OPEN a ACCESS Freely available online PLOS COMPUTATIONAL BIOLOGY

A Community Resource Benchmarking Predictions
of Peptide Binding to MHC-I Molecules
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Recognition of peptides bound to major histocompatibility complex (MHC) class | molecules by T lymphocytes is an
essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be
captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind
MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48
different mouse, human, macaque, and chimpanzee MHC class | alleles. We use this data to establish a set of
benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized
in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to
generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet.
While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools
based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this
dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In
addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based
prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts.
This is an advance over the current practice of tool developers having to generate reference predictions themselves,
which can lead to underestimating the performance of prediction methods they are not as familiar with as their own.
The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify
promising features of prediction methods and providing guidance to immunologists regarding the reliability of
prediction tools.
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the proteome of a pathogen is an epitope (i.e., whether it can

Introduction . : :
trigger an immune response). For T-cell epitopes, the most

Cytotoxic T lymphocytes of the vertebrate immune system
monitor cells for infection by viruses or intracellular bacteria
by scanning their surface for peptides bound to major
histocompatibility complex (MHC) class I molecules (re-
viewed in [1]). The presented peptides are generated within
the cells during the degradation of intracellular proteins.
Cells presenting peptides derived from nonself proteins, such
as viruses or bacteria, can trigger a T-cell immune response
leading to the destruction of the cell. Likewise, this peptide
presentation mechanism is utilized to detect cancerous cells
[2] and—when malfunctioning—is implicated in several
autoimmune diseases [3].

Peptides bound to MHC molecules that trigger an immune
response are referred to as T-cell epitopes. Identifying such
epitopes is of high importance to immunologists, because it
allows the development of diagnostics, evaluation of the
efficacy of subunit vaccines, and even the development of
peptide-based vaccines. Many computational algorithms have
been created to predict which peptides contained in a
pathogen are likely T-cell epitopes [4-25]. Such tools allow
for the rapid scan of the proteome of a pathogen, and are
being widely used in the immunological community. Many of
them are freely available on the internet.

Multiple factors influence whether a peptide contained in
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selective requirement is the ability to bind to an MHC
molecule with high affinity. Binding is also the most
straightforward factor to characterize experimentally as well
as model computationally, since the ability of a peptide to
bind an MHC molecule is encoded in its primary amino acid
sequence. Predictions for peptide cleavage by the proteaso-
mal and peptide transport by the transporter associated with
antigen presentation (TAP) have been developed as well
[8,15,26-31], but the influence of these processes on peptide
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recognition is more difficult to model, as alternative pathways
exist [32-35], and the generation of precursor peptides has to
be taken into account.

An essential step in developing prediction tools is to gather
a set of experimental training data. This is typically either
derived from in-house experiments, published literature, or
querying one or more of the specialized databases containing
epitope-related information such as Syfpeithi [13], MHCBN
[36], AntiJen [37], HLA Ligand [16], FIMM [38], and our own
project, the Immune Epitope Database (IEDB) [39,40]. How-
ever, these databases are not primarily designed with tool
developers in mind, and extracting a consistent set of training
data can be a nontrivial exercise. Furthermore, algorithm
developers are not always aware of the implications of mixing
data from different experimental approaches, such as T-cell
response, MHC ligand elution, and MHC binding data.

Even within a single assay category, such as MHC binding
experiments, mixing data from different sources without
further standardization can be problematic. When we
gathered data from the literature to establish the IEDB, we
found 200 peptides with MHC binding reported in three or
more sources. Out of these, 37 had conflicting classifications
into both binding and nonbinding peptides. This is most
often due to the fact that with new studies and assay systems,
new criteria are set for what is deemed positive. To merge
different datasets, it would therefore be highly beneficial to
know how measurements from different assays compare
quantitatively.

Having assembled a set of training data, the next step is to
choose a prediction method, such as a certain type of
artificial neural network (ANN), hidden Markov model, or
regression function, which can generate a prediction tool
from a set of training data. (Throughout this manuscript, we
distinguish between the prediction fool, such as a trained
neural network that can be used to make predictions, and the
method used to generate it.) With a newly generated prediction
tool, the next essential step is to compare the performance
with previously published work. However, there are no
accepted standards for testing and evaluating newly devel-
oped tools that would allow researchers to unequivocally
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communicate the advances made with a new tool to the
bioinformatics and immunological community. This has lead
the majority of experimental immunologists to rely on
established predictions such as those provided by bimas [10]
and syfpeithi [13], or to stick with methods established in
their laboratories.

The goal of this work is to provide a community platform
that aids in the generation and evaluation of epitope
prediction tools. We focus on MHC class I binding predic-
tions, for which the most experimental data are available, and
good prediction methods are best defined. The platform
consists of two main components. One is the assembly of a
large and consistent dataset of MHC-peptide binding
measurements that is to be made publicly available for
training and testing purposes. Benchmark predictions of
publicly available tools for this set are provided. The second
component is an expandable automated framework for the
generation and evaluation of prediction methods. This allows
scientists to add their prediction methods for a fully trans-
parent side-by-side comparison with other prediction meth-
ods in which both training and testing data are controlled.
We employed this framework to compare three prediction
methods utilized by us in-house, an ANN [24,41], and two
matrix-based prediction methods: average relative binding
(ARB [5]) and the stabilized matrix method (SMM [42]).

