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A significant number of human X-linked genes escape X chromosome inactivation and are thus expressed from both
the active and inactive X chromosomes. The basis for escape from inactivation and the potential role of the X
chromosome primary DNA sequence in determining a gene’s X inactivation status is unclear. Using a combination of
the X chromosome sequence and a comprehensive X inactivation profile of more than 600 genes, two independent yet
complementary approaches were used to systematically investigate the relationship between X inactivation and DNA
sequence features. First, statistical analyses revealed that a number of repeat features, including long interspersed
nuclear element (LINE) and mammalian-wide interspersed repeat repetitive elements, are significantly enriched in
regions surrounding transcription start sites of genes that are subject to inactivation, while Alu repetitive elements and
short motifs containing ACG/CGT are significantly enriched in those that escape inactivation. Second, linear support
vector machine classifiers constructed using primary DNA sequence features were used to correctly predict the X
inactivation status for .80% of all X-linked genes. We further identified a small set of features that are important for
accurate classification, among which LINE-1 and LINE-2 content show the greatest individual discriminatory power.
Finally, as few as 12 features can be used for accurate support vector machine classification. Taken together, these
results suggest that features of the underlying primary DNA sequence of the human X chromosome may influence the
spreading and/or maintenance of X inactivation.
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Introduction

X-chromosome inactivation suppresses gene expression on
one of the two X chromosomes in female mammals to achieve
dosage compensation between males and females ([1];
reviewed in [2,3]). During early stages of embryo development,
one X chromosome is randomly chosen for inactivation. The
chosen chromosome stably transcribes the XIST gene in the X
inactivation center [4] to produce a noncoding RNA that has
been shown to mediate the initial inactivation [5–7]. In a
process not well understood, XIST transcripts spread along
the chromosome [8], leading to heterochromatin formation
along the length of the X. Subsequent maintenance of
inactivation is accomplished through a diverse set of
epigenetic histone modifications and DNA methylation in
an XIST-independent manner (reviewed in [2,9]).

Recent studies have shown that this transcriptional
repression is not complete. In both humans and mice, some
X-linked genes escape inactivation to varying degrees
(reviewed in [10,11]). While only a few genes have been
shown to escape inactivation in mice, a significant proportion
of X-linked genes (estimated at about 15%) are actively
transcribed from the otherwise inactive human X chromo-
some, as demonstrated in both human heterozygous fibro-
blasts and human/rodent somatic hybrid cells that contain
only the inactive human X chromosome. An additional 10%
of the genes show variable inactivation status among different
females [12]. The sequence basis, if any, for determining X
inactivation status is unclear.

Interestingly, the distribution of genes that escape inacti-
vation on the human X chromosome is nonrandom [12],
although it is unclear whether this reflects the evolutionary
history or the sequence content of different regions of the X.

The chromosome can be roughly divided into two regions
[13–15]: an X-conserved region (XCR) that originated at least
170 million years ago and spans nearly all of the long arm
(Xq) and a portion of the short arm (Xp), and a much smaller
X-added region (XAR) that was added to the short arm of the
ancestral X after X inactivation mechanisms had evolved [16].
Nearly all genes in the XCR are subject to inactivation [12]. In
contrast, the XAR, encompassing ;47 Mb of DNA, is highly
variable, with nearly half of the genes escaping inactivation.
As genes that are subject to or escape inactivation are
clustered within the XAR, the expression data indicate that X
inactivation is controlled at a domain level rather than at the
level of individual genes [12].
As described above, X inactivation involves both an initial

inactivation and the ongoing maintenance of this inactivated
state. The lack of the complete silencing of some genes might
result from the failure in the initial spreading of inactivation
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along the chromosome, the failure in a subsequent main-
tenance step after the initial inactivation, or a combination of
the two (reviewed in [11,17]). The observed dichotomy of X-
linked genes with respect to X inactivation, particularly
within the XAR, may be due to the presence or absence of
necessary spreading and/or maintenance signals that may be
contained within the primary DNA sequence of the X [15] or
to a variable pattern of epigenetic modifications along the X
[18]. The identity of these putative sequence elements is not
yet known.

Gartler and Riggs hypothesized that there may exist ‘‘way
stations’’ on the X chromosome that aid the spreading of X
inactivation [19]. Subsequently, Lyon proposed that these cis-
acting elements may be long interspersed nuclear element 1
(LINE 1, or L1) retrotransposons [20]. The latter hypothesis
was initially based on results from fluorescence in situ
hybridization experiments that showed an enrichment of
L1s on the X chromosome as compared with autosomes. It
was supported by an analysis of sequence near a small
number of X-linked genes in which L1 elements were found
to be enriched in the vicinity of genes that were subject to
inactivation [21]. This conclusion, however, was not sup-
ported by a more recent comparative study [22]; instead, that
study reported that mammalian-wide interspersed repeat
(MIR) elements, a subfamily of short interspersed nuclear
elements, and CpG islands were significantly depleted in
regions that escape inactivation. A third study based on word
frequency analysis found GATA simple repeats to be
enriched in the initial 7.5 Mb of the X chromosome, a region
where all genes escape X inactivation [23]. In the above three
studies, the number of potential sequence features analyzed
were limited. In addition, the first two surveyed only a limited
number of genes, while the last did not consider the full
complement of genes that have been found to escape X
inactivation. Thus, a more comprehensive analysis of the
relationship of these and other sequence features with X
inactivation status, using a more complete set of X-linked
genes whose X inactivation status has been determined [12],
may help to resolve these conflicting and incomplete results.

In this study, we have focused on primary DNA sequence

features in regions around the complete set of human genes
of known X inactivation status to further understand their
potential role as signals in the spread and/or maintenance of
X inactivation. Using the accurate and nearly complete X-
chromosome sequence [15], we first systematically analyzed
the genomic environments of genes that either are consis-
tently subject to or escape inactivation by comparing the
distributions of DNA sequence features from 2-, 5-, 10-, 20-,
50-, and 100-kb windows surrounding their transcription
start sites. These DNA sequence features include the content
of all annotated repeat families and subfamilies and the
distribution of all possible 3- and 5-base sequences. This
comparison of a more complete list of 73 escaping and 375
subject genes [12] indicates that the most informative
sequence features show their greatest divergence in larger
windows (50 kb and 100 kb) rather than smaller windows,
supporting the hypothesis that inactivation status is deter-
mined at a domain level.
Multiple sequence features may influence X inactivation in

an interdependent fashion. Determining these factors and
their possibly combinatorial nature thus presents a complex
problem. Machine learning classifiers such as those based on
the support vector machine (SVM) algorithm have been
successfully used to shed light on many complex biological
problems, particularly gene expression analysis using micro-
array expression and/or sequence data [24–29]. We found that
the X inactivation status for more than 80% of genes can be
correctly predicted by linear SVM classifiers constructed
using a set of sequence features from 50-kb and 100-kb
windows, suggesting that signals for the spreading and/or
maintenance of X inactivation may be embedded within
primary DNA sequence.
Our statistical analysis and SVM classification experiments

together, summarized in Figure 1, highlight a small set of
sequence features that are both differentially enriched in
regions escaping or subject to X inactivation and are
important for accurate classification. This set includes the
L1 and L2 LINE elements, a number of MIRs, and a few long
terminal repeats (LTRs). In general, we found that severely
reducing the number features does not affect classification

