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The study of synchronization in biological systems is essential for the understanding of the rhythmic phenomena of
living organisms at both molecular and cellular levels. In this paper, by using simple dynamical systems theory, we
present a novel mechanism, named transient resetting, for the synchronization of uncoupled biological oscillators with
stimuli. This mechanism not only can unify and extend many existing results on (deterministic and stochastic) stimulus-
induced synchrony, but also may actually play an important role in biological rhythms. We argue that transient
resetting is a possible mechanism for the synchronization in many biological organisms, which might also be further
used in the medical therapy of rhythmic disorders. Examples of the synchronization of neural and circadian oscillators
as well as a chaotic neuron model are presented to verify our hypothesis.
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Introduction

Life is rhythmic. Winfree made the shocking discovery that
a stimulus of appropriate timing and duration can reset
(stop) the biological rhythm by driving the clock to a ‘‘phase
singularity,’’ at which all the phases of the cycle converge and
the rhythm’s amplitude vanishes. He theoretically predicted
this in the late 1960s, and then confirmed it experimentally
for the circadian rhythm of hatching in populations of
fruitflies. Subsequent studies have shown that mild perturba-
tions can also quench other kinds of biological oscillations;
for example, breathing rhythms and neural pacemaker
oscillations [1,2]. Such findings may ultimately have medical
relevance for disorders involving the loss of a biological
rhythm, such as sudden infant death syndrome or certain
types of cardiac arrhythmias [3]. In [4], Tass studied phase
resetting by using methods and strategies from synergetics. In
[5], Leloup and Goldbeter presented an explanation for this
kind of long-term suppression of circadian rhythms by the
coexistence of a stable periodic oscillation and a stable steady
state in the bifurcation diagram.

On the other hand, synchronization is essential for
biological rhythms and information processing in biological
organisms. So far, many researchers have studied the
synchronization in biological systems experimentally, nu-
merically, and theoretically. In this paper, by using simple
dynamical systems theory, we show that transient resetting,
which concept will be clarified later, can play a constructive
role for biological synchrony. We argue that transient
resetting is a possible mechanism for synchrony generally
used in many biological organisms, which might also be
further used in the medical therapy of rhythmic disorders.
Winfree’s results showed the destructive aspect of the
resetting, while we show its constructive aspect. Although
we concentrate mainly on biological systems, the novel
mechanism presented in this paper is applicable to general
oscillators, so in the following we first present it as a general
mechanism for synchrony and then discuss its possible
applications to biological rhythms.

Results

Basic Mechanism
Let’s assume that an oscillator has a bifurcation diagram

like that shown in Figure 1 with a normal (supercritical) Hopf
bifurcation [6], in which the bifurcation parameter k is the
above-mentioned ‘‘stimulus,’’ and the curves with k , k0 show
the maximum and minimum values of the oscillator state.
When the stimulus is a constant less than the critical value
(bifurcation point) k0, the system has a stable rhythm
(periodic oscillation); when the stimulus k . k0, the system
has a stable equilibrium state, which is shown by the curve k
. k0. Undoubtedly, many oscillators have this kind of
bifurcation structure. Assume that a population of (identical)
oscillators operates in stable periodic states with k ¼ a. To
clarify the essential role of transient resetting, we don’t
consider coupling among oscillators in this paper. For
oscillators without coupling, the situation for studying the
synchronization of two oscillators is the same as that for a
population of oscillators, so in the following we always
consider two oscillators. Let us also assume that there are
some common fluctuations, e.g., periodic fluctuations or
random noise, that can perturb the parameter k from a to the
right side of k0, say to k ¼ b in Figure 1, from time to time.
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When the duration of the oscillators staying to the right of k0
is long enough, the two oscillators will all converge to the
steady state, which is a rhythm-vanishing phenomenon. Next,
let us examine what will happen when the parameter k visits
the value k ¼ b for a short duration. If the states of the two
oscillators are at points A and B, respectively, the two
oscillators will have the tendency to converge to their
common steady state when the parameter k visits the value
k ¼ b, which means that the states of the two oscillators will
have the tendency to become closer. If the states of the two
oscillators are at the points A and C, respectively, the two
oscillators will also have the tendency to converge to their
common steady state when the parameter k visits the value k
¼ b. From conventional linear stability analysis, we know that
the velocity for converging to the steady state at point C is
higher than that at point A, so the two oscillators will also
have the tendency to become closer. Thus, by a short visit to