Results

Assembling the Dataset

We have collected measured peptide affinities to MHC class
I molecules from two sources: the group of Alessandro Sette
at the La Jolla Institute for Allergy and Immunology [43], and
the group of Sgren Buus at the University of Copenhagen
[44]. The assays used by the two groups are different in several
aspects, such as the indicator used to detect binding (bound
radioactive ligand vs. quantitative enzyme-linked immuno-
sorbent assay), what is detected (competitive binding vs.
refolding), the way the MHC molecules are prepared (isolated
from homozygous cell lines vs. recombinant MHC), and the
purity of peptides used (crude synthesis vs. purified peptide).
The type of data generated, however, is the same: each
peptide gets assigned an affinity to a given MHC allele in
terms of IC50/EC59 nM (for brevity, we will refer to EC5, as
1C5p in the following). Peptides with an affinity worse than the
experimental sensitivity threshold are assigned an upper limit
of detectable IC;, (Sette: >50,000 nM or higher; Buus:
>20,000 nM). If affinities for the same peptide to the same
MHC molecule were recorded in multiple assays, the geo-
metric mean of the ICy, values was taken as the consensus
value in the final dataset.

The final dataset is heterogeneous with regard to the
peptide sequence tested for binding to each allele. On
average, 84% of the peptides in each dataset differed in at
least two residues with every other peptide in the set. No
additional homology reduction was performed on the
peptide sequences, because this should be done by the tool
developers, who may prefer to use different homology-
reduction approaches that are best optimized for their
specific methods. Our purpose is to provide a complete
training dataset to the public.

Table 1 gives an overview of the data, comprising 48,828
recorded affinities of peptides for a total of 48 different
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Table 1. Dataset Overview

Table 1. Continued

Organism MHC Peptide Organism MHC Peptide
Allele Length Peptide Counts Allele Length Peptide Counts
Buus Sette Total Buus Sette Total
Human HLA A*0101 9 976 192 1157 Macaque Mamu A*01 8 — 383 383
10 — 56 56 9 — 525 525
HLA A*0201 9 970 2207 3089 10 — 477 477
10 — 1316 1316 11 — 293 293
HLA A*0202 9 — 1447 1447 Mamu A*02 8 — 150 150
10 — 1056 1056 9 — 283 283
HLA A*0203 9 — 1443 1443 10 — 211 211
10 — 1055 1055 11 — 201 201
HLA A*0206 9 — 1437 1437 Mamu A*11 8 — 217 217
10 — 1054 1054 9 — 468 468
HLA A*0301 9 986 1195 2094 10 — 277 277
10 — 1082 1082 11 — 214 214
HLA A*1101 9 865 1204 1985 Mamu B*01 8 — 155 155
10 — 1093 1093 9 — 205 205
HLA A*2301 9 — 104 104 10 — 185 185
HLA A*2402 9 — 197 197 11 — 208 208
10 — 78 78 Mamu B*17 8 — 154 154
HLA A*2403 9 254 — 254 9 — 300 300
HLA A*2601 9 593 79 672 10 — 198 198
HLA A*2902 9 — 160 160 11 — 191 191
10 — 55 55 Chimpanzee Patr A*0901 11 — 89 89
HLA A*3001 9 539 156 669 Patr B*0101 9 — 132 132
HLA A*3002 9 — 92 92 Total 12819 36390 48828
HLA A*3101 9 800 1145 1869
10 — 1057 1057
HLA A*3301 9 _ 1140 1140 DOI: 10.1371/journal.pcbi.0020065.t001
10 — 1055 1055
HLA A%6801 1('0; — 1:):; 1(1)2; mouse, human, macaque, and chimpanzee MHC class I alleles.
HLA A*6802 9 _ 1434 1434 The amount of data available per allele varies greatly from 51
10 — 1051 1051 recorded affinities for 11-mer peptides binding to the mouse
:tﬁ ngg; 3 222 = 1;35; MHC allele H-2 K* to 3,089 affinities for 9-mer peptides
10 - 205 205 binding to the well-studied human allele HLA-A*0201. The
HLA B*0801 9 698 10 708 entire dataset is available for download at http://
HLA B*1501 9 975 3 978 mhcbindingpredictions.immuneepitope.org.
HLA B*1801 9 — 118 118 . P
Compared to other public databases, this is a much more
HLA B*2705 9 969 — 969 ) )
HLA B*3501 9 484 252 736 homogenous set of data, as all of it was generated in one of
10 — 177 177 only two assay systems. At the same time, the amount of data
HLA B*4001 9 962 18 1078 in our set is much greater than what was previously available.
HLA B*4002 9 — 118 118 B . h 1 £ . . . id
HLA B*4402 9 N G o) y cloimparlson, the largest set of quantitative .peptl .e
HLA B*4403 9 _ 119 119 affinities to MHC class I molecules currently available is
HLA B*4501 9 - 114 14 found in the AntiJen database, which contains 12,190 data-
HLA B*5101 9 — 244 244 . . . .
points that are compiled from the literature and were derived
HLA B*5101 10 — 177 177 ) ) )
HLA B*5301 9 _ 254 254 with a large variety of different assays.
10 — 177 177 To evaluate how comparable the IC5, values between the
HLA B*5401 9 - 255 255 two assays are, we have exchanged sets of peptides and
10 - R R imentally measured their affini MHC allel
HLA B*5701 9 B 59 9 exp.erlme.ntd y measured their affinity to ‘ . alleles
HLA B*5801 9 930 59 088 available in both assay systems. The scatterplot in Figure 1A
Mouse H-2 Db 9 — 303 303 shows that there is good agreement between the two assays
2 Dd 1(9) - 1:: 1‘;’2 for intermediate- and low-affinity peptides, less so for high-
10 _ 75 75 affinity peptides. To quantify the level of agreement between
H-2 Kb 8 — 480 480 the two assays, we utilized Matthew’s correlation coefficients
9 - 223 223 as a measure of classification agreement, which yield values of
H-2 Kd 9 — 176 176 . - . .
75 B 7 e 1.0 for perfect agreement and 0.0 for uncorrelated classi-
H-2 Kk 8 _ 80 80 fications (Figure 1IN). For ICs, higher than 150 nM, the
9 — 164 164 correlation coefficient is consistently above 0.65, indicating
1? - g 2: good agreement between the two assays. Conveniently, at the
H-2 Ld 9 _ 102 102 1C59 = 500 nM cutoff, which is commonly used to classify