Figure 1. Data Analysis Strategy

(A) A schematic drawing of the X chromosome delineating each
evolutionary stratum [13,15].
(B) Strategy for statistical analysis and SVM training and classification.
DOI: 10.1371/journal.pcbi.0020113.g001
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Synopsis

Female mammals have two X chromosomes while males have one X
and one Y chromosome. To equalize dosage of X chromosome
genes in males and females, one X in female cells is inactivated,
repressing the expression of most genes on the chromosome.
Despite the chromosome-wide nature of X inactivation, at least
10%–15% of genes ‘‘escape’’ this inactivation in human females and
are still expressed on the inactivated X. Whether a gene escapes or is
subject to inactivation is thought to be determined epigenetically,
and it is unknown to what extent, if at all, the underlying genomic
DNA sequence of the chromosome plays a role. In this work, the
authors show that the DNA sequence surrounding genes that
escape inactivation is significantly different from the sequence
surrounding genes that are subject to inactivation. In fact, a small
number of DNA sequence features can be used to predict with high
accuracy whether a gene will escape or be subject to this silencing.
This establishes strong evidence that epigenetic regulation is, at
least in part, dependent on genomic sequence and organization and
provides a list of candidate sequence features whose role(s) in X
inactivation can now be explored.
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accuracy. In fact, we found that as few as 12 features contain
sufficient information for successful SVM classification. It is
possible that some of these features may serve as signals for
some step(s) involved in the spread and/or maintenance of X
inactivation.

Results

The Genomic Contexts of Genes That Escape or Are
Subject to X Inactivation Are Significantly Different

To investigate the relationship between X inactivation
status and primary DNA sequence for a set of X-linked genes,
we derived a set of 16,788 primary sequence features to
represent the genomic context for each gene. To determine
which features, if any, have different distributions in the
genome sequence surrounding genes subject to inactivation
as compared with those that escape inactivation [12], we
initially performed modified Wilcoxon rank-sum tests (Mate-
rials and Methods). To assess the significance of the rank-sum
values for each feature, we performed permutation analysis
and calculated q values, a measure of false discovery rate [30].
We found 971 significant features at q , 0.02 and 2,345
features at q , 0.05 (Table S1).

We considered the possibility that these results may simply
reflect the unique evolutionary history of the X chromosome
rather than a specific relationship to X inactivation. It has
been noted that many sequence characteristics, including GC
content and repeat content are different between XAR and
XCR [12,15]. To investigate whether sequence differences are
solely due to evolutionary history, we first compared genes
with different X inactivation statuses within XAR alone.
Consistent with the above analysis using all genes, we found
1,506 significant features at q , 0.02 and 3,336 at q , 0.05
(Table S1). In addition, the features found to be differentially
distributed in the XAR mirror those found to differ
chromosome-wide as evidenced by an extremely high
correlation (R2 ¼ 0.74) between the rank-sum values calcu-
lated for the features in these two analyses.

To further explore a connection to evolutionary history, we
analyzed the five unique strata that essentially separate the
ancestral X chromosome sequence (XCR, strata 1–2) from the
sequence added later (XAR, strata 3–5) [13,15] as shown in
Figure 1A. Only stratum 3 contains a reasonable mix of both
genes that escape (30 genes) and are subject (60 genes) to
inactivation. The number of differentially distributed fea-

tures and their significance are less compared with the
previous two analyses with 100 significant features found at q
, 0.15 and 449 at q , 0.20 (Table S1), but this does indicate
that significant differences do exist. Again we see a high
correlation between rank-sum values in this set compared
with those in the XAR (R2 ¼ 0.72) and in the whole
chromosome (R2 ¼ 0.55), suggesting that similar differences
are being found in all three analyses.
From these data, we conclude that significant features

commonly identified in these analyses most likely represent
global differences between the genomic environment of
escaping and subject genes and not simply regional differ-
ences (Table S2). Below we discuss the particular significant
features in more detail. Overall, these results show that genes
subject to and escaping inactivation have very different
genomic contexts, suggesting that DNA sequence may under-
lie and/or contribute to the ability of X inactivation to silence
gene transcription.

Several Sequence Features Have Significantly Different
Distributions in the Genomic Environments of Genes That
Escape from or Are Subject to X Inactivation
Among those repeat sequence features found to have

significantly different distributions chromosome-wide and in
the XAR (q , 0.05), L1s and MIRs are among the most
consistently enriched in regions surrounding the transcrip-
tion starts of genes that are subject to X inactivation. In
contrast, Alu elements are clearly the most consistently
enriched in regions surrounding the transcription starts of
genes that escape inactivation (Table S1). Furthermore, the
distributions of these features show significant differences in
multiple window sizes, especially 50-kb and 100-kb windows,
located both upstream and downstream of the transcription
start site (Table S1). These results suggest that the larger
genomic environment, and not simply the promoter context,
may be most relevant for determining X inactivation status.
Only ten repeat sequence features are significant chromo-

some-wide and in the XAR (q , 0.05) and also within stratum
3 (q , 0.2), shown in Table 1 and Table S2. As might be
expected, we see L1, MIR, and Alu elements in this set and all
features taken from 50-kb or 100-kb windows.
It has been reported that young L1 (subfamily L1Ps)

members show greater enrichment on the X chromosome
than older ones (subfamily L1Ms) [21], thus raising the
possibility that L1Ps may be a better candidate for X

Table 1. Repeat Features Whose Distributions are Significantly Different in All Three Evolutionary Stratifications when Comparing
Genomic Environments of Genes Subject to and That Escape Inactivation

Enriched in Genes Subject to Inactivation Enriched in Genes Escaping Inactivation

Repeat Windowa Repeat Windowa

L1 100 kb Dw AluY 50 kb Dw

L2 100 kb Dw AluY 100 kb Dw

ERVL 50 kb Dw AluY 100 kb Up

MIR3 100 kb Up AluJo 100 kb Dw

MIR3 100 kb Dw FLAM_C 100 kb Dw

q , 0.05 for chromosome-wide and XAR, q , 0.2 for stratum 3.
aUp or Dw denotes the content of a particular feature is from the upstream or downstream of the transcription starts of genes.
DOI: 10.1371/journal.pcbi.0020113.t001
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inactivation signals. In our study, the content of both L1Ms
and L1Ps were found to be significantly different when
considering all escaping and subject genes (unpublished data),
but neither of these is among those consistently enriched
within the evolutionary based subdivisions we explored.