the right of k0, the states of the two oscillators always have the
tendency to become closer, which is helpful for the genesis of
synchronization between the oscillators. Here, the states of
the oscillators are not really reset to the steady state, but they
have the tendency (for a short time) to be reset to the steady
state, which is the reason we call it transient resetting.
From the above analysis, it is easy to see that the

bifurcation is not necessarily required to be a supercritical
Hopf bifurcation. We only need the oscillator to operate
mostly in an oscillatory state, and it can from time to time
visit a steady state in the parameter space. Even if there are
other bifurcations between these two states (k¼ a and k¼ b),
say a subcritical Hopf bifurcation with coexistence of a
stable limit cycle and a stable equilibrium state between the
dashed and the dotted vertical lines in Figure 1, the above
argument can still hold. Moreover, since oscillators are
usually nonidentical in real systems, there are some
mismatches between the oscillators. If the mismatches are
not so large, however, the oscillators can also be synchron-
ized (although not perfectly) by transient resetting. For
example, we assume that the mismatch can be reflected in
the parameter k, and we assume that the two oscillators
operate with parameters k ¼ a and k ¼ e, respectively, and,
by a common perturbation, the parameters of the two
oscillators visit k ¼ b and k ¼ c, respectively, in Figure 1. If
the mismatch between the systems is not so large, the
distance between the steady states with k ¼ b and k ¼ c is
most likely small, too. The two oscillators have the tendency
to be contracted to the two steady states, respectively, which
means that roughly they are becoming closer since the two
steady states are close. In transient resetting, we do not care
what the stimulus is. It can be of any kind, say periodic,
random, impulsive, or even chaotic stimuli; thus, transient
resetting can unify many existing results on stimulus-
induced synchrony.
Next, we present several examples of biological rhythms to

show the effectiveness of transient resetting and its biological
plausibility as a mechanism for biological synchrony.

Reliability of Neural Spike Timing
A remarkable reliability of spike timing of neocortical

neurons was experimentally observed in [7]. In the experi-
ments, rat neocortical neurons are stimulated by input
currents. When the input is a constant current, a neuron
generates different spike trains in repeated experiments
with the same input. It is evident that the constant input
when viewed as a bifurcation parameter has moved the
neuron dynamics from a steady state into a repetitive
spiking region. It is shown that when Gaussian white noise
is added to the constant current, the neuron generates
almost the same spike trains in repeated experiments. From
the viewpoint of synchronization, the repeated firing
patterns imply that a common synaptic current can induce
almost complete synchronization in a population of
uncoupled identical neurons with different initial condi-
tions. This kind of synchronization may have great
significance in information transmission and processing in
the brain (see, e.g., [8–12]).
We simulate the above-mentioned behavior by using the

well-known Hodgkin-Huxley (HH) neuron model, which is
described by the following set of equations [13]:

Figure 1. A Schematic Bifurcation Diagram with a Normal (Supercritical)

Hopf Bifurcation for Illustrating the Transient Resetting Mechanism

DOI: 10.1371/journal.pcbi.0020103.g001
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Synopsis

