 bp flanking
each side of the boundary are extracted and evaluated using
the respective PWM. Probability values (p-values) are gen-
erated by determining the position of the observed scores
within the empirical score distributions. For a tag that
matches multiple candidates, SAGE2Splice ranks the candi-
dates according to the composite p-value. After this process,
SAGE2Splice returns for each candidate the following
information to the user: the chromosome number; the two
tag portions with their positions, scores, and p-values; the
composite p-value; and the predicted intron length.

Efficiency Tuning of SAGE2Splice
Five parameters affect the performance of SAGE2Splice,

including the number of SAGE tags in the search, the length
of SAGE tags, the cutoffs for p-values, the cutoff for maximum
intron length, and the length of genomic segment in memory.
Other than the length of genomic segment in memory, all
factors depend on either the input SAGE tags or user-
specified parameters. We investigated the use of genomic
segments of different lengths to fine-tune SAGE2Splice for
best performance (Figure 4). The total execution time of
SAGE2Splice decreased until it reached a segment size of
100,000 bp, and linearly increased thereafter.

Sensitivity and Specificity
To test the accuracy of SAGE2Splice and determine the

optimal parameter settings, we investigated the sensitivity
and the specificity for various p-value cutoffs, ranging from

0.00001 to 1. The receiver operating characteristic (ROC)
curve demonstrates a tradeoff between sensitivity and
specificity (Figure 5). As we varied the overall p-value cutoffs,
it was observed that when a specificity of close to 95% was
achieved, sensitivity dropped to 55%. The ROC curve shows
that, although SAGE2Splice can achieve high sensitivity,
specificity suffers dramatically at such settings. Moreover,
the positive predictive value, which indicates the proportion
of the candidates that are true positives, decreases as the p-
value cutoffs increase (Figure 5). Such results correspond to
previous studies [23,24] that showed that true splice junctions
acquire high profile scores in the evaluation scheme and,
thus, candidates with lower p-values are more likely to be true.
In the ROC curve, the point with the minimum number of
misclassified candidates (defined by a tangent line for which
the slope equals 1) occurs when the composite p-value cutoff
is approximately 0.0025, leading to a sensitivity (true positive
rate) of 0.9 and a specificity of 0.82 (false positive rate¼ 0.18)
(Figure 5). Similarly, separate analyses of the donor junction
and the acceptor junction revealed the optimal cutoffs to be
0.06 and 0.15, respectively.

Edge Length and Rank Analysis
To analyze the relationship between search accuracy and

the position of a splice junction within a splice tag, we
obtained expressed sequence tag (EST) transcript annota-
tions from the University of California Santa Cruz, (UCSC)
Genome Browser (http://genome.ucsc.edu) and extracted
Type 0–predicted tags that had GT and AG for the donor
and acceptor boundary dinucleotides, respectively, and had
introns between 50 bp (minimum imposed to avoid gaps in
annotation) and 10,000 bp in length. Among the 200,000
unmapped SAGE tags in the Mouse Atlas of Gene Expression
Project (detailed below) [25], 261 such tags, which did not
map to RefSeq, Ensembl, Mammalian Gene Collection (MGC),
or the mouse genome, were found to match these EST-
predicted tags. These 261 EST-only tags are distinct from the
transcript dataset used in initial parameter selection and
junction profile model building, thus providing an independ-
ent test set. For each splice junction position within the tags,
the percentage of tags correctly mapped by using the optimal
p-value cutoff values was determined (Figure 6). As illustrated,
a minimum length of 5 bp for the shorter edge produces
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Figure 4. SAGE2Splice Was Optimized for Processing Time by Using

Different Genomic Segment Lengths (Ranging from 10 kb to 1,000 kb)

For SAGE2Splice performance, 100 kb was determined as the optimal
size.
DOI: 10.1371/journal.pcbi.0020034.g004
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Figure 5. SAGE2Splice Achieves High Sensitivity but Relatively Low Specificity