Our statistical analysis also revealed that the concentration
of several 3-base and 5-base sequences (3-mers and 5-mers) is
consistently different between the two classes of genes (Table
S1). The association of these 3-mers and 5-mers with escaping
or subject genes is primarily based on GC content. All of the
55 most significant 3-mers (q , 0.02, chromosome-wide) and
464 of the 515 5-mers (90.1%) that are enriched around
escaping genes are GC rich, while all 27 3-mers and 275 of 316
5-mers (87.0%) enriched around subject genes are AT rich.
Furthermore, 78.1% of 3-mers and 79.2% of 5-mers in
regions around escaping genes contain a CG dinucleotide.
Strikingly, among the short sequences that are very signifi-
cantly enriched (q , 0.012) near genes that escape inactiva-

tion, the top 12 3-mers with respect to rank-sum values are
CGT/ACG in various window sizes, while the top eight and 43
of the top 51 5-mers contain CGT/ACG (Figure 2 and Table
S1). Surprisingly, neither GC content nor CpG island content
is significantly different between the two sets of genes
(unpublished data). Therefore, one might hypothesize that
particular types of GC-rich sequences, such as those contain-
ing CGT/ACG motifs, are important for escaping X inactiva-
tion. Similarly, particular types of AT-rich sequences may be
important for being subject to inactivation, rather than the
overall GC content or association with CpG islands.

SVM Classifiers Can Discriminate between Regions
Escaping and Subject to X Inactivation
Although the distributions of the above features are

significantly different in the genomic contexts of genes
subject to or escaping inactivation, no single feature or even
combination of two features is sufficient to accurately
discriminate between the two classes of genes. We therefore
investigated whether we could classify genes using linear SVM
classifiers trained with large sequenced-based feature vectors.
Most genes in the XCR are subject to inactivation with few

exceptions, while about half of the genes in the XAR escape
inactivation [12]. Thus, the 110 genes of known and consistent
X inactivation status in the XAR provide the most attractive
dataset for classification experiments. To reduce computa-
tional complexity and based on the above statistical analyses,
we only considered the 5,596 repeat, 3-mer, and 5-mer
sequence features derived from 50-kb and 100-kb windows.
To measure the accuracy of SVM classification, we performed
cross-validation (CV) experiments using these 110 XAR genes
(see Materials and Methods). Though many genes are less than
100 kb from each other, there is actually minimal overlap of
sequence in common features, partially due to features being
based on windows upstream and downstream separately.
Nevertheless, to ensure that these overlaps were not biasing
classification, we created groups of genes such that no feature
from one gene overlapped a similar feature from another
gene outside of its group by more than 10 kb. Using these
groups and all 5,596 features, we classify 90/110 (82%) genes
correctly in CV experiments (Table 2).
Next, we performed leave-one-out CV experiments to

determine whether there was a significant difference in
accuracy. Using the same 5,596 features, the X inactivation
status for 89/110 (81%) genes were correctly predicted,
indicating that the overlaps in feature windows for nearby

Figure 2. Boxplots Representing the Content of Alu, L1, L2, MIR, and

ACG/CGT 3-mers in 100-kb Windows Surrounding the Transcription

Starts of Genes

For each boxplot, horizontal lines indicate the locations of the lower
quartile, median, and upper quartile values. Notches represent a robust
estimate of the uncertainty about the medians for box-to-box
comparison. Boxes whose notches do not overlap indicate that the
medians of the two groups differ at the 0.05 significance level. Clear
boxes represent genes that escape inactivation, while shaded boxes
represent genes subject to inactivation [12]. Analyses were done with all
genes for which X inactivation status is known (n ¼ 448) or with genes
from the XAR region (n¼ 110). y-Axes in all plots represent the average
content of each sequence feature in 100-kb windows surrounding the
transcription starts of genes.
DOI: 10.1371/journal.pcbi.0020113.g002

Table 2. Classification Accuracy for XAR Genes, XAR ESTs, and XCR Genes Using 5,596 Features from 50-kb and 100-kb Windows
around Transcription Start Sites of the Genes

Training Set Accuracy Escape Subject Total

XAR (all genes) Grouped genes CV 84% (42/50) 80% (48/60) 82% (90/110)

Leave-one-out 76% (38/50) 85% (51/60) 81% (89/110)

EST prediction 62% (8/13) 100% (10/10) 78% (18/23)

Leave-one-out with Y-homology 70% (35/50) 85% (51/60) 78% (86/110)

XAR (without ‘‘border genes’’) Leave-one-out 78% (28/36) 93% (43/46) 87% (71/82)

EST prediction 46% (6/13) 100% (10/10) 70% (16/23)

XCR prediction 17% (4/23) 92% (289/315) 87 % (293/338)

DOI: 10.1371/journal.pcbi.0020113.t002
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genes do not bias classification results (Table 2). Further, a
model trained using these 110 genes achieves 78% classifica-
tion accuracy on a completely independent set of 23 expressed
sequence tags (ESTs) in the XAR for which the X inactivation
status is known. Altogether, these results suggest that these
sequence features do contain information that can be utilized
for biological classification of both XAR genes and ESTs.

Since the majority of genes with functional Y-homologs
escape inactivation [12], we created a set of independent
features to capture this information and again performed
leave-one-out classification to see whether accuracy im-
proves. As shown in Table 2, classification results are nearly
identical, suggesting that the Y homology status does not add
additional information not already contained in other
sequence features.

It has been noted previously that genes subject to or
escaping inactivation are clustered regionally into domains
[12]. Interestingly, 14 of the 21 misclassified genes in leave-
one-out experiments are ‘‘border genes,’’ located within 100
kb of a gene from the other class as opposed to being internal
to a cluster. Their incorrect classification may be due to the
sequence window extending beyond the true escaping or
subject domain, thus causing feature information from the
other class to be associated with that gene. Excluding these
border genes increased leave-one-out classification accuracy
to 87% (Table 2) and is most likely a better assessment of the
true accuracy of SVM classifiers trained on these 5,596
features.

To investigate whether the same signals may be used for X
inactivation in the XCR, we used SVM models trained on
XAR nonborder genes and predicted the X inactivation status
for genes in the XCR. As shown in Table 2, SVM models can
predict 87% XCR genes correctly overall, though they do not
predict escaping genes well (four of 23 correct). Escaping
genes are generally clustered in the XCR as in the XAR, albeit
in smaller clusters, with 14 of the 23 genes contained within
two clusters of three genes and two clusters of four genes. It is
interesting to note that among the four escaping genes
correctly predicted, one is a member of a four-gene cluster
and the other three constitute one of the three-gene clusters.
These results, therefore, suggest that the influence of
sequence on the spread and/or maintenance of X inactivation
is likely similar on the two evolutionarily distinct portions of
the X chromosome.

