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The claim that genetic properties of neurons significantly influence their synaptic network structure is a common
notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this
question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined
with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its
neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries
significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural
connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity
signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The
results presented and the genes identified provide a promising starting point for further, more detailed computational
and experimental investigations.
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Introduction

It is an accepted common notion that genes play a major
role in the formation of the nervous system; they specify
neuronal cell types, help destine neurons into defined neural
circuits, and provide important cues determining their
communication [1,2]. Many studies have identified specific
genes in the nematode C. elegans that disrupt the development
of neural circuits. These genes are typically responsible for
neuronal morphology, axon development, and synaptogene-
sis. Such findings include, e.g., axon guidance genes (sax-3,
unc-34, and the netrin receptor unc-40) [3], attractive and
repulsive interactions (unc-6, unc-40, and unc-5) [4–6], pre-
synaptic input modulation (unc-4, unc-37) [7], presynaptic
differentiation (sad-1) [8], and synaptic specificity genes (syg-1,
syg-2) [9]. These findings have been based on specifically
targeted studies, each designed to address a specific pathway,
neuron type, receptor or transmitter (for reviews see [10–14]).
Yet, it has been difficult to identify on a large scale mutations
that determine the specific identity of synaptic connections
(that is, to which other neurons each neuron is connected),
mainly because synaptic specification is one of the last steps
in a complex process of neuronal differentiation and axonal
migration [11]. Sieburth et al. [15] presented the first large-
scale screening for genes involved in the C. elegans neuro-
muscular junction. The study identified more than 100 novel
genes that have specific functions in the transmission of
signals across this junction. While the latter study was not
aimed at identifying synaptic connectivity genes, it demon-
strated the plausibility of addressing such questions in a
large-scale manner. In a recent and related study, Varadan et
al. [16] have applied an entropy minimization approach to
the C. elegans’ data to identify sets of synergistically interacting
genes whose joint expression is common to most synapses

and predicts neural connectivity, leaving aside the specific
identity of the pre- and post-neurons. Our study differs from
theirs both in its goals (identifying the genes which predict
the specific whole connectivity pattern of a particular given
neuron), and in its methods. It leads to the first quantitative
characterization of the relation between the genetic proper-
ties of neurons and their synaptic connectivity, concom-
itantly addressing the majority of C. elegans neurons at large.
The existing C. elegans neural wiring diagram provides a

‘‘connectivity signature’’ for each neuron, specifying to which
other neurons it is connected (R. M. Durbin (http://
elegans.swmed.edu/parts/neurodata.txt), based on the classic
work of White et al. [17] and Hall et al. [18]). Each neuron has
also an ‘‘expression signature’’ extracted from WormBase
(http://wormbase.org), specifying the genes directly associated
with it (see Materials and Methods). Combined together, this
data enables the investigation of the relation between
expression and connectivity signatures across most of the C.
elegans neurons. We specifically address two attributes of this
relation: the first asks whether it is possible to predict a
neuron’s connectivity signature based solely on its expression
signature. The second question is, to what extent do neurons
with similar expression signatures have similar connectivity
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signatures? We show that the expression signatures of
neurons carry significant information about their connectiv-
ity signatures, and further identify specific genes that play a
major role in determining this relation. The gene sets we
identify do not necessarily have a direct causal influence on
synaptic connectivity and specificity; however, they provide
putative gene targets for further experimental investigation.

Finally, we suggest a methodological way to study the
relations between neurons’ expression and connectivity
signatures and their actual functional contribution to
behavior. Quantifying these relations allows addressing a
classical question in neuroscience; what dominates the
functionality of a neural circuit—the local, genetic basis of
the individual neurons, or the overall network structure
determined by their connectivity?

Results

For a majority of the C. elegans neurons, we obtained two
types of data signatures (Materials and Methods): 1) the gene
expression signature, describing which genes have expression
patterns that are directly associated with a neuron, according
to WormBase; and 2) the connectivity signature, describing
the outgoing and incoming synaptic connections of each
neuron to all other neurons in the network (focusing only on
synaptic connections in which the direction is well-defined).
To avoid a bias caused by the symmetric structure of the data
(many of the neurons are situated bilaterally along the
nematode body and head), we focused on the right side of the
nematode (and including also neurons without a symmetrical
companion), retaining 98 such neurons with both an
expression and a connectivity signature (Table S1).