(A) The area under the ROC curve is 0.9232, indicating a candidate found by SAGE2Splice was much better than expected by random chance.
Conversely, to achieve high specificity, the sensitivity (true positive rate) was significantly compromised. The tangent point of the dashed line is the
optimal point when the costs of misclassifying positive and negative candidates are equal. This point corresponds to a p-value cutoff of 0.0025.
(B) Analysis of the ROC curve for the donor splice junctions indicates a cutoff p-value of 0.06 as the optimal point.
(C) For the acceptor splice junctions, the optimal cutoff p-value is determined to be 0.15.
(D) The positive predictive value indicates that a high probability (greater than 0.9) of correct predictions requires a restrictive p-value (less than 0.0001).
DOI: 10.1371/journal.pcbi.0020034.g005

Figure 6. The Probability of Finding the True Splice Junction Is Lower if the Splice Junction Is Located Closer to the Edge of a Tag

By using the unmapped tags in the Mouse Atlas Project that map to spliced tags predicted from EST transcripts, the percentage of true splice junctions
found was analyzed for each short edge length.
(A) By using high specificity parameters (cutoffs of 0.06, 0.15, and 0.25 for donor, acceptor, and composite p-values, respectively), 93% of the true splice
junctions were found when the shorter edge is greater than or equal to 5 bp in length.
(B) With no p-value cutoffs, 90% of the true splice junctions were found with the top-ranked p-value when the shorter edge is 5 bp in length.
DOI: 10.1371/journal.pcbi.0020034.g006

PLoS Computational Biology | www.ploscompbiol.org April 2006 | Volume 2 | Issue 4 | e340281

SAGE2Splice for Transcript Discovery



reliable predictions. In many cases, laboratory researchers are
prepared to test multiple candidate predictions. Therefore,
we investigated, for each length, the number of top-ranking
candidates required to detect a true junction (Figure 6). The
closer a splice junction is to the center of the tag, the fewer
candidates are required to find a validated result. For each
tag, by testing the candidate with the lowest p-value,
investigators can expect 90% of tags to be mapped success-
fully, if the junction is at least 5 bp from the edge of the tag.

Unmapped Tag Search Results
We applied SAGE2Splice search to a collection of 20,000

unmapped SAGE tags obtained from the Mouse Atlas of Gene
Express Project (http://www.mouseatlas.org). These tags were
selected based on tag abundance from a set of LongSAGE
libraries. Using default p-value cutoffs for donor, acceptor,
and composite splice sites, and 10,000-bp maximum intron
size, a total of 1,511 tags (7%) were mapped to candidate
splice junctions (Dataset S1).

The selection of tags based solely on abundance excludes
high-quality tags for rare transcripts. We utilized a second
collection of Mouse Atlas of Gene Expression LongSAGE
libraries and selected 20,000 high-quality tags based on the
method described in Siddiqui et al. [25], a procedure that
preserves rare high-quality tags. Of the 20,000 tags, 1,639
(8%) mapped to candidate splice junctions (Dataset S2). Thus,
both in silico analyses indicate that a striking portion (7%–
8%) of unmapped SAGE tags are consistent with potential
splice junctions.

Candidate Validation
To select candidate junctions for testing, Perl scripts were

written to computationally categorize the candidates from
the quality-ranked tag collection into tag types. For clarity,
the 1,639 tags mapped to 7,757 candidate junctions. We
screened all candidate junctions irrespective to edge length.
Based on matching both donor and acceptor positions in the

UCSC annotation database, 15 candidate junctions were
classified as Type 1. There were 803 junctions classified as
Type 2, for which either only the donor position or only the
acceptor position matched an annotated exon. The remain-
ing 6,939 candidate junctions matched no known exons and
were classified as Type 3. By mapping candidates correspond-
ing to Type 2 and Type 3 to exons predicted by GenScan [26],
TwinScan [27], or SGP [28], five Type 2 candidates and three
Type 3 candidates were categorized as prediction supported.
On the basis of RNA sample availability, we picked eight
candidates from the Type 1 category, two candidates from the
Type 2 category, and two candidates from the Type 3
category for RT-PCR testing (Table 2).
For the selected candidates, primers were designed based