@ PLoS Computational Biology | www.ploscompbiol.org

peptides into binders (IC5;y < 500 nM) or nonbinders (IC5, >
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Figure 1. Comparability of the Binding Affinities between Assays

(A) Scatter plot comparing measured affinities for peptides to MHC
recorded in the Buus (y-axis) and Sette (x-axis) assay systems.

(B) The agreement between experimental classifications of peptides as
binders/nonbinders at different affinity thresholds (x-axis) is measured by
the Matthews correlation coefficient (y-axis). The dashed lines indicates
the ICsq = 500 nM cutoff commonly used for classifying peptides into
binders and nonbinders, which is used in the ROC analysis.

DOI: 10.1371/journal.pcbi.0020065.g001

500 nM) [45], the two assays show very good agreement with a
Matthew’s correlation coefficient of 0.80.

For peptides with high affinities of IC5, = 50 nM or better,
the two assays show much less agreement, with correlation
coefficients below 0.37. One explanation consistent with the
observed differences is that for very-high-affinity peptides,
determining Kp based on ICj;, values may no longer be
reliable as the concentration of MHC molecules is no longer
negligible compared to the peptide concentration used for
saturation (also known as “ligand depletion”) [46].

The assay comparisons presented herein provide an
example of how pooling experimental data from different
sources without additional validation can be problematic; the
differences encountered between the measurements of the
two closely related assays here are small compared to the
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differences found when curating from the literature, which is
derived by a multitude of different experimental approaches.

Evaluating Prediction Methods

We used this dataset to compare the performance of three
prediction methods currently used in-house in our labs: the
ARB [5] and SMM [42] methods generate scoring matrices,
while the ANN [41] method generates an artificial neural
network. All three methods predict the quantitative affinity
of a peptide for an MHC molecule. At this time, the ANN
method has only been applied to the prediction of peptides
of length nine. We are currently working on expanding this
algorithm to make prediction for different lengths possible,
but in the comparison presented here, we intentionally did
not modify any of the three prediction methods from their
previously published implementations.

With the dataset described above, we used five-fold cross-
validation to generate and evaluate predictions for each of
the three methods. For each allele and peptide length
combination, the available data were split into five equally
sized sets, of which four were used to generate a prediction
tool (i.e., a matrix or a neural network). The tool generated
was then used to predict the affinities of the peptides in the
left-out set. Repeating this five times, each peptide in the
original dataset was assigned a predicted score.

Figure 2 depicts scatter plots comparing the measured
affinities of 3,089 nonamer peptides to HLA-A*0201 with
their predicted scores for the three methods. The expected
positive correlation between predicted and measured affin-
ities was observed for each method. Note that a large fraction
of measured affinities have their value set to the upper
detection limit (>20,000 nM), and therefore appear as
horizontal lines of dots in the scatter plots. Also note that
the three methods handle very high and low predicted values
differently. The ANN predictions are limited to values
between 1 and 50,000 nM and the ARB predictions are
similarly capped at 10° nM, while the SMM predictions are
not capped at all, which can lead to predictions outside of the
experimentally observable range.

To quantitatively compare prediction quality, we calcu-
lated linear correlation coefficients between predicted and
measured affinities on a logarithmic scale. For this calcu-
lation, all peptides with measured affinities at the upper
detection limit were ignored. The resulting correlation
coefficients are ARB = 0.55, SMM = 0.62, and ANN = 0.69,
making the ANN predictions the best in a statistically
significant manner (p < 0.05 using a ¢ test for correlation
coefficients drawn from the same sample [47]). The corre-
sponding linear regression curves are included in Figure 2.

An alternative measure of prediction quality is a receiver
operating characteristic (ROC) analysis. This evaluates how
well the predicted scores classify peptides into binders
(experimental 1G5, < 500 nM) and nonbinders (experimental
1C5p > 500 nM) by plotting the rate of true positive
classifications as a function of the false-positive classifications
for all possible cutoffs in the prediction output. The overall
quality of the prediction is measured by the area under the
ROC curve (AUC), which is 1.0 if the prediction is perfect and
0.5 if it is random. This metric has the advantage that (1) it is
invariant to different scales of the prediction output and only
slightly affected by prediction caps; (2) it is more robust
against outliers than a regression analysis; and (3) all
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Figure 2. ARB, SMM, and ANN Predictions for HLA-A*0201

false positive rate

The first three panels depict scatter plots of the predicted binding scores (x-axis) against the measured (y-axis) binding affinities of 3,089 9-mer peptides
to HLA-A*0201. The predictions were obtained in five-fold cross-validation using the ARB/SMM/ANN prediction methods, respectively. In each plot, a
linear regression on a logarithmic scale was performed, and the corresponding regression equation and r* values are given. The bottom right panel
contains an ROC analysis of the same data, evaluating how well the three methods can classify peptides into binders (ICs, < 500 nM) and nonbinders.

