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Like shoelaces, the backbones of proteins may get entangled and form knots. However, only a few knots in native
proteins have been identified so far. To more quantitatively assess the rarity of knots in proteins, we make an explicit
comparison between the knotting probabilities in native proteins and in random compact loops. We identify knots in
proteins statistically, applying the mathematics of knot invariants to the loops obtained by complementing the protein
backbone with an ensemble of random closures, and assigning a certain knot type to a given protein if and only if this
knot dominates the closure statistics (which tells us that the knot is determined by the protein and not by a particular
method of closure). We also examine the local fractal or geometrical properties of proteins via computational
measurements of the end-to-end distance and the degree of interpenetration of its subchains. Although we did
identify some rather complex knots, we show that native conformations of proteins have statistically fewer knots than
random compact loops, and that the local geometrical properties, such as the crumpled character of the conformations
at a certain range of scales, are consistent with the rarity of knots. From these, we may conclude that the known
‘‘protein universe’’ (set of native conformations) avoids knots. However, the precise reason for this is unknown—for
instance, if knots were removed by evolution due to their unfavorable effect on protein folding or function or due to
some other unidentified property of protein evolution.
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Introduction

Few proteins with knotted native state conformations have
been identified so far [1–7]. Therefore, it is tempting to
conclude that the entire issue of knots is basically irrelevant
for proteins. The goal of this paper is twofold:

First, we intend to give a more solid statistical justification
to the statement that knots are rare in native proteins,
namely, that they are significantly less frequent than random.
To judge that the dearth of knotted proteins is indeed
unusual, one has to possess statistics about knots in random
compact loops (or globules) with which to compare. Simple
models of such compact loops are ones that reside on a cubic
lattice [8–10]. However, we feel that such comparisons have
not been made explicitly and systematically in previous
works. We offer such a comparative study here.

Second, we want to show that the perceived attitude about
the rarity of knots, which is that the whole issue of knots is
irrelevant, might not be correct. We propose that knots were
likely to have been selected away, and, therefore, their
absence may provide an important clue on the nature of
the ensemble of protein conformations (‘‘protein universe,’’
in the terminology of [11]).

Because we are interested in the topological properties of
the protein molecule backbone, it suffices to represent each
amino-acid residue with a single atom, which we choose to be
the a-carbon atom, and to represent the continuous chain by
straight segments connecting these a-carbon atoms.

In general, knots in any string are meaningfully defined as
long as the ends either connect to each other, as for example
in a plasmid DNA, or effectively go outward toward infinity,
as in tightened shoelaces. Proteins are like neither of these
two cases. If we simply connect the chain terminals with a
straight line, or connect each terminal to infinity by the
continuation of this straight line, or come up with any other

specific way to complete the loop for every protein, we leave
open the possibility that whatever knot we observe, a trivial
knot or otherwise, is in fact due at least as much to the
completing segments as to the protein itself. To overcome
this problem, we use a statistical procedure, which shares
some ideas with the random bridging of terminals used in [1]
and with the study of the ‘‘spectrum’’ of knots in linear
random walks made in [12]. Once a closed loop is obtained
from a protein chain, we use knot invariants to identify the
knot type. The major idea is to use a large ensemble of
different random loop completions to see what kind of knot
ensemble results. If a certain knot results from the majority of
different loop completions, it is safe to conclude that this
particular knot is an inherent property of the protein itself.
(When this manuscript was being prepared for submission,
[13] became available to us. In it, the methods in [12] were
applied to the eight knotted protein segments initially
studied in [3].)
We generate compact self-avoiding loops on a lattice using

methods described in [8–10]. This model neglects the fine,
atomic details represented by the sterics and energetics of
amino-acid residues or by the Ramachandran plot. Because
the knots in proteins are going to be determined at scales
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much larger than ten residues, we argue that these local
atomic details are not going to be relevant.

To be able to compare the knotting probabilities of
proteins with those of compact loops on a lattice, we have to
determine what length of protein is comparable to a given
length N of a compact lattice loop (or equivalently we have to
determine the relevant persistence length). To this end, we
examine the behaviour of subchains, which are short pieces of
the whole protein chain or loop. Specifically, we generate data
for the mean square end-to-end distance of subchains as a
function of the length of the subchains. For short subchains,
the secondary structures in proteins are apparent, and one
obtains a scaling of subchain size reminiscent of stretched-out
configurations. For longer subchains, the mean square end-to-
end distance versus length of protein subchains approaches
Gaussian or random walk behavior, an observation noted in
[14]. The subchains of compact lattice loops likewise behave
like a Gaussian, as was already shown in the study of large
compact loops on a lattice in [10]. The results for the knotting
probabilities in a lattice are also described in [10].