on the contiguous exons predicted by SAGE2Splice (Table 3).
RT-PCR results showed that nine of the 12 tested candidates
generated products of the predicted length (Figure 7). The
other three candidates produced bands that were larger than
expected. All of the latter candidate splice junctions were
located close to the edges of the SAGE tags. However, two of
the nine candidates did have the correct band sizes, even
though the candidate splice junctions were located only 4 bp
away from the tag edge. Sequencing of the RT-PCR products
confirmed the products contained the expected sequences (in
addition to matching the expected size). Two strong bands
were observed for candidate 1–4, one that matched the size of
the expected length (221 bp) and the other one larger (361
bp). Sequence of the expected band corresponded to the
novel alternative combination predicted; sequence of the
larger product revealed an unpredicted, previously unidenti-
fied alternative transcript of the same gene. Unpredicted
larger bands were also observed for candidates 1–7 and 1–8
(306 bp and 197 bp, respectively) and corresponded to known
transcripts.
We used sequences from the validated candidates to

computationally predict their longest open reading frames

Table 2. Twelve Candidates Were Selected for RT-PCR Validation

IDa Chrb Donor Match Donor

Position

Acceptor

Match

Acceptor

Position

Intron

Size

Composite

p-Valuec
Gene

Named
Validatione Accession

Numberf

1–1 1 CATGGTGAAGCTCGCAAAG 86244556 GA 86238632 �5924 2.2 3 10�6 Ncl 3 ND

1–2 1 CATGGTGAAGCTCGCAAAG 86244556 GA 86240496 �4060 2.2 3 10�5 Ncl 3 ND

1–3 4 CATGTAGTGTTTG 117657859 AATGTTCC 117656489 �1370 9.2 3 10�5 Ppih � DQ113644

1–4 5 CATGTCCCTCAAG 126140225 GTGTTCTC 126134146 �6079 1.6 3 10�5 AK081926 � DQ113645g

1–5 10 CATGAGAGCGAAG 128675985 GCTGAAGC 128675467 �518 5.3 3 10�6 Rpl41 � DQ113647

1–6 14 CATG 20780218 CCAAAGGAGTAGATCTG 20785233 5015 4.9 3 10�5 Rps24 3 ND

1–7 19 CATGCGAGCTG 6710208 GCATTCGTCC 6711938 1730 9.6 3 10�6 Tpt1h � DQ113648

1–8 X CATG 124592868 GAAAGCGGCGTTACGAC 124593658 790 6.5 3 10�6 Rpl136a � DQ113649

2–1 4 CATG 132062103 GAGGACACTTGTCAGGA 132060011 �2092 2.0 3 10�5 Ccs � DQ113650

2–2 11 CATGCAGGGTGATG 75371984 ATTCCTA 75375252 3268 3.7 3 10�4 Ywhae � DQ113651

3–1 4 CATGCCCAG 135998365 GTCCACGGCTCC 135998673 308 3.0 3 10�4 s2sEMS1 � DQ113652

3–2 13 CATGGACAT 111936186 ATTCCTTTTGCC 111933949 �2237 2.5 3 10�4 s2sEMS2 � DQ113653

aThe first digit of the ID indicates the type of tag. The second digit is a sequential number.
bChr, chromosome.
cA composite p-value was computed as the product of the donor p-value and the acceptor p-value.
dAll selected candidates fulfill cutoffs of 0.06, 0.15, and 0.25 for donor, acceptor, and composite p-values. Gene Ontology names were assigned to Types 1 and 2 candidates. Candidate 1–4
did not match to a characterized gene. Accession number of the matched mRNA transcript was assigned. Gene names for candidates 3–1 and 3–2 were assigned by this project.
eA check mark (�) indicates the sequence was as predicted; an 3 indicates that it was not as predicted.
fND, not done. For sequences that corresponded to the predicted transcript, a GenBank accession number is assigned.
gCandidate 1–4 generated two strong RT-PCR bands, one an unpredicted novel transcript (DQ113646).
DOI: 10.1371/journal.pcbi.0020034.t002
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(ORFs). Candidates 1–3 and 2–2 encoded short alternative C-
terminal sequences (Table 4). Candidates 1–5, 1–7, and 1–8
contained alternative ORFs. Novel ORFs were predicted
within candidates 1–4, 2–1, 3–1, and 3–2. Protein–protein
BLAST (BLASTP) to the NCBI all-organism non-redundant
database showed no significant matches for candidates 1–3,
1–4, 1–5, 1–7, 1–8, and 2–2. Candidate 2–1 matched a dog zinc
finger DHHC domain–containing protein. Candidates 3–1
and 3–2 showed significant similarities to previously reported
rat proteins: heparin sulfate proteoglycan 2 and integrin
alpha 1. Significant matches to known proteins in a different
organism are strong evidence that these three predicted
transcripts encode functional proteins.