The natural starting point for investigating the relation
between these two types of signatures revolves around two
basic attributes: First, the prediction ability—that is, can the
connectivity signatures be predicted based on the expression
signatures? Second, a covariation correlation assay—which
essentially measures to what extent are the neighborhood
relations between neurons in one space (e.g., expression)
similar to their neighborhood relations in the other space
(e.g., synaptic connectivity). To study the first prediction

question, we use a standard weighted K–nearest neighbor
(KNN) prediction algorithm with multiclass targets (see
Materials and Methods). Based on the expression signature
of each neuron, this algorithm predicts its connectivity
signature. The resulting prediction accuracy is measured in
a conventional manner by the average area under the
receiver operating characteristic (ROC) curve (AUC). The
performance obtained was 0.594 and 0.601 in predicting the
incoming and outgoing connectivity signatures, respectively
(p-value¼10�85, and p-value¼10�75, respectively, with respect
to the performance on randomly shuffled data). The
predictor’s AUC was moderate, probably reflecting the crude
data in hand, but, nevertheless, it manifests a markedly
statistically significant signal. To study the second question,
we applied a covariation correlation assay (see Materials and
Methods) to the 98 neurons, finding a Pearson correlation of
0.075 (p-value , 0.0001) between the gene expression
neighborhood relations and the incoming connectivity
neighborhood relations, and 0.176 (p-value , 0.0001) between
the expression neighborhood relations and the outgoing
synaptic neighborhood relations (the similarity measure we
use for computing the pairwise similarity between neurons in
each space is the v ¼

ffiffiffiffiffi
v2

p
index, and Protocol S1 shows the

correlations between the signatures when using alternative
similarity measures). These low-magnitude but strongly
significant correlations indicate that the neighborhood
relations between neurons in the one space bear a moderate
similarity to the neighborhood relations in the other space.
Importantly, these prediction and correlation levels are an

average over all neurons. Indeed, examining individual
neurons we do see significantly higher levels. We identified
15 presynaptic and 15 postsynaptic neurons for which the
connectivity prediction accuracy manifest increased AUC
levels. These levels were between 0.6 and 0.98, with high
statistical significance after correcting for multiple hypoth-
eses testing (Protocol S2 discusses this analysis in detail).
Using a semiparametric statistical model allows one to
reliably discriminate between AUC values obtained from
the predictor-based distribution and the random distribu-
tion. In particular, this is of importance for the relatively rare
cases achieving very high accuracy levels (see Protocol S3 for
a detailed description of the model and its analysis). Based on
the model, once a predictor’s AUC is given, one can compute
the ratio between the probabilities to achieve such an AUC
from the predictor-based distribution and from a random
predictor. For example, for neurons manifesting AUC values
of 0.9 the ratio is 5.05 in the incoming connectivity case and
5.59 in the outgoing case. Similarly, in the covariation analysis
we show that within subsets of neurons, divided according to
neuron type (Table S1), some subsets show correlation levels
higher than the correlation reported in the general case
which remain statistically significant after correcting for
multiple hypotheses testing. For example, the motor neurons
manifest a correlation as high as 0.626 (data presented in
Table 2 in Protocol S4).
Neuron cell type probably plays a major role in determin-

ing the connectivity properties of the cell, as distinct cell
type–specific properties are determined by the combinatorial
functions of multiple transcription factors [19–21]. Indeed,
applying the prediction assay to predict the neuron type
based on the expression signatures (where neurons are
classified into a number of neuron types according to
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Synopsis

The study of the genetic basis of the formation of neural
connections in the nervous system (synaptogenesis) has been at
the forefront of recent investigations in neuroscience. With the
advancement of molecular biology research, many small-scale
studies have identified specific genes and mechanisms involved in
axon guidance and synaptogenesis. The nematode C. elegans
provides an exciting opportunity to approach these issues in a
computational large-scale manner. Its synaptic connectivity network
has been identified, and, combined with information from gene
expression studies, we now have neuronal connectivity and gene
expression signatures for most of its neurons. Analyzing this data,
Kaufman and colleagues show that the expression signature of a
neuron carries significant information about its synaptic connectivity
and can predict its neural targets in a statistically significant manner.
The current study is the first, to our knowledge, to rigorously
quantify and measure this relation. It identifies a putative list of
genes that specify the neurons’ connections which nicely conforms
with the existing literature and leads to interesting new predictions.
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WormBase (Materials and Methods and Table S1)) shows a
significant prediction capability (AUC ¼ 0.923, p-value ¼
10�20). Consequently, the relation between expression and
connectivity signatures was further examined by the pre-
diction and covariation correlation assays while controlling
for specific information about cell types. The relations
between the two signatures remained marked and significant,
both for the incoming and outgoing signatures, with AUC ¼
0.599 (p-value ¼ 10�67) and AUC ¼ 0.611 (p-value ¼ 10�59) in
the prediction assays and correlations of 0.089 (p-value ,