Feature Selection Identifies Informative Features
Important for Classification

Based on our initial statistical analysis, it is likely that most
sequence features do not contain discriminatory information
that would contribute to accurate classification. Therefore,
we systematically eliminated probable noninformative fea-
tures to determine the affect on the classification accuracy of
linear SVMs (Materials and Methods). In addition, we wanted
to identify those features deemed by the SVM to be the most
important for classification.

In an effort to compile a robust set of informative features,
this feature selection process was performed 100 times. In
each iteration, a randomly selected set of two-thirds of the
XAR nonborder genes was used. On average, reduced sets of
53 features performed as well in classification tests as when
utilizing the full complement of features (Figure 3A and
Table S3).

We identified features that appeared 20 or more times
within these 100 reduced sets of 53 features (Table S4) with
those most frequently selected (�50) listed in Table 3. Many
of these features also showed significant enrichment in
regions around subject or escaping genes in the above
statistical analysis (Table S1). More specifically, we find LINEs
(L1 and L2) among the most informative features. In addition,
short interspersed nuclear elements (MIR, MIRb, and FAM),
LTRs (MLT1K, MLT1E2, ERV1, and LTR8), and DNA trans-
posons (MER33 and MER112) are consistently selected, along
with a 3-mer (CAC) motif and two 5-mers (CGCGC, AGTTG).
Informative features that contribute to accurate classifica-

tion are generally those that are consistently lower (or higher)
in one class as compared with the other. To explore why the

Figure 3. Recursive Feature Reduction and Distributions of Consistent

Features across the XAR Nonborder Genes

(A) The mean prediction accuracy and standard deviations (y-axis) for 100
recursive feature reduction iterations are shown for the indicated
number of genes (x-axis). Green represents the CV rate using randomly
selected two-thirds of the XAR nonborder genes for each set of features.
The prediction rates for escaping genes (blue) and subject genes (red) in
the remaining one-third are also shown. Both escape and subject
prediction rates begin declining when the feature set is reduced to fewer
than 53 features.
(B) The content of each feature (y-axis) in specific windows around the
transcription start sites for all 82 XAR nonborder genes (x-axis) is
represented as a histogram. The first 36 genes on the x-axis escape X
inactivation (shaded area), and the remaining 46 are subject to X
inactivation. Features found to be consistently chosen during recursive
feature reduction for the creation of accurate classifiers are L1 100 kb
downstream, MLT1K 100 kb upstream, and MER33 100 kb upstream. For
comparison, THE1B 50 kb upstream, a randomly distributed feature, is
also shown.
DOI: 10.1371/journal.pcbi.0020113.g003
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most consistently selected features might be desirable for
classification, we compared their content in the windows
around each of the 82 XAR nonborder genes, a subset of
which are shown in Figure 3B. We can see, for example, that
L1s are present in 100-kb windows downstream of the
transcription start site for all genes, but their content in
these regions is typically higher in genes subject to
inactivation. On the other hand, MLT1K is almost exclusively
found in windows 100 kb upstream of genes subject to
inactivation, while MER33 is primarily found only in windows
100 kb upstream of genes escaping inactivation. Although
these MLT1K and MER33 features by themselves are poor
classifiers overall (Table 3) and neither were found to have
significantly different distributions in the two sets of genes
based on our statistical analysis, their extreme bias toward
genes in one class make them highly informative for
classification. Most uninformative features, such as the
content of THE1B 50 kb upstream of genes, are randomly
distributed among all genes and thus are not good features
for classification (Figure 3B).

A Set of 12 Features Can Accurately Classify X Inactivation
Status

To build an efficient classifier with an even smaller set of
features, we repeated this feature reduction experiment with
all XAR nonborder genes to produce a set of 17 features
(Figure S1). This set was further refined using a combination
of hierarchical clustering and principle component analysis
(Materials and Methods). As a result, a SVM classifier
constructed using a group of 12 features (Table S5)
performed well on other datasets (Table 4), suggesting that
these 12 features contain sufficient information for accurate
classification. To visually demonstrate how these 12 features
can separate genes in the two classes, we projected the three
best principal components of this dataset into 3-D space and
likewise did the same for the original 5,596 features (Figure

4A). Finally, these 12 features significantly outperform
randomly selected 12-feature sets for both genes in the
XAR training set and the XCR testing set (p , 0.001 and p ,

0.05, respectively; Figure 4B). Therefore, these 12 features
together form a representative set sufficient for accurate
classification of X inactivation status.

Confidence of SVM Classifiers
To assess the confidence of the SVM predictions, we output

the probability for each prediction from LIBSVM for all
genes on the X-chromosome (Table S6). The SVM model used
for this analysis was trained using the 12-feature set for the 82
nonborder genes. In the comprehensive X inactivation survey
[12], expression of genes from the inactive X chromosome in
mouse/human hybrid cell lines was divided into ten categories
based on how many cell lines show a particular gene escaping
X inactivation. Most of the correctly predicted genes had
probabilities higher than 0.75 (unpublished data), indicating
high confidence in these predictions, while probabilities for
wrongly predicted genes are evenly distributed showing
greater uncertainty. For genes of consistent X inactivation

Table 3. Frequently Selected Features during 100 Independent
Feature Selection Experiments Involving Random Subsets of XAR
Nonborder Genes and Their Individual Classification Perform-
ance on XAR Nonborder Genes

Occurrencea Name Windowb CVc CV Escape CV Subject

95 MLT1K 100 kb Up 59.76% 97.22% 30.43%

90 MER33 100 kb Up 63.41% 41.67% 80.43%

88 L1 100 kb Dw 75.61% 75% 76.09%

83 MIRb 100 kb Up 67.07% 61.11% 71.74%

75 MER112 100 kb Up 56.10% 0% 100%

75 MIR 100 kb Up 68.29% 55.56% 78.26%

70 ERV1 100 kb Up 68.29% 50% 82.61%

69 LTR8 100 kb Up 65.85% 22.22% 100%

62 CAC 50 kb Dw 70.73% 63.89% 76.09%

54 L2 100 kb Dw 81.71% 72.22% 89.13%

53 CGCGC 50 kb Up 56.10% 5.56% 95.65%

52 AGTTG 100 kb Dw 60.98% 41.67% 76.09%

52 FAM 100 kb Dw 63.41% 22.22% 95.65%

50 MLT1E2 100 kb Dw 56.10% 0% 100%

aOut of 100 trials.
bUp or Dw denotes the content of a particular feature is from the upstream or
downstream of the transcription starts of genes.
cLeave-one-out CV.
DOI: 10.1371/journal.pcbi.0020113.t003

Table 4. Classification Accuracy for XAR Genes, XAR ESTs, and
XCR Genes Using a Reduced Set of 12 Features and XAR
Nonborder Genes