Experimentally Motivated Heuristic Filtering
Of the tested candidates, the two with a shorter edge of 2

bp and one with a shorter edge of 4 bp were not detected by
RT-PCR. Conversely, all candidates with a splice junction
closer to the center of the tag were confirmed by RT-PCR.
These observations are consistent with our Edge Length and
Rank Analysis (see above), which suggested a minimum length
of 5 bp for reliable predictions. Thus, we recommend
eliminating candidates with edges less than 5 bp. Applying
this filter to Dataset S1 results in 1,064 tags (5.3%) mapping to
2,588 candidate splice junctions. Applying the filter to
Dataset S2 gives 1,212 tags (6.1%) mapping to 3,458 candidate
junctions. Together this data predicts that 5%–6% of
unmapped tags span a splice junction.

Discussion

We have developed a tool, SAGE2Splice, for efficient
mapping of SAGE tags to potential splice junctions in a
genome. By using a scoring system that generates a
probability value for each candidate splice junction, SAGE2-
Splice allows users to assess the quality of the candidates.
Furthermore, the in silico validation pipeline automatically
classifies the candidates into three categories, based on
overlaps with annotated and predicted exons. We identified
candidate junctions for 7%–8% of unmapped tags, using
parameters designed for high specificity. This is the first
attempt to investigate systematically SAGE tags that span
splice junctions and to use this characteristic for transcript

identification. The online version of SAGE2Splice (http://
www.cisreg.ca) allows users to search the genome sequences
for human, mouse, rat, and worm, the four most common
organisms in NCBI’s SAGE database. All source code and data
are available for download from the SAGE2Splice Web site.
Scanning a genome for potential splice junctions is

computationally challenging. The mouse genome, roughly 3
Gb, takes on the order of several minutes to scan. Disk access
dominates the running time when the number of input tags is
low. As the number of input tags increases, the search time
becomes dominant. Due to the increased probability of
observing halftag matches that trigger more computationally
intensive searches, longer maximum intron length settings
increase runtime. The time efficiency of SAGE2Splice is
O(nm), where n is the number of input tags and m is the size of
the genome. Since SAGE2Splice reads and keeps only a fixed
length of genomic segment in memory at any time, memory
usage is minimal. Memory space is dependent on the number
of input tags, and, thus, is defined as O(n), where n is the
number of input tags.
The portion of tags corresponding to splice junctions in a

SAGE library is unknown. Incomplete enzyme digestion or
alternative splicing at the 39 end of a transcript could give rise
to multiple tag types from the same gene [13]. Thus, we
expect the portion of spliced tags in a SAGE experiment to be
higher than 1.6%, which was based on predictions from the
39-most tags in RefSeq transcripts, but lower than 6.2%,
which was based on predicted tags from all positions. Among
the high expression and or high sequence-quality unmapped
tags, the portion of spliced tags is expected to be higher. In
both analyses of unmapped SAGE tags, 7%–8% consistently
matched a candidate splice junction when high specificity
parameters were used. By applying our recommendation to
filter out candidates with a minimum edge length less than 5
bp, this value is reduced to 5%–6% of unmapped tags
matching a candidate splice junction. This observation is not
inconsistent with the recent recognition of the complexity of
the mammalian transcriptome brought about by alternative
splicing [1].
One area for improvement of the SAGE2Splice algorithm

would be to incorporate methods to also detect non-canon-
ical candidate junctions. As in other studies [23,24], we

Table 3. RT-PCR Primers Were Designed for the Selected Candidates Based on Sequences of the Two Predicted Exons

ID Tissue Forward Primer (Name) Reverse Primer (Name) Product Size (bp)

b-actin All tissues used GCATGGGTCAGAAGGAT (oEMS1507) CCAATGGTGATGACCTG (oEMS1508) 615

1–1 P84 days visual cortex TGAGCTCTTCCGAGCTGCT (oEMS2184) GTGAAACAGATCGTCCATCAA (oEMS2185) 165

1–2 P84 days visual cortex TGAGCTCTTCCGAGCTGCT (oEMS2184) TGCCAAACACTTTTAAACCAG (oEMS2186) 153