0.0001) and 0.146 (p-value , 0.0001) in the covariation
correlation assays (see Protocol S4 for the detailed method
and results). Interestingly, while applying the covariation
assay to the sensory neurons (see Protocol S4), their
expression signatures showed a significant correlation only
with their outgoing synaptic connections (0.432, p-value ,

0.0001). This may arise because of the absence of data from
the sensory receptors, their main input sources (the con-
nectivity data includes only connections within the neurons).

To identify the genes (features) that highly contribute to the
connectivity’s prediction accuracy and to the expression–
connectivity covariation correlation, an extensive feature
selection process was performed (see Materials and Methods).
These feature selection assays do not necessarily testify to
causal and direct relations but do give rise to putative gene
candidates for future experimental investigation studies.

Table S2 lists the genes selected in the prediction feature
selection assays. Focusing on gene sets that provide the highest
AUC performance in each of the connectivity prediction
assays resulted in 53 genes that yielded a predictor with an
average AUC of 0.60 (p-value ¼ 10�99) for the incoming
connections and 30 genes that yielded a predictor with an
average AUC of 0.61 (p-value ¼ 10�97) for the outgoing
connections, as shown in Figure 1. Results of the covariation
feature selection assay are shown in Figure 2. As the feature
selection process used in the correlation covariation assay is
greedy, the procedure for feature selection using correlation
covariation is repeated ten times, each repetition applying the
assay to a random set composed of 90% of the neurons (see
Materials and Methods). Figure 2 presents the mean and
standard deviations of these repetitions. The assay results in
statistically significant feature sets, leading to a correlation of
0.252 (p-value , 0.0001) between expression and incoming
connectivity signatures and 0.368 (p-value ¼ 0.004) with the
outgoing connectivity signatures (p-value calculations are
described in Materials and Methods). The final gene sets of
the covariation assay (listed in Table S3) are produced by
focusing only on the genes selected in all ten repetitions of this
assay. The latter results in sets of 12 genes for the incoming
connectivity (p-value ¼ 0.04) and 52 genes for the outgoing
connectivity (p-value ¼ 0.02). Evidently, the correlation
obtained with respect to the outgoing signatures remains
above that obtained with respect to the incoming signatures,
testifying that the expression signatures in hand carry more
information about outgoing synaptic patterns than about
incoming ones.
The outcome of the feature selection process is a list of

genes that bear significant information about the specific
targets and sources of neuronal synaptic connectivity. Four
such sets, generated by the two connectivity types using the
two assays, were obtained. To compare these gene lists with
contemporary knowledge, we compiled a list of genes known
to be involved in neuronal connectivity in C. elegans (see Table
1—these genes are typically involved in axonogenesis and
synaptogenesis specificity). All four sets of genes selected in
our analysis show a statistically significant overlap with this
list of currently known genes: both for the incoming
connectivity (p-value ¼ 0.005 and p-value ¼ 0.026 in the
prediction and covariation assays, respectively, using a
hypergeometric significance test), and for the outgoing
connectivity (p-value ¼ 0.021 and p-value ¼ 0.018 in the
prediction and covariation assays, respectively). The end
result of this analysis are two connectivity-specific joint gene
sets (Table S4): genes that appear in both types of outgoing
assays (11 genes: ceh-23, che-3, gpa-3, kin-29, kvs-1, lin-11, osm-3,
osm-9, tax-2, tax-4, and unc-5) and genes that appear in both
types of incoming assays (5 genes: che-2, mgl-2, mps-1, pef-1,and
unc-5).