Synchronization of dynamical systems is a process whereby two or
more systems adjust a given property of their motions to a common
behavior due to coupling or forcing. Synchronization has attracted
much attention from physicists, biologists, applied mathematicians,
and engineers for many years and is a ubiquitous phenomenon. In
this paper, Li et al. present a very simple, but general mechanism,
called transient resetting, that explains stimulus-induced synchroni-
zation in dynamic systems. The mechanism pertains not only to
periodic oscillators but also to chaotic ones, and not only to
continuous time systems but also to discrete time systems.
Biological systems are dynamic, and their synchronization is
essential, for example, in the genesis of rhythmic phenomena and
information processing. In this paper, the authors study several
possible instances of their novel mechanism in a biological context.
They also suggest that transient resetting might be used therapeuti-
cally in rhythmic disorders. The beneficial role of noise in biological
systems has been studied extensively in recent years. Li and
colleagues’ mechanism provides an explanation for this role in the
synchronization in biological systems, even when the stimulus or
input to the system is not random or noisy.

Synchrony by Transient Resetting



Cm _uðtÞ ¼ GNam3hðENa� uÞ þ GKn4ðEK � uÞ
þGmðVrest � uÞ þ I0 þ IðtÞ;

_mðtÞ ¼ amðuÞð1� mÞ � bmm;
_hðtÞ ¼ ahðuÞð1� hÞ � bhh;
_nðtÞ ¼ anðuÞð1� nÞ � bnn;

ð1Þ

where u(t) represents the membrane potential of the neural
oscillator, m(t) and h(t) the activation and the inactivation of
its sodium channel, n(t) the activation of the potassium
channel, I0 the constant input current, and I(t) the time-
varying forcing. ax and bx (x¼ m, h, n) are rate functions that
are given by the following equations:

amðuÞ ¼
0:1ð25� uÞ

exp
25� u
10

� �
� 1

; bmðuÞ ¼ 4exp � u
18

� �
;

ahðuÞ ¼ 0:07exp � u
20

� �
; bhðuÞ ¼

1

exp
30� u
10

� �
þ 1

;

anðuÞ ¼
0:01ð10� uÞ

exp
10� u
10

� �
� 1

; bnðuÞ ¼ 0:125exp � u
80

� �
:

The parameters are set as the standard values [13], i.e., GNa

¼ 120 mS/cm2, ENa ¼ 115 mV, GK ¼ 36 mS/cm2, Gm ¼ 0.3 mS/
cm2, Vrest ¼ 10.6 mV, and Cm ¼ 1 lF/cm2. We always set the
input I0þ I(t) to zero for t , 0. When I(t)¼ 0, if the value I0 is
larger than a critical value Ic0 ’ 6 lA/cm2, the neuron has
regular spiking; otherwise, the neuron is in the steady resting
state. Thus, the bifurcation direction of the HH neuron is
opposite to that shown in Figure 1 and the type of Hopf
bifurcation is subcritical rather than supercritical. We fix the
input constant I0 ¼ 10, such that when I(t) ¼ 0 (t . 0), this
model exhibits a stable periodic oscillation.

To simulate the experimental results in [7], we let I(t) ¼
Dn(t) in the HH model, where D is a positive constant, and n(t)
is a normal Gaussian white noise process with mean zero and
standard deviation one. We numerically calculate the
stochastic neuron model by using the Euler-Maruyama
scheme [14] with time step h ¼ 0.01. When D ¼ 2, the two
HH neural oscillators can achieve complete synchronization
as shown in Figure 2A. One may ask whether it is really the
‘‘noisy’’ property of I(t) that synchronizes the oscillators. We
show here that this behavior can be interpreted by the
transient resetting mechanism. In fact, when I(t) is a random
noise, it will make the total input I0þ I(t) visit the parameter
region that is smaller than the critical value Ic0 ’ 6 from time
to time, so that the transient resetting mechanism can take
effect. In the experiments, the total input is indeed below the
critical value in some time durations, which implies that our
argument is biologically plausible. The experimental (and
simulation) results show that the larger the noise intensity (to
some extent), the higher the reliability and precision of the
spike timing, which can also be interpreted by the transient
resetting mechanism. In fact, when the noise intensity is
larger, the total input will spend more time below Ic0, such
that the two trajectories will have more opportunities to be
contracted together. Due to the random property of the
input, when the input value is above Ic0, the effects of the noise
for converging and diverging the two trajectories are roughly
balanced; thus, the longer the duration of the input value