1–3 E11.5 days whole head CAAACAGTGGTCCCAGTACAA (oEMS2156) GCCTGTGGGAACATTCAAA (oEMS2157) 102

1–4 P27 days visual cortex AAGGAAGATGGCGAAGACAGT (oEMS2152) AGGGGAGGCTCATCTTCTGAA (oEMS2153) 215

1–5 E11.5 days whole head CATGAGAGCGAAGGCTGAA (oEMS1650) TGAGACTCATTACCGATGGCA (oEMS2149) 157

1–6 P84 days visual cortex TGCGCGTTGATATGATTGGT (oEMS2176) GCAGACGTGTAGGAGCTTTTT (oEMS2177) 168

1–7 P84 days hypothalamus CCGAAATGTGCAGCTGTCTAA (oEMS2160) TAGGGGTCCATCGATGAACA (oEMS2161) 127

1–8 P84 days visual cortex GCTCCTGCGAACATGGAAA (oEMS2180) TTGCGGAAAATAGGCTTAGTC (oEMS2181) 79

2–1 P20 days visual cortex ATCACCAACTGCTGTGCTGTG (oEMS2168) AGATGGCAAAGTCCTGACAA (oEMS2169) 172

2–2 E17.5 days skeletal muscle AGCAGCTTTTGATGACGCAA (oEMS2164) TTAGGAATCATCACCCTGCA (oEMS2165) 136

3–1 P21 days uterus ATAGAATCCTCGTCGCCATC (oEMS2174) ACAACAATGGAAGCCTCCTT (oEMS2175) 233

3–2 P42 days visual cortex CCGTGAGAGTGACTTTGGATT (oEMS2172) AACCACTGTCCGGGTGTTGTA (oEMS2173) 263

DOI: 10.1371/journal.pcbi.0020034.t003
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adopted PWM profiles for splice site detection. In addition,

SAGE2Splice uses tag sequence as support and includes a

criterion for the presence of the canonical dinucleotide prior

to scoring the candidates. This heuristic requirement for the

canonical dinucleotide pair limited our searches to about

96.27% of potential splice junctions (according to known

splice junctions in RefSeq annotation). We would like to

incorporate methods such as decision trees into our splice

junction evaluation scheme and, thus, allow SAGE2Splice to

detect non-canonical candidate junctions.

SAGE2Splice is demonstrated to be a potent tool for

computational prediction of novel splice junctions using

unmapped tags. The results indicate that unmapped SAGE

tags represent a rich resource for the discovery of novel

transcripts. As the annotation of genomes and the character-

ization of genes and transcripts continue, systematic explo-

Figure 7. Nine of 12 Selected Candidates Revealed Novel Splice Junctions by RT-PCR and Sequencing

(A) Predicted splice junctions of the 12 selected candidates. First digit of the candidate ID indicates the tag type; the second digit is arbitrarily assigned.
(B) Except for Candidates 1–1, 1–2, and 1–6, all candidates show the correct product size and were sequence validated. A larger band from an
unpredicted novel splice junction was also observed for candidate 1–4. Larger bands were also observed for candidates 1–7 and 1–8, but were shown
to be known splice variants. Candidates that were validated by RT-PCR and by sequencing are indicated by a check mark (�) under the respective lane;
candidates not validated, by an 3.
NT, negative control with no RNA template;�RT, negative control with no reverse transcriptase.
DOI: 10.1371/journal.pcbi.0020034.g007
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ration of candidate novel splice junctions through the use of
SAGE2Splice will help elucidate the transcriptome.

Materials and Methods

Source of transcripts and known splice junctions. The genomic
sequences of C57BL/6J mouse (mm5, May 2004) and the RefGene
annotation database of RefSeq transcripts (July 16, 2004) were
obtained from the UCSC Genome Browser [29]. Sequences in RefSeq
are considered to be high quality because they have been examined
and curated by experts [30]. The UCSC genome annotation pipeline
maps the transcript sequences to the mouse genome and identifies
the exon coordinates.

For each transcript, the RefGene annotations include the
chromosome, the orientation, the exon coordinates, and the
translated region coordinates. Based on this information, we
developed programming scripts in the Perl language (version 5.6) to
re-construct the RefSeq sequences from the mouse genome sequence.
These re-constructed RefSeq sequences enabled us to examine the
boundary patterns of each splice junction, as well as to analyze the
predicted SAGE tags and the number of Type 0 tags.