The AUC, which evaluates prediction quality, is given for each method.
DOI: 10.1371/journal.pcbi.0020065.9002

measurements including peptides without quantitative affin-
ities (e.g., >20,000 nM) can be utilized. Also, our two
experimental sources show very good agreement at the ICj5,
=500 nM cutoff (Figure 1). This means that an ROC analysis
at this cutoff is less prone to artifacts introduced by pooling
the two sets of data than the regression analysis.

Figure 2 presents ROC curves for the three methods.
Comparing classifications with the same rate of false
positives, the ANN predictions always have an equal or
higher rate of true positives than the SMM predictions, which
in turn outperform the ARB predictions. This is reflected in
the AUC values of ARB = 0.934, SMM = 0.952, and ANN =
0.957, which again shows the ANN predictions to be
significantly better than the others (p < 0.05 using a paired
t test on AUC values generated by bootstrap as described in
Materials and Methods).

We repeated the same analysis for all MHC alleles and
peptide lengths for which we have binding data available.
Table 2 shows the AUC values for each method. Comparing
only the predictions for 9-mer peptides, where all three
methods were available, shows that the ANN predictions are
the best in 30 cases, the SMM predictions in 16, and the ARB
predictions in zero cases. The differences between the
predictions of the three methods is statistically significant
(ARB < SMM < ANN) as evaluated by a paired ¢ test and a
Wilcoxon signed-rank test (both with p < 0.05). Comparing
the prediction performance utilizing correlation coefficients
instead of AUC values gives very similar results, as does
repeating the ROC analysis with classification cutoffs of 1C5,
=50 and 5,000 nM instead of 500 nM (unpublished data).
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It is commonly assumed that scoring matrices can be useful
for smaller datasets, while neural networks should outper-
form them if large training datasets are available [38,48], as
they can model higher-order correlations that require a large
dataset to be estimated precisely. To analyze how well this is
reflected in our results, we plotted the AUC values of each
method as a function of peptides in the training set (Figure 3).
For datasets with less than 300 peptides available, the ANN
method performs best, outperforming the SMM method in 16
of 23 cases. Interestingly, this ratio does not increase for
datasets containing more than 300 peptides, for which it
outperforms the SMM method in 14 of 23 cases. This
indicates that the primary limiting factor for the perform-
ance of the SMM method is not its inability to model higher-
order correlations, which would have resulted in an increas-
ing performance gap for larger datasets. The same is true for
the ARB method, as it gains the most from increasing
amounts of data, which again indicates that the matrix
representation per se is not the primary reason for its
underperformance; rather, it is the accuracy of the deter-
mined matrix values that improves as the amount of data
increase.

Comparison with Publicly Available Prediction Tools

As far as possible, we also wanted to compare our results
with other existing predictions. In October and November
2005, we retrieved predictions from all tools known to us to
be freely accessible on the internet for all the peptides in our
dataset. Only servers that (1) provided predictions for the
alleles in our dataset; (2) were available during that time; and
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Table 2. Overview of Prediction Performance as Measured by AUC Values

Dataset Allele Length # Peptides Method AUCs External Tool
ARB SMM ANN Name AUC
H-2 Db 9 303 0.865 0.912 0.933 syfpeithi 0.892
10 134 0.715 0.759 — syfpeithi 0.892
H-2 Dd 9 85 0.696 0.853 0.925 predbalbc 0.929
10 75 0.990 0.997 —_ rankpep 0.998
H-2 Kb 8 480 0.846 0.890 = libscore 0.885
9 223 0.792 0.810 0.850 libscore 0.866
H-2 Kd 9 176 0.798 0.936 0.939 syfpeithi 0.903
10 70 0.486 0.576 — syfpeithi 0.785
H-2 Kk 8 80 0.782 0.893 — rankpep 0.825
9 164 0.758 0.770 0.790 bimas 0.756
10 57 0.615 0.576 = bimas 0.690
H-2 Ld 9 102 0.551 0.924 0.977 libscore 0.987
HLA A*0101 9 1157 0.964 0.980 0.982 hlaligand 0.955
HLA A*0201 9 3089 0.934 0.952 0.957 hla_a2_smm 0.922
10 1316 0.885 0.910 — bimas 0.873
HLA A*0202 9 1447 0.875 0.899 0.900 multipredann 0.793
10 1056 0.819 0.851 — syfpeithi 0.500
HLA A*0203 9 1443 0.884 0.916 0.921 multipredann 0.788
10 1055 0.775 0.826 = syfpeithi 0.539
HLA A*0206 9 1437 0.872 0.914 0.927 multipredann 0.735
10 1054 0.818 0.857 = syfpeithi 0.500
HLA A*0301 9 2094 0.908 0.940 0.937 multipredann 0.851
10 1082 0.835 0.867 — rankpep 0.724
HLA A*1101 9 1985 0918 0.948 0.951 multipredann 0.869
10 1093 0.859 0.903 = bimas 0.795
HLA A*2402 9 197 0.718 0.780 0.825 syfpeithi 0.770
10 78 0.733 0.882 = syfpeithi 0.853
HLA A*2601 9 672 0.907 0.931 0.956 pepdist 0.736
HLA A*2902 9 160 0.755 0911 0.935 rankpep 0.597
HLA A*3101 9 1869 0.909 0.930 0.928 bimas 0.829
10 1057 0.832 0.855 = bimas 0.746
HLA A*3301 9 1140 0.892 0.925 0.915 pepdist 0.807
10 1055 0.837 0.848 — rankpep 0.661
HLA A*6801 9 1141 0.840 0.885 0.883 syfpeithi 0.772
10 1055 0.812 0.863 = syfpeithi 0.779
HLA A*6802 9 1434 0.865 0.898 0.899 mhcpred 0.643
HLA B*0702 9 1262 0.952 0.964 0.965 hlaligand 0.942
10 205 0.758 0.875 — bimas 0.759
HLA B*0801 9 708 0.936 0.943 0.955 pepdist 0.766
HLA B*1501 9 978 0.900 0.952 0.941 rankpep 0.816
HLA B*1801 9 118 0.573 0.853 0.838 pepdist 0.779
HLA B*2705 9 969 0.915 0.940 0.938 bimas 0.926
HLA B*3501 9 736 0.851 0.889 0.875 bimas 0.792
10 177 0.758 0.873 — rankpep 0.793
HLA B*4002 9 118 0.541 0.842 0.754 rankpep 0.775
HLA B*4402 9 119 0.533 0.740 0.778 syfpeithi 0.783
HLA B*4403 9 119 0.461 0.770 0.763 rankpep 0.698
HLA B*5101 9 244 0.822 0.868 0.886 pepdist 0.820
10 177 0.727 0.885 = bimas 0.838
HLA B*5301 9 254 0.871 0.882 0.899 rankpep 0.861
10 177 0.595 0.814 — rankpep 0.701
HLA B*5401 9 255 0.847 0.921 0.903 svmhc 0.799
HLA B*5701 9 59 0.428 0.871 0.826 pepdist 0.767
HLA B*5801 9 988 0.889 0.964 0.961 bimas 0.899
Averages 0.791 0.874 0.900 0.796