There is also a regime in the scaling of protein subchains
reminiscent of chains confined to a small volume. For
example, subchains in compact lattice loops experience a
saturation or plateau in their end-to-end distance as the
subchain size approaches that of the whole conformation. For
protein subchains between about 15–40 residues long
(equivalent to a few secondary structures in length), the
scaling of the end-to-end distance also saturates, indicating a
significant degree of compaction at scales less than the size of
the protein chain. This feature is fairly robust and seems to
take place at the same subchain lengths for most proteins,
regardless of size or number of domains. The saturation has
been identified as a turning back, on average, of the chain
direction [14]. This saturation in the end-to-end distance is
also consistent with the observed universality of closed-loop
elements in globular proteins [15–17]. The origin of this
feature could be traced to the tendency, as clearly seen in
protein motifs or folds, of secondary structures adjacent
along the chain to fold back on themselves [5,17,18]. (Some

motifs displaying such regular arrangements have names such
as ‘‘hairpin,’’ ‘‘meander,’’ ‘‘Rossmann fold,’’ ‘‘Greek key,’’ etc.)
Such tendency of subchains to be more compact on

average has been shown to correlate with the absence of
nontrivial (complex) knots in compact lattice loops [10]. For
proteins, the saturation of the subchains at the scale of about
15–40 residues leads to a degree of interpenetration of the
subchains, quantified below, which is less than that of
compact lattice loops of size 6 3 6 3 6.

Results

Knotting Probabilities for Proteins Compared with Lattice
Loops
The result presented in Figure 1 implies that the way to

compare the knotting probability for proteins and lattice
loops is to look at the correspondence between the number of
monomers in the lattice system and the contour length of
protein chains divided by 3.8 Å, which happens to be fairly
close to the number of amino-acid residues.
The probabilities of trivial knots (‘‘no knots’’) for proteins

and compact lattice loops are plotted together and presented
in Figure 2. The data for compact lattice loops was obtained
using methods described in [10]. The trivial knotting
probability for proteins is obtained by dividing the number
of trivial knots found at a given length N by the total number
of proteins with that length.
Considering only the protein data at 19 values of N for

which nontrivial knots occur (abscissa less than 1), we see a
clear downward trend of the trivial knotting probability.
However, these represent only a very small fraction of the

Figure 1. Data for the Mean Square End-to-End Distance of Subchains of

Proteins (Squares) and Compact Lattice Loops (Circles) Plotted against

the Subchain Length in a log–log Scale

The mean square end-to-end distance of subchains for compact lattice
loops of sizes 4 3 4 3 4, 6 3 6 3 6, and 8 3 8 3 8 also are shown to
illustrate saturation at different loop sizes. For each chain of length N,
subchains of length up to N2/3 contribute to the average. The dashed line
corresponds to a random walk behavior hR2(‘)i ¼ ‘. The mean square
end-to-end distance in Å2 for proteins has been divided by the factor
(3.8)2. The data for proteins is similar to that in Figure 2 of [14]. (In that
work, the end-to-end distance instead of the square of the end-to-end
distance is plotted). The inset at the upper left shows the local scaling
exponent 2m, where hR2(‘)i ; ‘2m, plotted against subchain length (up to
80 residues) for proteins. 2m was calculated from two adjacent protein
data points at ‘1 and ‘2 via 2m ¼ log [hR2(‘2)i/hR2(‘1)i]/log(‘2/‘1). The
horizontal dashed line in the inset represents the exponent 2m ¼ 1.
DOI: 10.1371/journal.pcbi.0020045.g001
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Synopsis

Proteins in their native state are compact structures consisting of
long chains of amino-acid residues. As such, a protein should be
likely to get entangled or tie into a complex knot. However,
researchers have found only a handful of complex knots in native
proteins. Lua and Grosberg make what they believe to be the first
quantitative study of the statistics of knots in proteins. Although
they have found some rather complex knots, including one knot
with five crossings in a modest size protein of only 229 amino acids
(ubiquitin hydrolase), comparison of the knot abundance in proteins
and in compact random strings on a lattice indicates extreme
nonrandomness of protein conformations in this respect. They also
study the statistics of the geometrical behaviour of parts of protein
chains. They find that these parts, on the scale of about 20–30
residues, have a strong nonrandom tendency to crumple back on
themselves, and that the segregration of the parts on this scale is
also far in excess of random, while on a larger scale the geometry of
conformations is statistically close to random. These geometrical
features are consistent with the statistical rarity of knots. From these,
the authors conclude that the ‘‘protein universe’’ avoids knots.