being below Ic0, the closer the two trajectories and the faster
the convergence should be. To further verify the above
argument that it is not the ‘‘noisy’’ property of the input that
synchronizes the oscillators, we perform another simulation,
in which the fluctuation is a square wave with amplitude of
4.5 and period of 20 ms; that is, the total input switches
between 10 (above Ic0) and 5.5 (a little below Ic0) every 10 ms. In
Figure 2B, we show the simulation result, in which the square
wave is added at t¼ 80. We see that the two neural oscillators
are synchronized rapidly, though the input is a regular square
wave.
Next, we numerically study the relationship between the

time rate that the stimulus of the HH neuron model spends in
the steady-state region (defined as the duty) and the time
required to achieve synchronization. For the convenience of
measuring the duty, we use a square wave as the stimulus in
the simulations. In the following simulation, the period of the
square wave is 20 ms, the time window when the stimulus is in
the steady-state parameter region is randomly chosen in each
cycle, and all the other parameters are the same as those in
the above simulation. In Figure 3, we plot the relationship
between the duty and the time required to achieve
synchronization as the duty increases from 0.1 to 0.4 with
step 0.05, in which the data are obtained by averaging the
results in 20 independent runs. Figure 3 shows that the time

Figure 2. Synchronization of Two HH Neural Oscillators

(A) Driven by common Gaussian white noise; and (B) driven by a
common square wave.
DOI: 10.1371/journal.pcbi.0020103.g002

Figure 3. The Relationship between the Duty and the Time Required to

Achieve Synchronization in the HH Neuron Model

DOI: 10.1371/journal.pcbi.0020103.g003
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required to achieve synchronization decreases as the duty
increases. This quantitative result again confirms our above
argument and provides numerical evidence that the proposed
mechanism can account for the observed synchrony.

Biological oscillators are usually nonidentical in real
systems, and there are some mismatches between the
oscillators. As we mentioned in the Basic Mechanism section,
if the mismatches are not so large, the oscillators can also be
synchronized (although not perfectly) by transient resetting.
We next numerically study the relationship between the
parameter mismatch and the synchronization error, that is,
the robustness of the mechanism, in the HH systems. In this
simulation, we consider the mismatch on I0 in Equation 1,
namely in one of the two neural oscillators, the constant
input is I0�DI, and in the other one, it is I0. As we know, the
input value I has explicit effect on the spiking frequency of
the HH neuron model. We also use a square wave in this
simulation, and the period and the duty are 10 and 0.3,
respectively. Again, the time window when the stimulus is in
the steady-state parameter region is randomly chosen in each
cycle. The synchronization error is defined as q ¼,j X1 (t) �
X2 (t) j., where X1, X2 are the state vectors of the two neural
oscillators, that is, Xi(t)¼ [ui(t),mi(t),hi(t),ni(t)]

T, i¼ 1, 2, and , �
. is the average over time after discarding the initial phase of
the simulation for 100 ms. In Figure 4A, we plot the
relationship between DI and q, in which each value of q is
also obtained by averaging the results in 20 independent runs
and the error bars denote the standard deviations. Figure 4A
shows that the synchronization error q increases with the
increasing of DI, and when DI is not so large, the systems can
also achieve synchronization with a small synchronization
error q. In Figure 4B, we plot a typical simulation result with