Dataset/Accuracy Escape Subject Total

XAR leave-one-out 89% (32/36) 89% (41/46) 89% (73/82)

XAR ESTs 54% (7/13) 90% (9/10) 70% (16/23)

XCR 22% (5/23) 85% (268/315) 81% (273/338)

DOI: 10.1371/journal.pcbi.0020113.t004

Figure 4. The Significance of the 12 Selected Features

(A) The three best principal components (PC1–PC3) among all 5,596
features for 50-kb and 100-kb windows (left) and the selected 12 features
(right) for the 82 nonborder genes are shown projected onto a 3-D
graph. Escaping genes are represented as blue circles and subject genes
as red circles.
(B) These histograms show the distribution of XAR leave-one-out CV and
XCR prediction rates by SVM models constructed using 1,000 random 12-
feature sets taken from the 5,596 features for 50-kb and 100-kb windows.
Black dots represent mean values, flanked by 95% confidence intervals
denoted by error bars representing two standard deviations (2SD). Both
the XAR CV rate and XCR prediction rate achieved by the selected 12
features (black arrows) exceed 2SD, and their p values calculated based
on these random trials are shown.
DOI: 10.1371/journal.pcbi.0020113.g004
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status (i.e., those subject to inactivation in all hybrids tested; n
¼ 324), most were predicted correctly with high confidence
(.0.9 in Figure 5). Similarly, for the smaller number of genes
that escape inactivation in all hybrids (n ¼ 76), the majority
were correctly predicted with probabilities .0.8 (Figure 5).
Notably, however, a subset of such genes was incorrectly
predicted to be subject to inactivation with high probability
(Figure 5). Detailed analyses revealed most of these genes are
either XAR border genes or genes from the XCR. This
suggests that there may be features associated with genes that
escape inactivation, especially in the ancestral XCR, that have
not been revealed in this analysis based on XAR genes.

A University of California Santa Cruz (UCSC) Browser
annotation track has been created using expression and
prediction information to facilitate comparison with other
genome annotations (Figure S3). This is available at http://
genome-mirror.duhs.duke.edu, a full mirror site maintained
within the Institute for Genome Sciences and Policy (IGSP) at
Duke University.

Discussion

We have shown that the genomic environments of genes
subject to and escaping X chromosome inactivation are
significantly different, especially with respect to the content
of LINEs, MIRs, Alu elements, and short sequence motifs
containing the three-nucleotide sequence CGT/ACG. Based
solely on primary DNA sequence, linear SVM classifiers can
correctly predict 80% of all the genes and 87% of genes
located in the interior of clusters of genes sharing the same X
inactivation status. These results suggest that most, if not all,
of the information necessary to determine X inactivation
status is embedded in primary DNA sequence. Furthermore,
our analyses indicate that this information can be repre-
sented by as few as 12 sequence features.

Being Subject to or Escaping from X Inactivation Is Likely
Dependent on Several Factors

Lyon proposed that L1 elements could serve as ‘‘booster
elements’’ for spreading of X inactivation [20]. Multiple copies

of transgenes or transposons can induce heterochromatin
formation and gene silencing in flies and mammals [31,32];
therefore, chromosomal regions enriched for L1 elements
may also promote spreading of inactivation. Conversely,
regions deficient in L1 elements may lack the ability to
promote X inactivation, thus allowing genes located within
such regions to at least partially escape silencing. Consistently,
L1 and L2 elements are among the most important features
for accurate SVM classification (Tables 3 and S4), and
classifiers created using these features alone have a prediction
accuracy of about 77% in leave-one-out CV experiments.
However, LINE elements alone are not sufficient to correctly

classify all samples, indicating that this feature by itself does
not determine the X inactivation status of a region. For
example, another frequently selected feature, MLT1K, classi-
fies the escaping gene class almost perfectly due to its being
found nearly exclusively around subject genes (Figure 3B) but
has poor classification accuracy on subject genes (Table 3). In
addition, other sequence features may prevent spreading by
disrupting at least some feature of facultative heterochroma-
tin formation [18], as evidenced by their positive correlation
with regions containing escaping genes. Therefore, efficient
spreading and/or maintenance are likely affected by both the
presence and absence of certain sequence features.

Do Alu Elements Play a Role in Escaping from X Inactivation?
Alu repeats are primate specific and represent more than

10% of the human genome [33]. They are GC rich and
contain one-third of all CpG islands. Alu repeats have been
implicated in many biological processes, including DNA
recombination, DNA methylation, and gene expression
regulation (reviewed in [34]). Alu elements have been shown
to be excluded from imprinted regions and are differentially
methylated in male and female germ lines, suggesting a
potential influence on imprinting [35–37], a process that may
have coevolved with X inactivation [38]. The relatively low
proportion of genes escaping X inactivation in the mouse
may be consistent with the much lower B1 (the Alu
equivalent) content in the mouse X-chromosome (;2%).
Combined with the correlation of Alu content with escaping
genes on the human X that we demonstrated in our statistical
analysis, these data seems to indicate a potential role of Alu
elements in facilitating a gene’s escape from X inactivation.
However, results from our classification experiments suggest
that Alu sequence features are not as informative for
classification as other features. Although Alu content is very
high in some genes that escape inactivation (mostly from
strata 4–5), their distribution is highly variable among of the
rest of XAR genes (Figure 2). This may explain why Alu
features do not discriminate as well as other features.
Furthermore, Alu features are not among the top of those
consistently selected in reduced feature sets. This seems to
argue against an important role for Alu elements in
influencing X inactivation status.

A Set of 12 Sequence Features Predicts X Inactivation
Status
Through systematic feature reduction, we obtained a set of

12 features that alone contain sufficient information for
accurate classification. It seems reasonable to hypothesize
that some of these features may act as signals for some aspect
of X inactivation. However, the feature reduction method we

Figure 5. The Distribution of SVM Prediction Probabilities for Genes with

Known X Inactivation Status

These histograms summarize the prediction probabilities of genes that
are either (A) subject to inactivation (expressed in zero of nine somatic
cell hybrids) or (B) escape from inactivation (expressed in nine of nine
hybrids) [12]. Genes from the XCR, XAR border genes, and nonborder
XAR genes coupled with XAR ESTs are represented by different colors.
XCI, X chromosome inactivation.
DOI: 10.1371/journal.pcbi.0020113.g005
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used does not guarantee an optimal final set of features. We
can find six alternative 17-feature sets that achieve compa-
rable classification rates as the 12-feature set (Table S3).
Therefore, some features within this 12-feature set may not
be necessary for determining the X inactivation status, while
other important features may be excluded. A more robust set
of features were compiled through multiple feature selection
tests (Table 3), but again this does not show without a doubt
the involvement of these specific features in X inactivation.
Further analyses—both computational and experimental—
will be essential to determine what role, if any, these specific
features have in the X inactivation process.