Knots, Geometry, and Evolution of Proteins



total number of protein data points (673). Moreover, the
average number of protein chains with the same length N is
very small (about seven chains per data point). Therefore, the
dependence of the trivial knotting probability on the length,
Ptrivial(N), is very weak. A linear fit to the protein data gives a
slope of about �10�5. Using this small number, but remem-
bering all the caveats just mentioned, we estimate a
characteristic length of knotting of N0 ’ 105, where Ptrivial(N)
; exp(�N/N0). This should be compared with the values
estimated for random compact lattice loops as well as for
noncompact unrestricted loops, where N0 ’ 200 � 250
[10,19,20].

Thus, we conclude that knots in proteins are indeed orders
of magnitude less frequent than a random polymer of
comparable length, compactness, and flexibility would have
it. Closer scrutiny of the subchain data, Figure 1, enables us to
gain some insight into this lack of knots.

Local Geometry
Returning to Figure 1, let us note that there are both

similarities and important differences between the subchain
scaling in proteins and lattice loops. The similarity, which we
used above to make the comparison of knotting probabilities,
is that both proteins and lattice loops exhibit random walk
scaling hR2(‘)i ; ‘ over some range of scales. In both cases,
this is a manifestation of the Flory theorem [14,21,22]. For
proteins, random walk behavior consistent with the Flory
theorem is observed for large subchains, starting at about 40
residues. The compact lattice loops also exhibit random walk
behavior, which saturates earlier as the compact lattice loop
becomes smaller (illustrated in Figure 1 for globular loop
sizes 4 3 4 3 4, 6 3 6 3 6, and 8 3 8 3 8). But there are also
important differences with regard to where and how hR2(‘)i
deviates from the Flory theorem.

For the subchain lengths below about ten, the protein data
indicate that protein subchains are significantly more
stretched than random; statistically they are almost straight.
This deviation between the protein data and the dashed line
(or with the data for compact lattice loops) for subchain

lengths from 2–10 must be attributed to the presence of
secondary structures in proteins. The plot also shows that the
size of the secondary structures does not scale with that of the
whole chain.
The most interesting part of the protein data lies in the

region between 15 and 40 residues. The mean square end-to-
end distance grows very slowly with subchain length in this
region, i.e., hR2(‘)i strongly saturates. To see more clearly
where this happens, the ‘‘local exponent’’ 2m ¼ log [hR2(‘2)i/
hR2(‘1)i]/log(‘2/‘1), basically the slope in the log–log plot
computed from two adjacent data points, is plotted in the
inset of Figure 1. Between about 15 and 40 residues, the ‘‘local
exponent’’ is smaller than even a third: m , 1/3. That means of
course that protein chains on these scales statistically have a
very strong tendency to fold back on themselves, or crumple.
The minimum of m is seen to occur for subchains of length
near 25 residues, which agrees with the value of about 24
residues for the location of the plateau in the end-to-end
distance versus length of subchains [14]. These results also
agree with the study on the size distribution of closed loops in
proteins (a closed loop is formed when two non-adjacent a-
carbons come into close contact), where a value of 25–30
residues gives the optimal loop size [15–17]. Finally we note
that the scale of 40 residues is smaller than the typical size of
single-domain proteins, which is about 170 residues.
Intuitively, the ‘‘saturation’’ of the mean square end-to-end

distance of protein subchains at these lengths should be
expected to reduce the interpenetration of subchains relative
to the situation in which the saturation is absent. In turn, we
expect a low degree of interpenetration to lead to a
suppression of knots. To measure the degree of inter-
penetration, we define the following quantity. Consider a
subchain (inset of Figure 3) and take a sphere around its

Figure 2. Fraction of Protein Chains at a Given Length with a Trivial Knot

(01) in the RANDOM Method, Plotted against the Length or Number of

Residues

Adjacent points are connected by dashed lines. The data for the trivial
knotting probability of compact lattice loops (from 4 3 4 3 4 to 12 3 12 3
12) is included, shown connected by thick lines.
DOI: 10.1371/journal.pcbi.0020045.g002