DI ¼ 0.5, and the q value between 100 ms and 200 ms in this
simulation is q ¼ 3.8667. Figure 4B demonstrates that the
transient resetting mechanism can indeed make the two
nonidentical neural oscillators synchronous, though the
synchrony is not perfect. When the mismatch becomes large,
the systems may intermittently lose synchrony, but shortly
after that the systems can be attracted back to synchrony
again by the mechanism. When the mismatch becomes much
larger, the systems cannot maintain the synchronous state,
though the mechanism still has the tendency to draw the
systems together. In biological systems, the oscillators, though
not perfectly identical, can usually be similar and the
mismatch may not be so large. Thus, the presented
mechanism is robust in such cases. Moreover, the synchroni-
zation in biological systems may not be required to be perfect
for the emergence of functions.
It should be noted that when the mismatches exist in other

parameters except the input, we can also obtain similar
results. For example, in another simulation, we consider a
mismatch on the parameter Gm, that is, the parameter is Gmþ
DGm in one oscillator, and it is Gm in the other oscillator. The
simulation methods are the same as above. In Figure 5A, we
show the relationship between DGm and q as DGm increases
from 0.02 to 0.1 with step 0.02. In Figure 5B, we plot a typical
numerical result with DGm¼0.06, and the q value between 100
ms and 200 ms in this simulation is q ¼ 2.1492. From this
figure, we can get the same conclusion as that in the above
example.
It should also be noted that this transient resetting is

effective for both class I and class II neurons [13]. Further, the
Hopf bifurcation of class II neurons can be either subcritical

Figure 4. Robustness of the Mechanism with Parameter Mismatch on I0
in the HH Neuron Model

(A) The relationship between the parameter mismatch DI and the
synchronization error q.
(B) A typical numerical result of the systems with DI ¼ 0.5.
DOI: 10.1371/journal.pcbi.0020103.g004
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Figure 5. Robustness of the Mechanism with Parameter Mismatch on Gm

in the HH Neuron Model.

(A) The relationship between the parameter mismatch DGm and the
synchronization error q.
(B) A typical numerical result of the systems with DGm¼ 0.06.
DOI: 10.1371/journal.pcbi.0020103.g005
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as in the HH model, or supercritical associated with the
canard phenomenon [15].

Circadian Oscillators
In circadian systems, the light–dark cycle is the dominant

environmental synchronizer used to entrain the oscillators to
the geophysical 24-h day. In the following, we show that the
light–dark cycle as a synchronizer can also be interpreted by
the transient resetting mechanism. By our argument on
transient resetting, if the circadian clock has a bifurcation
diagram similar to Figure 1 with a light-affected parameter as
the bifurcation parameter, and if the oscillators operate in
the oscillatory parameter region (say with k¼ a in Figure 1) in
the dark duration, and in the steady-state parameter region
(say with k¼ b in Figure 1) in the light duration, the oscillators
may be automatically synchronized. For example, in the
Leloup-Goldbeter model of Drosophila [16], the light–dark
cycle affects the degradation of the TIM protein. In their
parameter setting (which is biologically plausible), under a
continuous light condition, the model is in the steady-state
parameter region. Then, according to the transient resetting
mechanism, the uncoupled oscillators can be synchronized
automatically, which is verified by our numerical simulations
(unpublished data).

In theoretical studies of circadian clocks, the light–dark
cycle is usually represented by a square wave, but, in fact,
even with continuous light, the light intensity includes
fluctuations (light noise). Next, we study the effect of light
noise on the synchronization of circadian oscillators. We
consider the Goldbeter circadian clock model of Drosophila
[17] as an example, which is described as follows:

dM
dt
¼ vs

Kn
I

Kn
I þ Pn

N
� vm

M
Km þM

;

dP0

dt
¼ ksM � V1

P0

K1 þ P0
þ V2

P1

K2 þ P1
;

dP1

dt
¼ V1

P0

K1 þ P0
� V2

P1

K2 þ P1
� V3

P1

K3 þ P1
þ V4

P2

K4 þ P2
;

dP2

dt
¼ V3

P1

K3 þ P1
� V4

P2

K4 þ P2
� k1P2 þ k2PN � vd

P2

Kd þ P2
;

dPN

dt
¼ k1P2 � k2PN ;