DOI: 10.1371/journal.pcbi.0020065.t002

(3) did not specifically disallow the use of automated
prediction retrieval were taken into account. This included
the following 16 tools: arbmatrix [5], bimas [10], hlaligand
[16], hla__a2_ smm [12], libscore [17], mappp [8], mhcpath-
way [18], mhcpred [7], multipred [19], netmhc [20,24,41],
pepdist [22], predbalbc [23], predep [21], rankpep [14], svmhc
[6], and syfpeithi [13]. We always used the default parameter
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settings for each tool, and we used the immediate tool output
as seen by a user. No attempts were made to optimize the
results for any tool once meaningful predictions could be
retrieved. We are aware that this may lead us to under-
estimate the performance of some tools (e.g., svmhc provides
an alternative output format with quantitative values for
nonbinding predictions) that we have initially overlooked.
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Figure 3. Prediction Performance as a Function of Training Set Size

For all datasets for which predictions with all three methods could be
made, the AUC values obtained with the three prediction methods are
included in the graph (y-axis). The x-axis gives the number of peptide
affinities in each training set.

DOI: 10.1371/journal.pcbi.0020065.9003

Figure 4 shows predictions retrieved for peptides binding
to HLA-A*0201 from two of the most established prediction
methods, bimas and syfpeithi. The prediction output of these
two methods are not 1Cj, values, but estimates of half-life of
dissociation in the case of bimas, and an integer score for the
syfpeithi predictions. In both cases, higher predictions
correspond to better binders, which here means lower ICj5,
values. An ROC analysis of these predictions is also shown in
Figure 4, which gives AUC values of 0.920 for bimas and 0.871
for syfpeithi. A sample collection of AUC values for more
alleles and other external prediction tools is shown in Table
3. For each allele and peptide length, the tool with the highest
AUC value among the set of external tools is listed in the last
two columns of Table 2. The complete listing for all external
tools is contained in Table S1, which also contains the URLs
from which predictions were obtained.

It has to be stressed that this analysis does not fairly judge
the performance of external predictions in all cases. For
example, some methods such as syfpeithi do not aim to
specifically predict peptide binding to MHC molecules, but
rather naturally processed peptide ligands. Also, the amount
and quality of training data available to each method are
divergent, which disadvantages methods with little access to
training data. In contrast, some tools were generated with an
appreciable fraction of data that is used here for testing. Such
nonblind tool generation leads to an overestimation of
performance. These tools are marked with an asterisk (¥) in
Table 3, and are excluded from Table 2.

In light of the above caveats, we focus on successful
external predictions. In total there were 54 allele/peptide
length combinations for which we had at least one external
prediction tool available (Table 2). For eight of these 54
combinations, one of the external tools performed better
than all three of our methods. These eight tools were derived
from bimas (one instance), libscore (two instances), predbalbc
(one instance), rankpep (one instance), and syfpeithi (three
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Figure 4. Syfpeithi and Bimas Predictions for HLA-A*0201

The top two panels contain scatter plots of the predicted binding scores
(x-axis) against the measured binding affinities (y-axis) for all 3,089 9-mer
peptides binding to HLA-A*0201 in our database. Both bimas and
syfpeithi do not predict ICs, values, but have output scales in which high
scores indicate good binding candidates. Therefore, the regression
curves are inverted. The bottom panel contains an ROC analysis of the
same data with the classification cutoff of 500 nM.

DOI: 10.1371/journal.pcbi.0020065.9004

instances). For seven out of eight of these tools, the
corresponding datapoints available for training in our
affinity set are comparably few (<140), which may explain
the low performance of our three methods for these sets. For
9-mers binding to H-2 Kb, however, there are 223 datapoints
available, and the libscore predictions, which are based on a
combinatorial peptide library, perform the best.