Discussion

Both the gene expression and the neuronal connectivity
data gathered from the public databases is obviously not
optimal for comprehensively addressing the challenges raised
in this study, as it is quite crude and noisy. The crudeness is at
least partially due to the usage of a discrete, binary
description of the data in hand, while in reality both the
expression and connectivity signatures have continuous

Figure 1. Prediction of Synaptic Connectivity Signatures as a Function of

the Most Informative Genes

The accuracy of the predictor as a function of the number of genes
selected for the predictor is described by the blue line. Prediction
accuracy is measured by AUC. The top panel shows the outgoing
connectivity results, and the lower panel shows the incoming
connectivity results. The rightmost point (289 genes) denotes the
prediction outcome before any feature selection is applied to the data.
The blue line represents 5-fold cross-validation repetitions of the
selection–prediction scheme (mean and standard deviations are
displayed). The red dashed lines represent the empirical null hypothesis
distribution of performing the selection–prediction scheme on random
data (constructed by shuffling the identities of the neurons, see Materials
and Methods). Maximum AUC measurements are achieved with 53 and
30 features in the incoming and outgoing assays, respectively, with
corresponding p-values of p ¼ 10�99 and p ¼ 10�97, calculated by
applying a one-sided t-test between the original and shuffled data (see
Materials and Methods).
doi:10.1371/journal.pcbi.0020167.g001
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values. On the connectivity side, these continuous values
denote synaptic efficacies, which, together with information
on the inhibitory and excitatory function of the synapses,
obviously compose very relevant and important ‘‘missing
information.’’ On the genetic side, ideally, single neuron
genomic expression data collected at different time points
during axonal growth and synaptic development should be
examined. Indeed, first steps in obtaining more refined data
are now being performed [22,23]. Yet, within the limitations
of the currently existing large-scale data we successfully
identify statistically significant information characterizing
the fundamental relation between the expression and
synaptic properties of neurons. Our estimations of the
predictive information that resides in the neuronal expres-
sion data about their connectivity should hence be regarded
as rough lower bounds on the true values of this information,
given the noisy quality of the data. Yet, there are probably
other factors, beyond the genetic properties of the neurons,
that determine the synaptic patterns. Such factors may
include self-organization mechanisms, distance between
neurons, and other cellular properties.

The gene sets identified in the current study are putative
candidates for playing a key role in determining and
maintaining the synaptic connectivity structure of C. elegans,
carrying the highest level of information about the con-
nectivity signatures. The list of 15 genes described in Table S4
(results of the intersection between the prediction and
covariation correlation assays) compose our most plausible
gene targets for further investigation. Indeed, some of the
genes in this list were already identified in previous synapto-
genesis studies, such as unc-5, tax-2, tax-4 [24], and lin-11
[25,26]. Yet, some interesting clues indirectly point to the

additional involvement of genes from our list that have not
been previously known to be directly involved in synapto-
genesis: though there is currently no evidence that ceh-23
plays a direct role in axon guidance in C. elegans, although it
does play a role in specific cell differentiation, its Drosophila
melanogaster homolog, dhb-9, is known to be involved in neural
development, axonal pathfinding, and target recognition
[27,28]. Even though mps-1 and kvs-1 have not been directly
associated with axon guidance and development, they have
been previously reported as causes of neuronal defects and
dysfunction after their inactivation in RNA interference
experiments [29]. Some genes on the list are also likely to play
a part in axon guidance, targeting, and development due to
the processes to which they are annotated; such are genes
encoding for G proteins involved in signal transduction
(GPA-3) or proteins expressed in the cilia of ciliated neurons
(CHE-2, CHE-3). Interestingly, some genes on the list are
known to act as specific neuron type identifiers (osm-9, osm-
3)—hence the information they are carrying regarding the
connectivity signatures is probably mediated via their effects
on determining cellular fate. Finally, mgl-2, identified as
specific to the incoming synaptic signature, has a human
homolog, grm-1, which is known to function as a postsynaptic
metabotropic G protein-coupled receptor [30]—this is in line
with its appearance solely in the incoming assay list, and
supports its role in axon development and regulation.
The relations between the expression and connectivity

signatures of neurons and their actual behavior and func-
tional contributions are obviously highly complex and tran-
scend many levels [31]. Previous studies have shown a
correlation between the neuronal transcriptome and the
electrophysiological phenotypes of neurons, and have shown
that one can build a predictor from the former to the latter
[32]. But the link from these electrophysiological properties
to the neuron’s actual functional contribution has been
missing. We suggest a new way of addressing this challenge in
a rigorous quantitative manner by adding to our analysis an
additional signature; the functional contribution signature
for each neuron. The latter functional ‘‘neuron contribution
signature’’ we refer to can be obtained in our case via a multi-
perturbation analysis (MPA) [33] (Protocol S5) of neural laser
ablation data published by Bargmann and Horvitz [34]. This
analysis is described in detail in Protocol S6. The results, alas,
are not statistically significant after correcting for multiple
hypothesis testing. However, we believe that the approach
outlined is of interest, and, with additional data, may lead to
significant findings.
This study addresses the relation between neuronal