Some Genes in the XCR Might Employ Different
Mechanisms for Escaping Inactivation

SVM classifiers trained using genes from the XAR are able
to correctly predict the status of 87% of XCR genes that are
subject to X inactivation using all features from 50-kb and
100-kb windows (Table 2), and 81% of XCR genes using the
reduced feature set (Table 4). This suggests that X inactivation
uses a similar mechanism to silence genes in the XCR as in the
XAR. In contrast, most escaping genes in the XCR are
incorrectly predicted to be subject to X inactivation (Tables
2 and 4). Encouragingly, SVMs successfully predicted at least
part of two of the four clusters of escaping genes on the XCR,
possibly indicating a similar mechanism to escaping genes that
are clustered on the XAR. One of the other clusters of
escaping genes on the XCR that SVMs completely fail to
predict correctly includes XIST itself, and this region may
require a different mechanism to escape X inactivation. The
other misclassified cluster was recently shown to be flanked by
CCCTC-binding factor sites that may serve as ‘‘boundaries’’ to
spreading of inactivation [39]. Since CCTC-binding factor
sites are not well defined currently, it is unknown whether
other escaping genes in the XCR may be flanked by such
putative boundary elements. It is quite possible that other
genes on the XCR escape inactivation through mechanisms
very different from those that facilitate escape in the XAR due
to different evolutionary pressures and histories.

A Possible Role for Genomic Sequence in X Inactivation
The exact relationship between primary DNA sequence

and X chromosome inactivation is still not known. While the
SVM classifiers created using the sequence features we
selected are able to predict X inactivation status well,
especially when only considering genes internal to clusters,
they are not perfect. The most likely reasons for this include:
(1) DNA sequence alone does not contain sufficient informa-
tion to definitively determine X inactivation status; (2) the
features identified in this study do not adequately character-
ize the sequence characteristics that determine X inactivation
status; or (3) higher-order structures of chromosome or
chromatin packaging provide long-range signals that are not
adequately captured by consideration of relatively short-
range windows of sequence in the vicinity of each gene, as
performed here. For example, the repeat sequences and the
3-mers and 5-mers may not directly reflect structural
properties of the underlying DNA that may facilitate or
impede silencing. Further, it has been shown recently that the
structural properties of DNA are involved in the positioning
of nucleosomes on the genomic sequence, which in turn
influences heterochromatin formation (reviewed in [40]).

We propose that structural characteristics underlying DNA
in certain regions of the X chromosome may prevent the
necessary chromatin packaging required to suppress gene
expression. Thus, a sequence that is not amenable to high-
density nucleosome array formation could interfere with XIST
RNA spreading and/or the ability to maintain a silenced state.
Even without positing a specific role for the repeat elements
directly, the base composition of certain repetitive elements
such as Alu elements and L1s may contribute (L1s) or prevent
(Alu) the proper packaging necessary for optimal spread and/
or maintenance of inactivation. Their abundance on the X-
chromosome could allow them to act as good proxies for this
information, and thus allow the creation of accurate classifiers.
Further study into the structural properties of chromoso-

mal DNA and their relationship to both repeat sequences and
X inactivation should allow for the evaluation of higher-order
models containing potentially more informative aspects of
the relevant sequence features. Such features may enable us
to completely discriminate between regions that escape or
are subject to X inactivation.

Materials and Methods

Genes and ESTs. Genes and ESTs (transcripts) considered for this
analysis consist of those for which the X inactivation status is known,
as previously described [12,41]. For classification experiments, we
designated transcripts as ‘‘escape’’ or ‘‘subject’’ on the basis of criteria
established previously [12]. Briefly, escaping transcripts are those
showing in expression in at least 75% of the hybrids, while subject
transcripts are silenced in at least 75% of the hybrids, with results
being obtained for at least five hybrids. In addition, transcripts must
be mapped to a single location in the Human Genome build 35 (hg17).
Of 621 uniquely mapped transcripts, 561 meet the above criteria.

The XAR is defined precisely as the first 46,700,000 bases in the
build 35 assembly of the X chromosome. According to these criteria,
there are 50 annotated genes in the XAR that escape inactivation and
60 that are subject to inactivation. In addition, there are 20 ESTs that
escape and 18 ESTs subject to inactivation in this region. Of these 38
ESTs, 15 overlap transcribed regions of genes in the XAR and were
discarded, leaving 13 that escape and ten that are subject. In the XCR,
the above criteria identified 23 escape genes and 315 subject genes.

Gene groups were created by calculating the overlap of every
genes’ 100-kb upstream (downstream) regions with neighboring
genes’ upstream (downstream) regions. Genes with an overlap
exceeding 10 kb were placed in the same group. In a particular
group, a gene did not necessarily overlap all of the other genes, just at
least one other gene with respect to upstream or downstream
sequence. A total of 62 groups were created for the 110 XAR genes.

Sequence features. Content of 310 repeat families and subfamilies
as annotated by RepeatMasker (http://www.repeatmasker.org) and
defined in Repbase (http://www.girinst.org), CpG islands, as well as of
all 64 three-base and 1,024 five-base sequences, were extracted from
the X chromosome sequence [15] in 2-, 5-, 10-, 20-, 50-, and 100-kb
windows from both upstream and downstream of the transcription
start site of each gene, yielding a total 12 windows. (A few rare types
of repetitive elements that occur fewer than ten times on the X
chromosome were eliminated from consideration due to a lack of
power.) This resulted in a total of 16,788 individual features. For
ESTs, the 39-ends were arbitrarily treated as their transcription start
sites, because neither their transcript starts nor their transcription
direction is known. All sequence information is based on the National
Center for Biotechnology Information (NCBI) Human Genome build
35 assembly and was obtained from the UCSC Genome Browser
(http://genome.ucsc.edu).

Y-homology features. A vector of three binary values was created
to differentiate and characterize the presence of homologous
transcripts on the Y chromosome for each gene. These vectors are
defined as the following for four different classes of genes:
pseudoautosomal genes (1, 1, 1), genes with functioning Y-homologs
(0, 1, 1), genes with Y-linked pseudogenes (0, 0, 1), and genes with no
apparent Y-homolog or pseudogene (0, 0, 0).