Figure 3. Degree of Interpenetration of Subchains

Defined as follows: given a labeled subchain (say chain AB in the inset at
the lower right), determine the fraction of the number of units (or
residues) of the loop or protein enclosed within a sphere (dashed circle)
that does not belong to the subchain. The radius of this enclosing sphere
is equal to the gyration radius of the subchain. The degree of
interpenetration is then defined as an average of this quantity over all
subchains of the given length, taken within a single protein chain and
from all other protein chains. As in the results for the mean square end-
to-end distance, for each chain of length N, we consider subchains of
length up to N2/3. The degree of interpenetration for proteins, lattices
(average from five globular loop sizes from 4 3 4 3 4 to 12 3 12 3 12, and
separately for 4 3 4 3 4, 6 3 6 3 6, and 8 3 8 3 8) and linear equilateral
random walks of length N ¼ 100 and N ¼ 200 are shown.
DOI: 10.1371/journal.pcbi.0020045.g003
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center of mass. The sphere’s radius is equal to the gyration
radius of the subchain. Count the number of units, excluding
those belonging to this subchain, as well as the total number
of units within this sphere. The ratio of the average of each of
these two numbers over subchains with the same length is the
degree of interpenetration plotted in Figure 3.

We see that the degree of interpenetration for proteins is
less than that of 6 3 6 3 6 loops. The degree of inter-
penetration for proteins is also less than that of 4 3 4 3 4
loops for subchain lengths up to about ten. For the short
lengths, it should be less for proteins because of the smaller
density. The degree of interpenetration for proteins saturates
at about 30, which is also about where the mean square end-
to-end distance saturates.

We also show the degree of interpenetration for linear
equilateral random walks of the lengths typical for proteins,
N ¼ 100 and N ¼ 200. The equal-length segments of the
random walks are off-lattice and have zero thickness (i.e., no
excluded volume). In this case, the degree of interpenetration
is less than that of proteins for subchains longer than ten
units. However, for random walks and in the swollen phase of

polymers, it is known that the knots are localized or show up
at scales much smaller than the whole chain [23,24] (the
preferred size of trefoil-determining portions is about seven
freely jointed segments [23].) Incidentally, a comparison of
the degree of interpenetration for proteins, compact loops,
and random walks also confirms that proteins are much more
similar to compact loops than to random walks.

Discussion

Thus, based on measurements of either end-to-end
distance or degree of interpenetration, we see that native
proteins are much more segregated on the intermediate scale
up to about 40 residues than random compact conforma-
tions. It is obvious that the segregated character of a
conformation is a very strong suppressor of knots. We can
make the conclusion that the ‘‘Universe’’ of protein con-
formations is statistically consistent with the elimination of
the vast majority of knots.
To discuss our findings, first of all we have to decide which

question we want to ask. We do not understand what is the
cause and what is the consequence: is knot suppression a
byproduct of a certain mechanism selecting conformations
on a purely local basis, such as, e.g., a certain type of
crumpling, a certain local fractality, etc? Or is it the other way
around, that local fractality and crumpling are the result of
selection against knots?
Indeed, it seems natural to argue that native conformations

with knots have been evolutionarily eliminated because they
are not good for folding. Although it sounds plausible, not
much solid support exists for this conjecture. At least for the
lattice 36-mer it was possible to design a sequence with six
sorts of monomers that was reliably folding into the native
structure with a knot (unpublished data), and folding time
was not dramatically longer than for other 36-mers with
unknotted native states, under the same conditions. On the
other hand, in recent simulation works [25–28] knots were
seen as off-pathway folding intermediates for short peptides.
This observation seems consistent with the idea that knots in
general are impediments to folding.
Viewed at another angle, the rarity of nontrivial knots in

proteins, well noted in several works [1–5] and confirmed
here, presents a puzzle to the school of thought that protein
dynamics is ergodic. Because the vast majority of long,
collapsed chain structures are knotted, the relative absence of
knotted proteins may indicate that not all conformations are
being visited when a protein folds to its native state [1]. From
this point of view, it is natural to conjecture further that the
globular protein inherits the knot state of the denatured
protein from which it is formed [2]. Such a view, although
logically possible, seems difficult to reconcile with the fact of
reliable folding over a (relatively) wide range of temperatures.
Also, the recent observation of knotted off-pathway folding
intermediates suggests that protein chains may, at least in
some cases, visit knotted conformations.
The idea that crumpling, or folding back on itself, helps in

suppressing knots is an old one [29]. In this old work, it was
conjectured that the turns of a-helix or b-turns play the role
of smallest scale crumples. Our present findings indicate
quite the opposite, that in fact secondary structure leads to
increased local m index (up to about the scale of ten residues,