expression and connectivity properties in a large-scale
quantitative manner. Though existing small-scale studies
have provided ample support for the idea that connectivity
has a significant basis in gene expression, the current study
rigorously quantifies and measures this relation, providing a
‘‘lower bound’’ estimate on its magnitude. Despite the rough
and low precision data available, the results presented and
the genes identified provide a promising starting point for
further, more detailed computational and experimental
investigations. The use of DNA microarrays with hundreds
or thousands of simultaneously measured mRNAs, along with
a more elaborate description of the neuronal connectivity,
should further facilitate our understanding of the relation-
ship between neuronal gene expression and connectivity.

Figure 2. Covariation Correlation Feature Selection Assay

The mean and standard deviation of the Pearson correlation (blue line)
between the neurons’ neighborhood relations in the expression and
connectivity spaces is displayed as a function of the number of genes
used to determine the expression signature (results of ten repetitions of
the assay each with 90% of the neurons). The top panel shows the
outgoing connectivity results, and the lower panel shows the incoming
connectivity results. The rightmost point (289 genes) denotes the
correlation before any feature selection is applied to the data. The
dashed red line represents the empirical null hypothesis distribution of
the covariation correlation on random data (constructed by shuffling
1,000 times the identities of the neurons and reapplying the analysis to
the shuffled data). Maximum correlation measurements are achieved
with 39 and 92 features in the incoming and outgoing assays,
respectively, with corresponding p-values of p , 0.0001, p ¼ 0.004,
respectively (see Materials and Methods).
doi:10.1371/journal.pcbi.0020167.g002
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Studies similar to the current one would be required to
determine whether the findings presented here appear in a
variety of other species, using genetic and connectivity
information that is gradually being identified, e.g., in cats
[35] and humans [36].

Materials and Methods

The data. The neurons expression signatures were obtained from
the public WormBase database (http://wormbase.org version WS140),
which lists for each neuron the genes with expression patterns
directly associated with it (a gene is directly associated with a neuron
in the database if the neuron’s name is precisely mentioned in
relation to the gene in the pertaining expression pattern assays
deposited in the database). The data includes 181 neurons (out of the
302 C. elegans neurons), each having at least one gene associated with
it. To avoid a bias caused by the symmetric structure of the data, we
focused on 98 neurons (only neurons on the right side of the
nematode and neurons without a symmetrical companion, Table S1).
The resulting expression signature of each neuron is a binary vector of
289 genes (see gene list in Table S6), coded as one if the
corresponding gene appears to be associated to the neuron and as
zero otherwise. Neurons’ connectivity signatures were obtained from the
C. elegans synaptic wiring diagrams, formed by serial sections electron
microscopic reconstructions; R. M. Durbin (http://elegans.swmed.edu/
parts/neurodata.txt) based on the classic work by White et al. [17] and
Hall et al. [18]. We focus on chemical synapses, in which the identities
of the presynaptic and postsynaptic neurons are well-defined. Any
two neurons may be connected or not with a direction assigned to
their connection. Each neuron is thus described by two binary vectors
characterizing its connectivity, one for the outgoing synaptic
connections (the synapses sent out by the axon of the respective
neuron) and one for the incoming synaptic connections (the synapses
impinging on it).

The neuron type classification. Each of the 98 neurons analyzed
were assigned to one or more neuron types according to the
WormBase database. The neuron types are: sensory, amphid (includ-
ing amphid interneurons), cord, motor, ring, labial, and interneurons.
See Table S1 for the classification of the neurons.