Our final dataset was a matrix with features as columns and genes
as rows. In addition, the X inactivation status of each gene is
represented as 1 for escaping and�1 for being subject to inactivation.
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Modified Wilcoxon rank-sum test and q values for false discovery
rate. Statistical tests are based on the Wilcoxon rank-sum test/Mann-
Whitney U test. Features with zero values for all genes were excluded
from all analyses. For each feature, we defined a weight W to
characterize the difference in the distribution of that feature in
regions of escaping and subject genes. Specifically, we defined W as
follows:

Wj ¼ ðmj;i2e�mj;i2sÞ3rj ð1Þ

where mj,i2e is the median rank for the escaping genes, mj,i2s is the
median rank for the subject genes, and rj is the Pearson correlation of
the jth feature to X inactivation status. To assess the significance ofW
for a particular feature, a p value was calculated by randomly
permuting gene labels 1,000 times and calculating a weight for each
permutation. The null hypothesis was that the two samples (escaping
and subject genes) are drawn from the same population. The p value
assigned reflects the percentage of permutations whose weight was
greater than the originalW and reflects the probability that a W value
of this magnitude was obtained by chance. To assess better the
significance of these p values, q values were calculated and provide a
measure of the false discovery rate (see [30] for a more complete
description of this calculation). All analyses were carried out using
Matlab7 R14 software (The Mathworks, Natick, Massachusetts, United
States). q values were calculated using the software QVALUE v1.0 [30].

SVM classification and recursive feature selection. LIBSVM version
2.71 software was used for SVM classification (http://www.csie.ntu.edu.
tw/;cjlin/libsvm). SVM training, prediction, weight calculation, and
probability calculation were performed based on instructions that
accompany the software. Namely, the sparse format was used, and the
C value was dynamically calculated for each individual test based on
the training data. Feature values were scaled for each experiment
such that for each feature, values ranged between 0 and 1.

Each gene or EST was represented by a feature vector consisting of
real valued numbers representing the sequence features described
previously. In addition, each gene or EST was labeled as either
escaping or being subject to X inactivation. For a given set of genes,
CV experiments were performed as follows: in an iterative fashion,
linear SVM models were trained on all the genes or all groups of
genes except one. The resulting SVM classifier was used to predict the
inactivation status (i.e., subject or escape) of the held-out gene or all
genes in the held-out group. Prediction accuracy was calculated based
on results for all the genes in the set.

Recursive feature selection was carried out as follows: starting with
5,596 sequence features from 50-kb and 100-kb windows, linear SVM
classifiers were trained using a given set of genes. Features were sorted
based on their weights in the resulting SVM classifier, and those whose
weight was in the lowest 30th percentile were eliminated. This
procedure was repeated in an iterative fashion to generate pro-
gressively smaller feature sets until the number of remaining features
was less than ten. Accuracy of classification was assessed at each step
by performing both leave-one-out CV on nonborder genes from the
XAR and prediction of X inactivation status of genes from the XCR.

Hierarchical clustering. For the reduced set of 17 features for the
82 XAR nonborder genes (see Results), values for each feature were
normalized such that the mean value was zero and the standard
deviation was one. Hierarchical clustering was performed using the
following formula in Matlab:

corrDist ¼ pdistðX; ‘corr ’Þ;
clusterTree ¼ linkageðcorrDist; ‘average ’Þ;

clusters ¼ clusterðclusterTree; ‘maxclust ’; 10Þ;
ð2Þ

where X is the normalized matrix with the features as rows and genes
as columns. The dendrogram in Figure S2A was drawn with the color
threshold set to 0.7.

Principal component analysis. Feature vectors consisting of all
5,596 features from 50-kb and 100-kb windows and, separately, the
reduced set of 12 features for the 82 XAR nonborder genes were
normalized as described above. For each dataset, the top three
principal components were calculated. Finally, the values for these
three principal components for the 82 nonborder genes were
projected onto a 3-D graph to visualize their separation.

Reduced feature set significance. To determine the significance of
the 12 selected features, 1,000 random sets of 12 features were drawn
with replacement from the complete set of 5,596 features from 50-kb
and 100-kb windows. The null hypothesis being tested was that the 12
selected features are randomly selected and therefore do not perform
better than other randomly selected feature sets. Leave-one-out CV
experiments were performed as described above for each of the
random sets, and their prediction accuracies were determined.

Supporting Information

Figure S1. Recursive Feature Reduction on All XAR Nonborder
Genes

The top plot represents the CV rate on XAR nonborder genes for
each set of features. The bottom plot represents the prediction rate
for XCR genes using SVM models constructed from XAR nonborder
genes. At 17 features, both CV and prediction rates reach their
respective maximum values.

Found at DOI: 10.1371/journal.pcbi.0020113.sg001 (90 KB PDF).

Figure S2. The Hierarchical Clustering of 17 Features

Features are represented by numbers; labels of x-axis in (A) and
numbers in parentheses in (B):
1, MLT1K 100 kb downstream (dw); 2, L1 100 kb dw; 3, AGGCA 50 kb
upstream (up); 4, L2 100 kb dw; 5, MLT1K 100 kb up; 6, CGGTG 100
kb dw; 7, MIRb 100 kb up; 8, ATAGG 50 kb dw; 9, Charlie1 100 kb dw;
10, MER20 100 kb up; 11, TGACT 50 kb dw; 12, MLT2B3 100 kb dw;
13, ACCCC 50 kb dw; 14, MER3 50 kb up; 15, TCTGC 100 kb dw; 16,
CTCAT 50 kb up; 17, GTTTG 50 kb up.
(A) A dendrogram of ten hierarchical clusters. Features whose edges
have the same color belong to the same cluster.
(B) Plots showing the distribution of features within each cluster for
82 XAR nonborder genes.

Found at DOI: 10.1371/journal.pcbi.0020113.sg002 (443 KB PDF).

Figure S3. UCSC Genome Browser Track for X Inactivation Status
and Prediction of All X-Linked Genes

Genes and ESTs are denoted by solid brown bars. The color intensity
reflects the propensity for escaping inactivation, with the darkest
brown indicating those that escape in all experiments (based on
somatic cell hybrid data in [12]). Detailed information about the
number of hybrids tested and results from SVM predictions can be
seen by clicking on individual elements in this track.

Found at DOI: 10.1371/journal.pcbi.0020113.sg003 (23 KB PDF).

Table S1. Sequence Features Found To Be Statistically Different
between Escaping and Subject Genes for Whole X Chromosome
(ALL, q , 0.05), XAR (q , 0.05), and Stratum 3 (S3, q , 0.2),
Respectively

Found at DOI: 10.1371/journal.pcbi.0020113.st001 (574 KB XLS).

Table S2. Subset of Sequence Features Found To Be Statistically
Different between Escaping and Subject Genes Commonly in Each of
the Whole X Chromosome (ALL), XAR, and Stratum 3 (S3)

Found at DOI: 10.1371/journal.pcbi.0020113.st002 (50 KB XLS).

Table S3. CV and Prediction Rates for SVM Classification Experi-
ments Using 100 Sets of Genes Randomly Drawn from XAR
Nonborder Genes

Found at DOI: 10.1371/journal.pcbi.0020113.st003 (40 KB XLS).

Table S4. Frequently Selected Features during 100 Independent
Feature Selection Experiments Involving Random Subsets of XAR
Nonborder Genes

Found at DOI: 10.1371/journal.pcbi.0020113.st004 (21 KB XLS).