Figure 4. Dominance of Knot Types in the RANDOM Knot Closure

(A) Percentage of the 1,000 RANDOM chain closures yielding the various
knot types for the protein chain with ID 1ejgA and length N¼ 46. In this
chain, the trivial knot or unknot (01) dominates, while the trefoil knot (31)
is the next-dominant knot type. Both CENTER and DIRECT methods also
predict a trivial knot.
(B) Percentage of the 1,000 RANDOM chain closures yielding the various
knot types for the protein chain with ID 1xd3A and length N¼229. In this
chain, the knot 52 dominates, while the trivial knot is the next-dominant
knot type. The CENTER method also predicts a 52 knot, while the DIRECT
method detects a trivial knot.
(C) Histogram of the percentage of RANDOM chain closures giving the
dominant (solid steps) and next-dominant (dashed boxes) knot types
within a single chain for all 4,716 protein chains. The inset shows the
histogram for the percentage of closures giving the dominant knot type
that is not a trivial knot.
DOI: 10.1371/journal.pcbi.0020045.g004
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see Figure 1), and only at the larger scale does the chain fold
back on itself.

When this article was being revised for resubmission, [30]
became available to us. There the authors claim that the
(almost) complete repertoire of possible protein conforma-
tions can be reproduced based on a model that carefully takes
into account only two factors, namely, overall chain compact-
ness and hydrogen bonds. It would be interesting to look at
this statement from the point of view suggested by us in this
article. Indeed, if the model suggested in [30] reproduces the
‘‘protein universe,’’ its conformations should have few knots,
if any. Although we do not know how to reconcile this with
the observed knotted proteins, including some rather com-
plex knots (see Figure 4 and [7]), more important would be
the comparison of the statistics of knots in real proteins and
in the model of [30]. In principle, one could speculate that
while compactness strongly enhances the probabilities of
knotted conformations [10,24], it is possible that the presence
of hydrogen bonds, which is the indispensable and important
additional feature of the model of [30], somehow suppresses
knotting. (Similar consideration arises also in the context of
the so-called tube theory, the latest versions of which include
hydrogen bonding [31].) Possibly, the hydrogen bonds achieve
this suppression by producing the hump in the plot of the
subchain size similar to our Figure 1, or in other words, by
affecting the local geometrical/fractal structure of the typical
conformations.

To summarize, we have shown that native protein
conformations have statistically much fewer knots than what
random chance would imply (at least compared with a
generic lattice model). We have also established a connection
between the rarity of knots in native proteins and their local
geometrical properties, such as subchain size and subchain
interpenetration. It is tempting to hypothesize that any set of
compact globular conformations will have few knots, or about
as many as proteins do, provided it has the proper local
geometrical peculiarities, including pieces having an ex-
tended configuration at small scales (mimicking secondary
structures) and a compact or looped structure at intermedi-
ate scales (resembling motifs or small domains). To test this
hypothesis, we need a better computationally tractable model
of conformations, one capable of reproducing at least
qualitatively the subchain behavior in Figure 1. Finally,
although we can conclude that the present day ‘‘protein
universe’’ largely avoids knots, we do not know whether knots
have been removed through evolution because of their
adverse effect on folding or function, or the suppression of
knots came as a byproduct of some hitherto unidentified
property of protein evolution.

Materials and Methods

Representative protein chains. We extracted 4,716 protein chains
from Protein Data Bank [32] (PDB) files available online. The PDB
IDs, or code names, of the proteins can also be obtained online from
the Parallel Protein Information Analysis system’s Representative
Protein Chains from PDB (PDB-REPRDB) [33]. PDB-REPRDB is a
reorganized database of protein chains from PDB. Each group
consists of chains similar to each other in terms of either sequence or
structure. Each representative chain has the best quality in each chain
group. The PDB IDs of the 4,716 representative protein chains can be
obtained from a PDB-REPRDB sample table (dated 25 March 2005,
based on PDB release 06 March 2005) with the following selection
criteria: each representative is different from all other representa-
tives in terms of a sequence similarity of ID% � 30% and 3D

structure similarity of Dmax � 50 Å. (The sequence similarity (ID%) is
the percentage of identical amino-acid residues between correspond-
ing residue pairs in the two compared sequences. The 3D structure
similarity (Dmax) is the maximum a-carbon distance between the
corresponding residue pairs in the two compared structures.)