Next, we analyzed if the underperformance of matrix-
based tools that we found when comparing in-house
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Table 3. Prediction Quality of Tools Available Online

Prediction MHC Allele/Peptide Length

H-2 Db H-2 Kd H-2 Ld HLA A*0201 HLA A*0201 HLA A*1101 HLA A*2402 HLA B*0702

9 9 9 9 10 9 9 9
arbmatrix® 0.869 0.899 — 0.935 0.904 0.914 0.879 0.952
bimas 0.747 0.871 0.961 0.920 0.873 0.856 — 0.908
hla_a2_smm — — — 0.922 0.853 — — —
hlaligand — — — 0.816 0.776 0.846 0.742 0.942
libscore 0.908 — 0.987 — — — — —
mapppB 0.747 0.871 0.961 0.920 0.873 0.857 — —_
mapppS 0.803 0.904 0.957 0.871 0.676 — — 0.941
mhcpathway?® — — — 0.915 — — — 0.953
mhcpred 0.723 — — 0.814 — 0.725 — —
multipredann — — — 0.883 — 0.869 — —
multipredhmm — — — 0.796 — 0.832 — —
netmhcann® —_ — — 0.934 — 0.920 — 0.963
netmhcmatrix® — — — — — — 0.774 —
pepdist 0.677 0.748 0.819 0.789 — 0.819 0.763 0.892
predbalbc — 0.807 0.934 — — — — —
predep 0.606 — 0.629 0.788 0.757 — — —
rankpep 0.748 0.883 0.939 0.836 0.749 0.861 0.723 0.935
svmhc — — — 0.814 0.705 0.642 0.667 0.872
syfpeithi 0.803 0.903 0.957 0.871 0.801 = 0.770 0.937

*Training data for prediction tool are known to substantially overlap with testing data.
DOI: 10.1371/journal.pcbi.0020065.t003

prediction methods could also be seen for external tools. We
therefore separated the tools into matrix-based and non-
matrix-based (see Materials and Methods for the classifica-
tion). For 30 allele/peptide length combinations, there were
predictions available from tools of both categories. We
compared the highest AUC values in each tool category for
all datasets. Using a paired ¢ test and a Wilcoxon signed-rank
test, we found that the matrix-based tools significantly
outperformed the non-matrix-based tools (both with p <
0.05). This comparison again has to be interpreted with
caution, as the access to data of the different tools is probably
a much more important factor in determining prediction
quality then the underlying algorithm used.

A Web-Based Framework for the Generation and
Evaluation of Prediction Methods and Tools

When evaluating our three prediction methods, we
encountered multiple problems caused by differences in
their implementation. All have been implemented in differ-
ent programming languages: the ANN method is imple-
mented in Fortran, SMM in C4+, and ARB in Java. Also, all
have different input and output requirements. It became
clear that an abstraction layer providing a common interface
to prediction tools and methods would be highly beneficial.

As many tools were already implemented as web servers, it
was natural to define this abstraction layer as a set of http
commands. We defined such a common interface to both
query existing prediction tools as well as coordinate the
generation of tools by prediction methods. Figure 5 gives an
overview of the interactions defined in the abstraction layer.

The framework is designed to be expandable and place
minimum requirements on the implementation of outside
prediction methods. This will allow tool developers to plug
their existing or newly developed prediction methods into the
same framework for a transparent, automated comparison
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with other predictions. This allows controlling for both the
training and testing data used, enabling a true side-by-side
comparison. Also, all methods implemented this way automati-
cally benefit from increases in the data available to the IEDB.

Discussion

In the present report, we make available what is to date the
largest dataset of quantitative peptide-binding affinities for
MHC class I molecules. Establishing this dataset is part of the
IEDB [39] effort, and was generated specifically with tool
developers in mind. While the main part of the IEDB is
structured to store a large amount of detailed immunological
data, the present dataset is a curated, more homogeneous
subset. This allows computer scientists and bioinformaticians
to focus on improving prediction algorithms while avoiding
common problems in data assembly from the literature such as
inconsistent annotation of MHC alleles, handling conflicting
data from unrelated assays, errors due to manual entry of the
data, and, of course, the effort involved in collecting the data.

Another significant problem in the generation of peptide-
MHC binding datasets is that immunologists often consider
negative binding data as not interesting enough for publica-
tion. This biases the immunological literature to report only
positive binding data, and forces tool developers to approx-
imate negative binders with randomly generated peptides.
While the use of random peptides is often necessary, previous
studies have shown that the use of true nonbinding peptides
allows for the generation of better predictions [22,49]. The
present set of peptide-binding data removes the need for
randomized peptides, as all binding data generated is
reported, including plenty of nonbinding peptides.

The data in our set come exclusively from two assay systems
established in the Buus and Sette labs. This makes it much
more homogeneous than other available datasets, typically
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curated from the literature. Moreover, we conducted a set of
reference experiments to standardize the quantitative affin-
ities observed in the two assays. This showed that for peptides
with ICso values > 400 nM, the measurements of the two
assays corresponded very well, less so for high-affinity
peptides. We originally had hoped to convert ICs, values
from different sources onto a common scale. However, our
analysis suggests that this may not be possible due to
differences in sensitivities between the two assay systems.
Still, by documenting incompatibilities between assays, these
can be taken into account by tool developers. Specifically for
the current dataset, we recommend evaluating prediction
performance by the ability to classify peptides into binders
and nonbinders at a cutoff of 500 nM. We plan to include
data from additional sources to this dataset, for which we will
carry out a similar process of exchanging peptides and
reagents to ensure consistency of the reported affinities.