Extraction of predicted SAGE tags. We computationally extracted,
from the RefSeq transcript sequences, all predicted SAGE tags, by
obtaining 21 bp (LongSAGE) downstream of each NlaIII-anchoring
enzyme restriction site. Each predicted tag was annotated with its
distance from the 39 end, which was given the position 0.

Scoring splice junctions. For each observed splice junction, we
examined the window of 10 bp on either side. By counting the
occurrences of each nucleotide at every position, frequency matrices
were constructed for donor and for acceptor patterns. Assuming that
in a random sequence all four nucleotides have equal probability, we
converted these matrices, for every nucleotide at every position, to
PWMs [31] by using the formula Spos ¼ log2

� f requency
0:25

�
. For each donor

and acceptor junction, 10 bp from each side of the boundary were
extracted and, by using their respective PWM, a score was com-
puted as score ¼

Ppos¼10
pos¼�10 Spos. To generate empirical score distribu-

tions for p-value assignments, 100,000 sequences of 20 bp in length
and containing G and T at the 11th and 12th positions were randomly
selected from the genome, and each were scored by the donor PWM.
Similarly, 100,000 sequences of 20 bp containing A and G at the ninth
and tenth positions, were selected and each scored by the acceptor
PWM. Empirical distributions were generated by ranking the scores.
For each candidate intron, the proposed donor and acceptor
junctions were scored separately, according to their respective
matrices. A p-value was assigned based on the relative position of
the observed score on the junction’s empirical distribution. Assuming
independence, a composite p-value was computed as p(Donor, Acceptor)
¼ p(Donor)p(Acceptor).

SAGE2Splice implementation and features. The core program of
SAGE2Splice was written in the Perl programming language (version
5.6), and executed by using a compiled version to increase perform-
ance. An Internet interface was created by using the PHP scripting
language (http://www.php.net). In addition to providing a list of SAGE
tags as inputs, the user has the options of specifying the following: the

anchoring enzyme recognition sequence (default is NlaIII, CATG), the
maximum intron size (default is 10,000 bp), and the cut-off p-values
for the donor candidate, the acceptor candidate, and the composite
candidate (defaults are 0.06, 0.15, and 0.0025, respectively). The
implementation of SAGE2Splice allows the user to adapt to different
organisms simply by modifying the configuration file. The SAGE2-
Splice program and the Web interface PHP script, are available for
download (http://www.cisreg.ca).

Efficiency tuning of SAGE2Splice. We tested a series of different
genomic-segment size settings to find an optimal size for computa-
tional efficiency. Tested sizes include: 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 kilobasepairs.
For each size, we performed five iterations of the SAGE2Splice
algorithm to search for ten randomly selected SAGE tags, and
recorded the average execution time in seconds. Efficiency analysis
was performed on a 14-node cluster, in which each node had two
Intel Xeon processors at 2.4 GHz with 1.5 GB random access memory
running Red Hat Linux version 7.3 (Red Hat, Raleigh, North
Carolina, United States). Perl version 5.6 (O’Reilly Media, Sebastopol,
California, United States) was used to compile the core SAGE2Splice
program.

Sensitivity and specificity. We randomly chose from the list of
predicted tags 1,000 tags that were known to span a splice junction to
have GT and AG as the junction dinucleotide pairs, and to have the
introns within 10,000 bp of each other, as our positive controls for
testing SAGE2Splice. By searching against the corresponding genome
using SAGE2Splice, true positives (TP) were identified if the original
splice junctions were found, and false negatives (FN) were identified if
no known splice junction was found. For negative controls, we chose
from the same predicted tag lists, 1,000 tags that were known not to
traverse a splice junction. A true negative (TN) evaluation is when no
candidate was output by SAGE2Splice, whereas a false positive (FP)
identifies a candidate junction for a negative tag. Sensitivity of
SAGE2Splice was computed as TP