We verify that two well-known characteristics of proteins are
shared by our sample. First of all we check that the radius of gyration
(Rg) of protein chains in our ensemble indeed scales with chain length
(number of residues N) in a manner similar to that of compact
polymers (i.e., Rg ; N1/3) [14,34–38]. Moreover, the average bulk
density of the proteins is approximately constant. We also measured
the density of the residues enclosed by a sphere centered on the
center of mass of a protein. The average density of the proteins is
approximately constant at about (6a – carbons)/(10 Å)3 for sphere
radii up to about the radius of gyration of the chain Rg. As the sphere
radius increases further, the density falls off to about half at a sphere
radius of 1.5 Rg.

We further address the issue of the predominant location of the
terminals of the protein and show that they do tend to stay far away
from the center of mass, an observation already noted in [2]. This
result gives hope that the closure of proteins via an external loop can
give an unambiguous account of the knot state. The distribution of
the distance of each terminal to the center of mass (RT) is presented
in Figure 5. The horizontal axis is scaled to the maximum residue
distance from the center of mass (Rmax). The plot strongly suggests
that the terminals prefer to be near the surface of the protein.

We also mention some statistics regarding the secondary structure
content (alpha helix or beta sheet) of the proteins. Most of the
proteins in our sample contained at least one alpha helix and one
beta sheet. Using the HELIX and SHEET entries in the PDB files, we
found that the average fraction of residues in a chain participating in
a helix is about 44%, while the average fraction of residues in a chain
participating in a beta sheet is about 27%. The average length of a
helix is about 11 residues, while the average length of a beta sheet
strand is about five residues.

Although we take a protein chain to be the basic unit with which to
perform our study of knots, it can be argued that it is a domain,
representing a single globule, within the protein chain that can be
compared statistically to the globule state of our model chains. Such
domains are biologically significant because they are roughly defined
as independent folding units [30]. As a step to address this issue, we
use databases based on CATH, FSSP, and SCOP [39–42] to identify
protein chains that consist of single domains. About one-third of the
4,716 protein chains in this study have been identified as single
domains (CATH version 2.6.0 identifies 1,713 of the 4,716 chains as
each comprising a single domain). The average length of these
domains is about 170 residues.

Chain closure methods. The simplest way to complete a loop from
an open linear chain is to connect the two terminals (first and last a-

Figure 5. Distribution of the Distance of a Protein Terminal from the

Center of Mass (RT)

(Rmax is the distance of the residue farthest from the center of mass of
the protein chain.) The distribution is divided by (RT/Rmax)2 to obtain a
density and to take into account that a point chosen at random within a
sphere is more likely to be found away from the center of the sphere.
DOI: 10.1371/journal.pcbi.0020045.g005
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carbons) directly with a straight line. We call this method the DIRECT
method, illustrated in Figure 6A.

In the CENTER method, (Figure 6B), the terminals are connected
to the surface of a sphere enclosing the whole chain. The segments
connecting the terminals to the sphere are extensions of the segments
connecting the center of the sphere (coinciding with the center of
mass of the chain) to the chain terminals. Because the terminals tend
to stay near the surface of the protein, this method minimizes the
portion of the chain that the connecting segments may pierce
through. The two points on the sphere are then connected to a point
a bit farther away from the center to complete the loop. Note that
this method has a similar effect as holding the terminals fixed, then
shrinking or smoothing the segments in between to find the knotted
core [3–6,24]. (A beautiful version of this shrinking technique for
closed loops is the Shrink-On-No-Overlaps method described in [43].)
This shrinking or smoothing technique also shares similarities with
various preprocessing schemes for reducing the length and number
of crossings of a loop [8,10].

Finally, to reduce any bias in the chain closure, the two points on

the sphere may be chosen randomly. We call this the RANDOM
method, illustrated in Figure 6C. One can then compile the statistics
of the knots formed by many random loop closures after generating
several pairs of points. This method is similar to that used in [1,12,13].
In [12,13], the terminals are connected to a single point located
randomly on a large sphere enclosing a chain.

The probabilistic definition of knots in proteins and other open
chains, obtained from many random closures, is fundamentally more
reliable than any deterministic method, e.g., those described in this
section [1,12]. We shall see that in fact the knot type indicated by the
CENTER method quite often agrees with the dominant knot type
predicted by the RANDOM closure method. In this sense, the results
of the RANDOM method provide more credence to the simpler
CENTER method. In retrospect, this can be understood as due to the
protein terminals tending to be at the periphery of the protein
globule, and, therefore, connecting them to infinity is basically safe. It
is also understandable then that the results of the DIRECT method,
although not bad, are in significant disagreement with the RANDOM
method.