We have used the dataset to evaluate the prediction
performance of three methods that are routinely used by
our groups. In this comparison, the ANN method out-
performed the two matrix-based predictions ARB and
SMM, independent of the size of the training dataset. This
surprising result indicates that the primary reason for the
superior ANN performance is not its ability to model higher-
order sequence correlations, which would result in a larger
performance gap for increasing dataset size. This does not
imply that higher-order sequence correlations play no role in
peptide binding to MHC. Indeed, this is very unlikely, as the
peptide must fit into the binding cleft, which is restricted by
the available space and contact sites, for which neighboring
residues will compete. To directly assess the importance of
higher-order correlations, one would need to calculate, for
instance, the mutual information by estimating amino acid
pair frequencies for the 400 possible pairs at two positions in
the peptide [50]. However, the signal-to-noise ratio of such a
calculation is still too low for datasets of the size utilized in
this study, which are still very small compared to other fields
where higher-order correlations definitely do play a role (e.g.,
secondary structure predictions).

The high performance of the ANN method on small
datasets is likely due to the fact that the present ANN method
being utilized is a hybrid, where the peptide amino acid
sequence is represented according to several different
encoding schemes, including conventional sparse encoding,
Blosum encoding, and hidden Markov model encoding [41].
This encoding enables the network to generalize the impact
on binding of related amino acids.

Multiple comparisons of tool prediction performance have
been made before with conflicting outcomes when comparing
matrix predictions with neural networks [12,38,48]. The
comparison presented here is different in two main aspects.
First, the magnitude of data used in this comparison is 10- to
100-fold larger than previous attempts. Second, the three
methods in the comparison were all used and optimized as
implemented by their developers. This avoids expert bias (i.e.,
the effect that a tool developer is better able to optimize
predictions of methods helshe is familiar with than those he/
she is unfamiliar with).

We have also evaluated the performance of external
prediction tools on this dataset. As could be expected simply
because of differences in the type and amount of data
available to the external tools for training, their prediction
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Figure 5. Scheme to Integrate Prediction Methods

Shown is a prediction framework providing a common interface to
different prediction methods to generate new tools and retrieve
predictions from them. A prediction method has to accept a set of
peptides with measured affinities with which it can train a new
prediction tool. It returns the URI of the new tool to the evaluation
server. Using the URI, the evaluation server can check for the state of the
new tool to see if training is still ongoing or if an error occurred during
training. Once the tool training is completed, it has to accept a set of
peptide sequences and return predicted affinities for them. The format
for the data exchanged in each of these steps is defined in an xml
schema definition (xsd file), available at http://mhcbindingpredictions.
immuneepitope.org.

DOI: 10.1371/journal.pcbi.0020065.9005

performance is usually below that recorded by the methods in
cross-validation. Specifically, as the set of peptide sequences
was not homology-reduced, the performance of the three
internal prediction methods is overestimated compared to
the external tools. Therefore, we expect that the performance
of all external tools will improve significantly when retraining
them with the data made available here. Still, for a number of
datasets, the best external predictions outperform all three
methods tested in cross-validation here. In most cases, these
datasets are comparably small (<140 peptides), which could
explain why the three methods underperformed. One
exception is the H-2 K" set with 223 peptides, for which the
libscore predictions, which are based on characterizing MHC
binding combinatorial peptide libraries, perform best. As this
requires a comparatively small number of affinity measure-
ments (20X peptide length), this underlines the value of this
approach for characterizing new MHC alleles.

All of the data generated in the evaluation process,
including the dataset splits and predictions generated in
cross-validation, is made publicly available. These data make
the evaluation process itself transparent and allow for using
them as benchmarks during tool development and testing.

While everyone can work with these benchmark sets in the
privacy of their own lab, we hope that promising prediction
methods will be integrated into our automated tool gener-
ation and evaluation framework. This web-based framework
was designed to minimize requirements on hardware and
software, and it enables a transparent side-by-side compar-
ison of prediction methods.

Results from such a side-by-side comparison will help
bioinformaticians identify which features make a prediction
method successful, and they can be used as a basis for further
dedicated prediction contests. Importantly, such comparisons
will also help immunologists find the most appropriate
prediction tools for their intended use.
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The present evaluation is solely concerned with the
prediction of peptide binding to MHC class I molecules.
Binding of a peptide is a prerequisite for recognition during
an immune response. However, there are many other factors
that make some binding peptides more relevant than others
for a given purpose. Examples of such factors include
preferring peptides that are able to bind multiple MHC
alleles, preferring peptides derived from viral proteins
expressed early during infection, or preferring peptides that
are efficiently generated from their source protein during
antigen processing. For these and other factors, we plan to
provide datasets and carry out evaluations similar to the one
presented here in future studies. Our overall goal is to
communicate problems of immunological relevance to
bioinformaticians, and to demonstrate to immunologists
how bioinformatics can aid in their work.

Materials and Methods

Peptide-binding assay—Sette. The MHC peptide-binding assay
utilized in the Sette lab measures the ability of peptide ligands to
inhibit the binding of a radiolabeled peptide to purified MHC
molecules, and has been described in detail elsewhere [43,51,52].
Briefly, however, purified MHC molecules, test peptides, and a
radiolabeled probe peptide are incubated for 2 d at room temper-
ature in the presence of human B2-microglobulin and a cocktail of
protease inhibitors. After the 2-d incubation, binding of the radio-
labeled peptide to the corresponding MHC class 1 molecule is
determined by capturing MHC-peptide complexes on W6/32 anti-
body (anti-HLA A, B, and C)-coated plates, and measuring bound
cpm using a microscintillation counter. Alternatively, following the 2-
d incubation, the percent of MHC-bound radioactivity can be
determined by size exclusion gel filtration chromatography. For
competition assays, the concentration of peptide yielding 50%
inhibition of the binding of the radiolabeled peptide is calculated.
Peptides are typically tested at six different concentrations covering a
100,000-fold dose range, and in three or more independent assays.
Under the conditions utilized, where [label] < [MHC] and IC;, >
[MHC], the measured ICjy, values are reasonable approximations of
the true Ky values [48,53].