TPþFN ;whereas specificity was com-
puted as TN

TNþFP .
Source of SAGE tags. In searching for novel transcripts, we utilized

the SAGE data generated from the Mouse Atlas of Gene Expression
Project [25]. The Atlas project aims to examine comprehensively and
quantitatively the expression of genes of various organ and tissue
types throughout the development of mouse, from a single-cell zygote
to the adult. For genetic homogeneity, throughout the project only
the C57BL/6J strain of mouse was used for library construction. At the
end of the project, 200 SAGE libraries will have been generated. The
LongSAGE protocol [20], which is similar to the original SAGE [5] in
preparation, but generates 21-bp tags, is being used in the majority of
the SAGE libraries constructed. In this study, only the 21-bp tags were
used. All SAGE data and analysis tools are public and can be
downloaded from the Web (http://www.mouseatlas.org).

Searching unmapped SAGE tags. In the Mouse Atlas of Gene
Expression Project [25], SAGE libraries that were completed and in
progress of construction during the period of January 2005 to
September 2005 were pooled to generate a meta-library. The
abundance of each tag type is summed. We exhaustively mapped
the tags in this meta-library to all predicted tags extracted from
RefSeq [30], Ensembl transcripts, MGC [32], mRNA sequences, EST

Table 4. ORF and BLASTP Analyses of the RT-PCR and Sequencing Validated Candidates

ID ORF Impact BLASTPa,b Results for New Sequence

1–3 Alternative C-terminus pre-mature stop No significant match

1–4 ORF predicted with stop codon � 95 amino acids No significant match

1–5 Alternative ORF 32 amino acids No significant match

1–7 Alternative ORF without stop codon � 22 amino acids No significant match

1–8 Alternative ORF without stop codon � 23 amino acids No significant match

2–1 ORF predicted with stop codon � 46 amino acids Match to Canis familiaris zinc finger DHHC domain–containing protein

(XP_854957.1)

2–2 Alternative C-terminus pre-mature stop No significant match

3–1 ORF predicted with stop codon � 79 amino acids Match to Rattus norvegicus heparin sulfate proteoglycan 2 (XP_233606.3)

3–2 ORF predicted without stop codon � 88 amino acids Match to Rattus norvegicus integrin alpha 1 (NP_112256.1)

aBLASTP, protein–protein BLAST versus NCBI nr (all organisms) database (7 September 2005).
bSimilarity on both predicted exons is required for a significant match.
DOI: 10.1371/journal.pcbi.0020034.t004
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collections, and the C57BL/6J mouse genome (NCBI Build 33), as well
as to the full mouse UniGene mapping of SAGEmap (Build 145) [15],
and then we selected the 20,000 most abundant SAGE tags for
SAGE2Splice searches against the C57BL/6J mouse genome sequence
(NCBI Build 33). We used the default 10,000-bp maximum intron
length and p-value cutoffs of 0.06, 0.15, and 0.0025 for the donor, the
acceptor, and the overall score, respectively.

To include in the search those rare tags that were of high quality,
we pooled a separate meta-library based on the libraries completed
or in progress before January 2005. As described by Siddiqui et al.
[25], each tag sequence was assigned a quality factor, which was
computed by using PHRED scores [33], and a tag sequence
probability value (p-value) was assigned based on the quality factor
and the rate of errors in library construction. For tags observed more
than once, individual p-values were multiplied to obtain a composite
p-value. The more frequent the observations, the more confidence in
the existence of the tag, thus resulting in a lower p-value. The tags in
this meta-library were ranked by their composite p-values, and
SAGE2Splice search was applied to 20,000 tags with the lowest p-
values using the same criteria as the previous dataset.

Categorization of splice junction candidates. Three pipelines were
created to classify the candidates into their respective categories. We
obtained, from the UCSC Genome Browser, transcript annotations,
including RefSeq, Ensembl transcripts, MGC, mRNA sequences, and
EST collections, and gene predictions annotations, including Twin-
Scan [27], GenScan [26], and SGP Gene [28]. Candidates returned by
SAGE2Splice were categorized by matching candidate junction
positions to those in known transcripts. Candidates associated with
Type 2 and Type 3 tags were further categorized by mapping the
candidate junction positions to gene prediction annotations.
Candidates that mapped to predicted junctions were classified as
high priority in the validation list.