Knotting probabilities. As in our studies with compact and
unrestricted loops [10,19], we use the Alexander invariant (jD(�1)j)
[44] and the Vassiliev invariants (v2, jv3j) [45] as signatures to identify
the knot type of a chain for each closure method. We determine
which chains have invariants corresponding to the knot types 01
(trivial knot, unknot, or ‘‘no knot’’), 31 (trefoil), 41 (figure-eight), 51,
and 52. (In the standard nomenclature of knots, the first number
indicates the number of minimal crossings in a projection of a knot.
In this study, we do not distinguish between mirror images). Other
more complicated knots with at least six crossings are lumped
together, although the precise type of knot can be identified easily.
The knot counts are listed in Table 1.

There is no complete set of knot invariants that could determine
the knot type exactly. For instance, the Alexander invariant and the
Vassiliev invariants used in this work are guaranteed to identify a
knot type unambiguously only for knots with nine crossings or fewer
in the plane projection. To determine the accuracy of the use of knot
invariants, we look at the number of crossings in the knot projections
after the crossings were reduced with Reidemeister moves [10]. In the
CENTER method, we find that in 4,598 out of the 4,716 chains,
reduced crossings of nine or fewer are obtained, which means that
the knot types are determined exactly by knot invariants for more
than 97% of the chains (and we believe that false identifications for
knots with more than nine crossings occur rarely). The average
number of reduced crossings in the CENTER method is less than 1,
which also implies that most of the knots in the protein chains are
trivial knots. Similar results for the crossings can be found in the
RANDOM and DIRECT methods.

In studying the statistics of the knots in the RANDOM closure
method, we generate 1,000 pairs of points (S1,S2, see Figure 6C)
randomly located on the surface of an enclosing sphere for each
chain. Thus each chain yields 1,000 knots for analysis. Figure 4A and
4B gives examples of the knot probabilities generated by the
RANDOM closures for two specific protein chains.

A single knot type is found to overwhelmingly dominate the
RANDOM closures for each chain. For 4,021 chains out of the total
number of 4,716 (85.3%), more than 85% of the knot closures for
each chain yield the same knot type. In contrast, no more than 35%
of the closures for any single chain yield the next-dominant knot
type. The distributions of the percentage of RANDOM closures giving
the dominant and next-dominant knot types are presented in Figure
4C. This ‘‘bimodality’’ in the distribution of knot types in the

Figure 6. Illustration of the Three Chain Closure Methods

The examples in these figures use the protein chain with PDB ID 1ejgA,
rendered using Rasmol (R. Sayle).
(A) DIRECT method. T1 and T2 refer to the terminals of the chain. We
connect the terminals by the straight segment T1 – T2.
(B) CENTER method. We enclose the entire chain in a sphere centered at
C, the center of mass of the chain. We take straight lines starting at C,
passing through the terminals T1 and T2, and intersecting the surface of
the enclosing sphere at the points S1 and S2. S1 and S2 are connected to
point F, located sufficiently far away outside the sphere, on the plane
formed by C, S1, and S2. The closed loop is formed by the protein chain
backbone complemented by the broken line T1� S1� F � S2 � T2.
(C) RANDOM method. The points S1 and S2 are randomly positioned on
the surface of the enclosing sphere whose center coincides with the
center of mass of the chain. S1 and S2 are connected to point F, located
sufficiently far away outside the sphere, on the plane formed by the
center of mass, S1 and S2. A closed loop is again formed by the protein
chain backbone complemented by the broken line T1� S1� F� S2� T2.
DOI: 10.1371/journal.pcbi.0020045.g006

Table 1. The Counts for the Different Knot Types Determined
from 4,716 Protein Chains for the Three Closure Methods

Closure Method Knot Type

01 31 41 51 52 61,up

RANDOM 4,697 15 3 0 1 0

CENTER 4,692 20 3 0 1 0

DIRECT 4,516 164 9 9 3 15

The counts for the RANDOM method refer to the dominant knot type (i.e., the knot type
with the majority count in the 1,000 random closures for a chain).
DOI: 10.1371/journal.pcbi.0020045.t001
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RANDOM closures for proteins is also present in the study of knots in
linear random walks [12,13].

There is also close agreement between the dominant knot type
determined with the RANDOM method and the knot types
determined with the CENTER and DIRECT methods. The agreement
is almost complete between the RANDOM and CENTER methods:
every chain in 4,711 has the same knot type under these two methods
(the CENTER method detects five additional trefoil knots). The
agreement is significantly less between the RANDOM and DIRECT
methods: every chain in 4,528 has the same knot type under these two
methods. The significant number of extra knots detected in the
DIRECT method is understandable in the light of the compactness
and the terminals tending to stick out of the bulk: for the DIRECT
method, the segment connecting the terminals pierces through more
space occupied by the protein chain compared with the other two
methods.