Peptide-binding assay—Buus. The denatured and purified re-
combinant HLA heavy chains were diluted into a renaturation buffer
containing HLA light chain, B2-microglobulin, and graded concen-
trations of the peptide to be tested, and incubated at 18 °C for 48 h
allowing equilibrium to be reached. We have previously demon-
strated that denatured HLA molecules can fold efficiently de novo,
but only in the presence of appropriate peptide. The concentration
of peptide-HLA complexes generated was measured in a quantitative
enzyme-linked immunosorbent assay and plotted against the con-
centration of peptide offered. Since the effective concentration of
HLA (3-5 nM) used in these assays is below the KD of most high-
affinity peptide-HLA interactions, the peptide concentration leading
to half-saturation of the HLA is a reasonable approximation of the
affinity of the interaction. An initial screening procedure was
employed whereby a single high concentration (20,000 nM) of
peptide was incubated with one or more HLA molecules. If no
complex formation was found, the peptide was assigned as a
nonbinder to the HLA molecule(s) in question; conversely, if complex
formation was found in the initial screening, a full titration of the
peptide was performed to determine the affinity of binding.

ARB, ANN, and SMM predictions. The three prediction methods
used in the cross-validation were applied as previously published,
with all options set to their default values unless stated otherwise in
the following. For the ARB method [5], two options to determine ICy,
values exist, of which the “linear” option was chosen. For the SMM
predictions [42], it is possible to predict higher-order correlations
using “pair coefficients.” This option was turned off, as this led to
unacceptably long calculation times for the larger datasets. The ANN
method was used as described in [41].

Prediction retrieval from external tools. We identified MHC class 1
prediction tools through literature searches, and the IMGT link list at
http://imgt.cines.fr/textes/IMGTbloc-notes/Immunoinformatics.
html#tooMHCbp. Identical tools appearing on multiple websites—
most often in combination with proteasomal cleavage/TAP transport
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predictions—were only included once. Several tools were not
available at the time of the study (October/November 2005). One
server containing multiple prediction tools (http://lwww.imtech.res.in/
raghaval) could unfortunately not be included, as its terms of use
limit the number of predictions to 20 a day.

Several tools allowed making predictions with different algorithms.
In cases like this, we retrieved predictions for both, and treated them
as separate tools: multipred provides predictions based on either an
artificial neural network or a hidden Markov model, which we refer to
as multipredann and multipredhmm. Similarly, netmhc provides
neural network-based predictions (netmhc__ann) and matrix-based
predictions (netmhc__matrix), and mappp provides predictions
based on bimas (mapppB) and syfpeithi (mapppS) matrices.

For each tool, we mapped the MHC alleles for which predictions
could be made to the four-digit HLA nomenclature (e.g., HLA-
A*0201). If this mapping could not be done exactly, we left that
allele-tool combination out of the evaluation. For example, HLA-A2
could refer to HLA-A*0201, A*0202, and A*0203, which do have a
distinct binding specificity.

For each tool in the evaluation, we wrote a python script wrapper
to automate prediction retrieval. The retrieved predictions were
stored in a MySQL database. If a tool returns a nonnumeric score
such as “-” to indicate nonbinding, an appropriate numeric value
indicating nonbinding on the scale of the tool was stored instead.

The algorithms underlying each tool fall in the following
categories: arbmatrix, bimas, hla__a2_smm, hlaligand, libscore,
mapppB, mapppS, mhepathway, mhcpred, netmhcematrix, predbalbe,
predep, rankpep, and syfpeithi are based on positional scoring
matrices, while multipredann and netmhcann are based on ANNs,
multipredhmm is based on a hidden Markov model, pepdist is based
on a peptide-peptide distance function, and svmhc is based on a
support vector machine. With two exceptions, the tools were
generated based on data of peptides binding to or being eluted from
individual MHC molecules. The first exception is libpred, which was
generated using binding data of combinatorial peptide libraries to
MHC molecules, and predep, where the 3-D structure of the MHC
molecules was used to derive scoring matrices. References with more
detailed description of each tool are indicated in the text.

ROC curves. ROC [54] curves were used to measure the ability of
predictions to classify peptides into binders (experimental IC5, < 500
nM) or nonbinders (experimental IC5, > 500 nM). Given a cutoff for
the predicted value, predictions for peptides were separated into
positive and negative subsets, allowing for calculation of the number
of true-positive and false-positive predictions. Plotting the rates of
true-positive predictions as a function of the rate of false-positive
predictions gives an ROC curve.

Calculating the AUC provides a highly useful measure of prediction
quality, which is 0.5 for random predictions and 1.0 for perfect
predictions. The AUC value is equivalent to the probability that the
predicted score for a randomly chosen binding peptide is (better) than
that of a randomly chosen peptide that is not a binder. To assess if the
AUC value of one prediction is significantly better than that of
another prediction, we resampled the set of peptides for which
predictions were made. Using bootstrapping with replacement, 50
new datasets were generated with a constant ratio of binder to
nonbinder peptides. We then calculated the difference in AUC for the
two predictions on each new dataset. One prediction was considered
significantly better than another if the distribution of the AUC values
was significantly different, which we measured using a paired ¢ test.
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