ð2Þ

where the parameter values are vs ¼ 0.76 lMh�1, vm ¼ 0.75
lMh�1, Km¼ 0.5 lM, ks¼ 0.38 h�1, vd¼ 1 lMh�1, k1¼ 1.9h�1, k2
¼ 1.3h�1, KI¼ 1 lM, Kd¼ 0.2 lM, n¼ 4, K1¼K2¼K3¼K4¼ 2
lM, V1¼ 3.2 lMh�1, V2¼ 1.58 lMh�1, V3¼ 5 lMh�1, and V4¼
2.5 lMh�1 (see [17] for more details about this model). In this
model, light enhances the degradation of the PER protein by
increasing the value of vd. With these biologically plausible
parameter values, the period of the circadian clock is about
24 h. With the increasing of vd, there is a Hopf bifurcation
similar to that shown in Figure 1, and the critical value of vd at
the bifurcation point is about 1.6. To clarify the effect of light
noise, we don’t consider the light–dark cycle in this
simulation, that is, vd¼ 1 is a constant (denoting the average
light intensity) if there is no light fluctuation. In our
simulation, we set vd ¼ 1 þ Dn (t). When D ¼ 0.15, the
simulation result is shown in Figure 6A, which shows that the
two circadian oscillators achieve complete synchronization.

This behavior can again be interpreted by the transient
resetting mechanism. The interpretation is the same as that
in the HH neural oscillator case.
In the above examples, we show separately the effects of the

light–dark cycle and the light noise. The light–dark cycle itself
may not be strong enough to reach the steady-state
parameter region in real biological circadian systems. For
example, in Figure 1, the light–dark cycle may make the
bifurcation parameter switch between a and d in the dark and
the light durations, respectively. In this case, a small light
noise would drive the parameter k to the right hand side of k0
from time to time (in the light duration), which can be seen as
the combination or synergetic effect of the light–dark cycle
and the light noise. In other words, in biological circadian
systems, it is likely that the light–dark cycle and the light noise
cooperate to realize transient resetting.
The time required to achieve synchrony and the robustness

of the mechanism in this system can also be studied similarly
as in the HH model, although we omit the detailed results
here.

Therapy
The transient resetting mechanism may have potential

applications in the therapy of various rhythmic disorders.
Our analysis implies that if we have some methods to control
a biological rhythmic system to make it visit its steady-state
parameter region transiently, it may entrain the disordered
rhythmic system to a synchronous state. For example, we use
a stimulation bright light for 10 h with vd ¼ 1.7 in 2 [50,60],
and vd¼ 1 in other time durations in the Goldbeter circadian
oscillators. The simulation result is shown in Figure 6B, which
shows that the two oscillators are almost completely
synchronized after the short duration of the bright light
stimulation. The exposure to bright light also induces a
several-hour delay shift of the circadian oscillators, which is
consistent with the experimental results [18].
Excepting the above-mentioned neural and circadian

systems, the mitotic control system [19] may be another
biological example that uses the transient resetting mecha-
nism to achieve synchrony.

Figure 6. Synchronization of Two Goldbeter Circadian Oscillators

(A) Induced by common light noise; and (B) induced by a short duration
of bright light.
DOI: 10.1371/journal.pcbi.0020103.g006
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Chaotic Neuron Model
In the above examples, we considered periodic oscillators,

but transient resetting, as a general mechanism for syn-
chrony, can also be applied to chaotic systems. Clearly, the
synchronization of chaotic systems is more difficult, because
uncoupled chaotic oscillators, even with identical parameter
values, will exponentially diverge due to the high sensitivity to
perturbations. If the converging effect in the steady-state
parameter region is larger than the diverging effect in the
chaotic parameter region, however, the uncoupled chaotic
systems may also be synchronized by the mechanism. Here,
we consider a simple discrete-time chaotic neuron model
described as follows [20]:

xðtþ 1Þ ¼ kxðtÞ � af ðxðtÞÞ þ aþ IðtÞ ð3Þ

where f(x(t)) ¼ 1/[1 þ exp(�x(t)/e)]. This neuron model is a
model of the chaotic responses electrophysiologically ob-
served in squid giant axons [21]. When decreasing a from a
large to a small value, the system undergoes a period-
doubling road to chaos. We set the parameters k ¼ 0.7, a ¼
1.05, a¼ 0.93, and e¼ 0.02, such that when I(t)¼ 0 the model
exhibits chaotic dynamics. When I . 0.11, the neuron model
is in a steady state. In this example, we let I(t)¼ 0.15n(t) with
n(t) as a normal Gaussian white noise process as defined
before, such that the neuron model can switch between
chaotic states and steady states. The numerical result in
Figure 7 indicates that the chaotic neurons can indeed be
synchronized by common noise, which can also be inter-
preted by the transient resetting mechanism.

This example, though simple, shows that the transient
resetting mechanism pertains not only to periodic oscillators
but also to chaotic systems, and not only to continuous time
systems but also to discrete time systems. We can also see that,
as we mentioned above, the bifurcation is not necessarily
required to be a Hopf bifurcation.

Discussion

In the literature, there exist some interesting results on
noise-induced synchronization of oscillators, which can be
classified into two classes: the noise does or does not depend
on the states of the oscillators. In the case that the noise

depends on the states of the oscillators (see, e.g., [22,23]), the
noise can, in fact, be seen as a kind of information exchange
or coupling with fluctuant coupling strengths, and it is well-
known that coupling can induce synchronization, so it is not
surprising that the noise can induce synchronization. In the
case that noise does not depend on the states, many existing
results can be interpreted by transient resetting. Some studies
in the literature also theoretically explained the mechanisms
of periodic input forcing induced synchrony. It should be
noted that the fluctuations in the present mechanism of
transient resetting are the parameters, not necessarily (but
can be) the inputs. Synchronization induced by the fluctua-
tions of some special parameters, for example time delay in
delayed systems, can also be interpreted by the mechanism.
Thus, transient resetting not only can unify and extend many
existing results of various fluctuation-induced synchrony, but
also is very simple. It is reasonable to believe that life systems,
after a long time of evolution, use mechanisms that are as
simple as possible to achieve complex functions.
It should also be noted, on the other hand, that although we

have shown transient resetting as a possible general mecha-
nism for biological synchrony, we don’t exclude other
possible mechanisms. Some systems driven by some specific
inputs, which don’t satisfy the conditions shown in this paper,
can also be synchronized. It should not be surprising that in
biological systems many mechanisms work together to jointly
guarantee the robustness and precision of synchrony.
In summary, by simple dynamical systems theory, we have

presented a novel mechanism for synchrony based on
transient resetting, and we have shown that it could be a
possible mechanism for biological synchrony, which can also
potentially be used for medical therapy. In contrast to
Winfree’s results, we have shown the constructive aspect of
(transient) resetting. In this paper, we are interested in the
general qualitative mechanism, so in the simulations we
didn’t show many quantitative details for each specific
example. In Figure 1, we showed a one-parameter bifurcation
diagram. In some systems, there might be multiple parame-
ters that are affected by the fluctuations of stimuli. In that
case, we can use a similar multiparameter bifurcation
diagram to understand the mechanism.

Materials and Methods

To simulate the stochastic differential equation _x ¼ f(x) þ g(x)n(t),
the Euler-Maruyama scheme is used in this paper. In this scheme, the
numerical trajectory is generated by xnþ1 ¼ xn þ hf(xn) þ

ffiffiffi
h
p

g(xn)gn,
where h is the time step and gn is a discrete time Gaussian white noise
with , gn .¼ 0 and , gn gm . dnm. For more details, see, e.g., [14].
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