As we already mentioned, to compare proteins to lattice loops in
terms of their knotting probabilities, we need to be able to bring
these two systems into comparable scale. The way to do that is well
understood in polymer physics. It should be based on the study of
subchains.

Subchains. By subchain in this context we understand just a part of
the polymer chain: a subchain of the length ‘ may be from any
monomer number i to monomer iþ ‘. The study of subchains for the
single polymer globule plays the same role as looking at a labeled
polymer in the macroscopic melt [21]: the subchain end-to-end
distance squared, hR2(‘)i, averaged over i in any given conformation
(‘‘sliding window average’’) and probed as a function of ‘, reveals the
scale-dependent conformational properties. The reason why sub-
chains are relevant to understanding the knotting probabilities can
be understood from this simple limit: suppose that the polymer chain
is completely straight. Then, every subchain would have its end-to-
end distance scaling as ‘, and there will be no knots whatsoever.

Figure 1 presents data for the mean square end-to-end distance of
subchains of proteins and compact lattice loops plotted against the
subchain length. For each chain of length N, we considered (and
averaged over) the subchains of length up to N2/3. The data for
compact lattice loops come from random loops with lengths along
one dimension of L ¼ 4,6,8,10,12 (N ¼ L3) and with 100 samples for
each L. The data for proteins is similar to that obtained in [14]. We
emphasize that a similar curve is also obtained (bearing the
characteristic ‘‘hump’’ displayed in Figure 1) whether we consider
‘‘small’’ proteins (e.g., less than 200 residues), ‘‘large’’ proteins (e.g.,
greater than 200 residues), or single-domain protein chains.

The subchain length for both proteins and lattice loops is
measured in the number of monomers (less 1). As to the end-to-
end distance, it is measured naturally in lattice constants for the
lattice system, while for proteins the corresponding measurement
unit was adjusted to achieve a close match between the data for
proteins and lattice loops in Figure 1. We found that a close match is
achieved if R2(‘), originally measured in (angstroms)2 for proteins, is
divided by (3.8)2; this is what is shown in Figure 1. Notice that since
Figure 1 represents the log–log plot, this scale factor can only move
the curve up or down. The dashed line in the plot corresponds to the
random walk behavior hR2(‘)i ¼ ‘, which implies a Kuhn length of 1
for the lattice system or about 3.8 Å for proteins (3.8 Å is also the
typical distance between adjacent a-carbons along the chain).

At first glance, this value is in contradiction with the known
persistence length of coil-like protein chains, which is usually
believed to be about 7 Å. This follows from both theoretical
calculations of the flexibility of polypeptide chains [46] and from
recent systematic studies of denatured proteins [47]. In fact there is
no contradiction, because in our statistical study the conformations
of subchains are buried within quite dense globules; in other words,
the subchains are surrounded by the protein medium, while in the
coil-like denatured state of the protein, the monomers are mostly
surrounded by solvent. On a more rigorous level, one can say that the
Flory theorem [21] implies that polymers should have Gaussian
statistics in the melt (i.e., in the environment of similar polymers), but
the theorem does not say what the persistence length should be—it
need not be the same as in the denatured coil.

Protein knots. In this section we list the code names of the 19
protein chains determined with the RANDOM closure method as
each being knotted. About one-third of these chains are single
domains according to CATH version 2.6.0. A visual inspection with
the aid of Rasmol (R. Sayle) reveals that some of the chains have
breaks or discontinuities.

The proteins with trefoil knots (31) are: 1lugA, 1v2xA, 1o6dA,
1mxiA, 1ualA, 1vhyA, 1t0hB, 1js1X, 1k3rB, 1x7oA, 1p7lA, 1gz0E,
1vhkD, 1gkuB, 1xi4C.

The proteins with figure-eight knots (41) are: 1qmgA, 1u2zC,
1m72B.

The protein with the knot 52: 1xd3A.
(The first four characters in the code is the PDB ID, while the fifth

character identifies the chain within the protein.)
After this work was submitted, we were made aware of [7], which

also identifies the 19 proteins as being knotted and gives further
details on the molecular biology of these and other knotted proteins.
In particular, [7] also identifies the knot 52 in the protein 1xd3
(ubiquitin hydrolase UCH-L3), and also suggests that the occurrence
of this knot might be related to the role of the enzyme in protein
degradation.
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