Table S5. Leave-One-Out CV rates for XAR Nonborder Genes and
Prediction Accuracy for XCR Genes of SVM Classifiers during
Recursive Feature Selection

Found at DOI: 10.1371/journal.pcbi.0020113.st005 (18 KB XLS).

Table S6. The Predicted X Inactivation Status of All X-Linked Genes
along with the Associated Probability of Prediction as Determined by
a SVM Classifier Constructed Using a Reduced Set of 12 Sequence
Features

Found at DOI: 10.1371/journal.pcbi.0020113.st006 (86 KB XLS).

Acknowledgments

We thank Julie E. Horvath and Cory M. Valley for helpful discussions
and critical comments on the manuscript.

Author contributions. ZW and TSF conceived and designed the
experiments. ZW performed the experiments. ZW, HFW, SM, and
TSF analyzed the data. ZW and TSF wrote the paper.

Funding. HFW was supported in part by National Institutes of
Health grants GM45441 and GM73120.

Competing interests. The authors have declared that no competing
interests exist.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1130987

DNA Sequence Predicts X Inactivation



References
1. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus

musculus L.). Nature 190: 372–373.
2. Avner P, Heard E (2001) X-chromosome inactivation: Counting, choice and

initiation. Nat Rev Genet 2: 59–67.
3. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and

themechanism of X chromosome inactivation. Annu Rev Genet 36: 233–278.
4. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, et al. (1991) A

gene from the region of the human X inactivation centre is expressed
exclusively from the inactive X chromosome. Nature 349: 38–44.

5. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, et al. (1992) The
human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains
conserved repeats and is highly localized within the nucleus. Cell 71: 527–
542.

6. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996)
Requirement for Xist in X chromosome inactivation. Nature 379: 131–137.

7. Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, et al.
(1997) Stabilization of Xist RNA mediates initiation of X chromosome
inactivation. Cell 91: 99–107.

8. Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints
the inactive X chromosome at interphase: Evidence for a novel RNA
involved in nuclear/chromosome structure. J Cell Biol 132: 259–275.

9. Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin
Cell Biol 16: 247–255.

10. Disteche CM, Filippova GN, Tsuchiya KD (2002) Escape from X
inactivation. Cytogenet Genome Res 99: 36–43.

11. Brown CJ, Greally JM (2003) A stain upon the silence: Genes escaping X
inactivation. Trends Genet 19: 432–438.

12. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive
variability in X-linked gene expression in females. Nature 434: 400–404.

13. Lahn BT, Page DC (1999) Four evolutionary strata on the human X
chromosome. Science 286: 964–967.

14. Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JA, Hameister H (2004) Wide
genome comparisons reveal the origins of the human X chromosome.
Trends Genet 20: 598–603.

15. Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, et al. (2005) The
DNA sequence of the human X chromosome. Nature 434: 325–337.

16. Graves JA (1995) The evolution of mammalian sex chromosomes and the
origin of sex determining genes. Philos Trans R Soc Lond B Biol Sci 350:
305–311; discussion 311–312.

17. Disteche CM (1995) Escape from X inactivation in human and mouse.
Trends Genet 11: 17–22.

18. Chadwick BP, Willard HF (2004) Multiple spatially distinct types of
facultative heterochromatin on the human inactive X chromosome. Proc
Natl Acad Sci U S A 101: 17450–17455.

19. Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation.
Annu Rev Genet 17: 155–190.

20. Lyon MF (1998) X-chromosome inactivation: A repeat hypothesis.
Cytogenet Cell Genet 80: 133–137.

21. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for
a relationship between LINE-1 elements and X chromosome inactivation:
The Lyon repeat hypothesis. Proc Natl Acad Sci U S A 97: 6634–6639.

22. Ke X, Collins A (2003) CpG islands in human X-inactivation. Ann Hum
Genet 67: 242–249.

23. McNeil JA, Smith KP, Hall LL, Lawrence JB (2006) Word frequency analysis
reveals enrichment of dinucleotide repeats on the human X chromosome
and [GATA] in the X escape region. Genome Res 16: 477–484.

24. Djordjevic M, Sengupta AM, Shraiman BI (2003) A biophysical approach to
transcription factor binding site discovery. Genome Res 13: 2381–2390.

25. Mateos A, Dopazo J, Jansen R, Tu Y, Gerstein M, et al. (2002) Systematic
learning of gene functional classes from DNA array expression data by
using multilayer perceptrons. Genome Res 12: 1703–1715.

26. Hua S, Sun Z (2001) Support vector machine approach for protein
subcellular localization prediction. Bioinformatics 17: 721–728.

27. Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of
imprinted murine genes. Genome Res 15: 875–884.

28. Brown CJ, Robinson WP (2000) The causes and consequences of random
and non-random X chromosome inactivation in humans. Clin Genet 58:
353–363.

29. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, et al. (2000)
Support vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics 16: 906–914.

30. Storey JD, Tibshirani R (2003) Statistical significance for genomewide
studies. Proc Natl Acad Sci U S A 100: 9440–9445.

31. Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause
heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–
1002.

32. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene
silencing in mammals. Nat Genet 18: 56–59.

33. Grover D, Mukerji M, Bhatnagar P, Kannan K, Brahmachari SK (2004) Alu
repeat analysis in the complete human genome: Trends and variations with
respect to genomic composition. Bioinformatics 20: 813–817.

34. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity.
Nat Rev Genet 3: 370–379.

35. Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994) Alu repeated
DNAs are differentially methylated in primate germ cells. Nucleic Acids
Res 22: 5121–5127.

36. Greally JM (2002) Short interspersed transposable elements (SINEs) are
excluded from imprinted regions in the human genome. Proc Natl Acad Sci
U S A 99: 327–332.

37. Ke X, Thomas NS, Robinson DO, Collins A (2002) The distinguishing
sequence characteristics of mouse imprinted genes. Mamm Genome 13:
639–645.

38. Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and
imprinting in mammals. Nat Rev Genet 6: 403–410.

39. Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, et al. (2005)
Boundaries between chromosomal domains of X inactivation and escape
bind CTCF and lack CpG methylation during early development. Dev Cell
8: 31–42.

40. Dlakic M, Ussery D, Brunak S (2004) DNA Bendability and nucleosome
positioning in transcriptional regulation. In: Ohyama T, editor. DNA
conformation and transcription. Georgetown (Texas): Eurekah Bioscience
Database. pp. 1–14.

41. Carrel L, Willard HF (1999) Heterogeneous gene expression from the
inactive X chromosome: An X-linked gene that escapes X inactivation in
some human cell lines but is inactivated in others. Proc Natl Acad Sci U S A
96: 7364–7369.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e1130988

DNA Sequence Predicts X Inactivation