RNA extraction. All samples were manually dissected and stored at
�80 8C until RNA extraction. Frozen tissue was disrupted and
homogenized for 30 s with a Polytron PT 1200CL homogenizer
(Kinematica, through Brinkmann Instruments, Mississauga, Canada)
at a setting of 3 (;13,000 RPM), equipped with a 7-mm generator (PT-
DA 1207/2EC). RNA from each sample was extracted by using either
RNeasy Mini Kit or RNeasy Lipid Tissue Mini Kit (Qiagen,
Mississauga, Canada), with an on-column DNaseI treatment. Quality
assessment and quantification of each RNA sample was done by using
RNA 6000 Nano LabChip Kit on an Agilent 2100 Bioanalyzer (Agilent
Technologies Canada, Mississauga, Canada). Tissue samples of
embryonic (E) 11.5 whole head (rEMS315, from EMS laboratory
collection), post-natal day (P) 84 hypothalamus (rEMS340), P21 uterus
(rEMS341.01), and E17.5 skeletal muscle (rEMS344) were processed by
using the RNeasy Mini Kit protocol. Samples of visual cortex P20
(rEMS300), P27 (rEMS301), P42 (rEMS304), and P84 (rEMS305) were
processed by using the RNeasy Lipid Tissue Mini Kit following
manufacturer’s directions with the modification of using 1.5 ml Phase
Lock Gel-Heavy tube (Eppendorf Scientific, through Fisher Scientific,
Ottawa, Canada) for more robust phase separation. All tissues were
extracted from male C57BL/6J mice, except for the uterine tissue
(rEMS341).

RT-PCR. Primers for each candidate (Table 3) were designed by
using Web Primers provided by the Saccharomyces Genome Database
(http://www.yeastgenome.org). RT-PCR amplification was performed
with the QIAGEN OneStep RT-PCR Kit (Qiagen) as per the
manufacturer instructions. Reverse transcription was performed at
50 8C for 30 min. Amplification reactions included 0.4 mM of each
dNTP, 13 QIAGEN OneStep RT-PCR buffer, 13 Q-Solution 2.0 ll
QIAGEN OneStep RT-PCR Enzyme Mix per 50 ll reaction, and 5 U
RNase inhibitor (Invitrogen Canada, Burlington, Canada) per
reaction. Reverse transcriptase inactivation and PCR activation were
performed at 95 8C for 15 min, followed by 40 cycles of 94 8C for 30 s,
58 8C for 30 s, and 72 8C for 1 min, and a final extension step at 72 8C

for 10 min. Candidates 1–3, 1–5, and 1–8 were performed at 55 8C, 30
s for annealing. For the negative controls with no reverse tran-
scriptase, the RNA was not added until after the reverse transcriptase
inactivation step.

Supporting Information

Dataset S1. Results of SAGE2Splice Search of a Collection of 20,000
High-Abundance SAGE Tags

The prediction splice junctions of each search are further categorized
into Type 1, Type 2 with computer prediction, Type 2 without
computer prediction, Type 3 with computer prediction, and Type 3
without computer prediction. A detailed description is available in
the README file.

Found at DOI: 10.1371/journal.pcbi.0020034.sd001 (882 KB ZIP).

Dataset S2. Results of SAGE2Splice Search of a Collection of 20,000
High-Quality SAGE Tags

The prediction splice junctions of each search are further categorized
into Type 1, Type 2 with computer prediction, Type 2 without
computer prediction, Type 3 with computer prediction, and Type 3
without computer prediction. A detailed description is available in
the README file.

Found at DOI: 10.1371/journal.pcbi.0020034.sd002 (817 KB ZIP).

Accession Numbers

The National Center for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov) accession numbers for the sequences dis-
cussed in this paper are Canis familiaris zinc finger DHHC domain–
containing protein (XP_854957.1), Rattus norvegicus heparin sulfate
proteoglycan 2 (XP_233606.3), and R. norvegicus integrin alpha 1
(NP_112256.1). The GenBank (http://www.ncbi.nlm.nih.gov/Genbank)
accession numbers for the sequences discussed in this paper are
AK081926 (DQ113645),, Ccs (DQ113650), Ppih (DQ113644), Rpl136a
(DQ113649), Rpl41 (DQ113647), s2sEMS1 (DQ113652), s2sEMS2,

(DQ113653), Tpt1h (DQ113648), and Ywhae (DQ113651).
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