The prediction assay. Prediction was performed using a standard
weighted multiclass KNN algorithm, using Euclidean distance
between the neurons in the input expression signatures’ space. As a
preprocessing stage we eliminated features (genes) that were shared
by no more than one neuron. The prediction targets, given an input

neuron, were its synaptic connections (incoming and outgoing,
separately) to all other neurons (each represented as a class in the
multiclass prediction). The prediction model’s performance score was
based on 5-fold cross-validation (training on 80% of the neurons and
testing on the resulting 20%). Prediction accuracy was measured by
the average area under receiver operating characteristic (ROC) curve
(AUC), where averaging was performed over all output classes. The
ROC curve plots the fraction of true positives versus the fraction of
true negatives for a binary classifier system, while its discrimination
threshold varies. AUC is a measure that intuitively can be described as
the probability that when randomly picking one positive and one
negative example, the classifier will assign a higher score to the
positive example than to the negative. AUC can vary from 0 to 1, and,
typically, a random prediction will result in an AUC of approximately
0.5. The cross-validation was further used for finding the optimal
value of K, the single hyperparameter of KNN. Statistical significance
of the prediction performance was calculated against an empirical
null hypothesis, constructed by repeating the prediction procedure
with shuffling: on each such repetition the neuron signatures were
shuffled amongst all neurons (that is, shuffling the neuron labels—
thus eliminating any functional relation between a neuron and its
corresponding signatures while preserving the actual distribution of
signatures). To calculate significance levels a one-sided t-test was
applied, comparing the mean result achieved in the 5-fold cross-
validation of the actual data with the empirical distribution achieved
with the shuffling. The t-test requires data generated from a normal
distribution; this assumption was verified by analyzing the quantile–
quantile (Q–Q) plots of the empirical distribution. The Q–Q plot
graphically compares the percentiles of the distribution of a given
variable with that of the normal distribution so that a variable that is
normally distributed produces a straight line.

The covariation correlation assay. To examine the correlation
between two signatures across all neurons under investigation, we
used an assay similar to the one used by Toledo–Rodriguez et al.
[32]. Given a set of N neurons, where each has two signatures, s1
and s2, we constructed two N 3 N similarity matrices, S1 and S2,
where S1 (S2) represents the pairwise similarity between the s1 (s2)
signatures of the neurons. The similarity measure we use is the
v ¼

ffiffiffiffiffi
v2

p
index (Protocol S1 shows the results using alternative

similarity measures and explains the reasoning for choosing the v
index). The (N * N / 2 � N) entries forming the lower triangle of S1
(S2) are concatenated to form a covariation vector v1 (v2). The
Pearson correlation between the two covariation vectors v1 and v2
describes the extent to which the neighborhood relations of the
neurons in the two signature spaces s1 and s2 are similar. The
statistical significance of the resulting correlation is computed using

Table 1. List of Genes Involved in the Analysis Which Have Previously Been Reported in the Literature as Acting in Axonogenesis and
Synaptogenesis

Gene Incoming Connectivity Outgoing Connectivity Description

unc-4 Specifies synaptic choice and axonal morphology [7,38]

unc-5 þ þ Affects axon guidance and outgrowth [5]

unc-6 þ Affects axon guidance and outgrowth [5]

unc-37 Specifies synaptic choice [7]

unc-30 þ þ Defects in axonal pathfinding and synaptic connections [39]

unc-40 þ Affects axon guidance and outgrowth [5]

unc-53 þ Acts in the migration and outgrowth of axons [40]

unc-73 Required for cell migrations and axon guidance [41]

unc-76 Mutants show axon outgrowth defects [42]

slt-1 þ Directs ventral axon guidance and guidance at the midline [43]

sax-3 þ Defects in axon patterning at the ventral midline, maintenance of nerve ring

placement [3,43,44]

tax-2 þ þ Mutations display axon outgrowth defects [24]

tax-4 þ þ Mutations display axon outgrowth defects [24]

vab-8 Guides directed axon outgrowth and cell migration [45]

cam-1 þ þ Guides cell migration and axon outgrowth [46]

lin-11 þ þ Affects axon guidance and outgrowth [25,26]

syg-1 Affects synaptic specificity [9]

The table lists only genes that are included in the expression signatures defined in WormBase and hence can potentially be discovered by our gene selection procedures. Some genes,
such as syg-2, vab-7, sad-1, unc-34, and others are known from the literature to play a major role in axonogenesis but do not appear in the pertaining WormBase gene lists. The incoming
and outgoing synaptic connectivity columns indicate (with a ‘‘þ’’) if a gene reported in the literature was indeed identified by one of our corresponding assays of gene selection.
doi:10.1371/journal.pcbi.0020167.t001
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an empiric null hypothesis constructed from repeating the
procedure with shuffling. On each repetition the neuron signatures
were shuffled amongst all neurons (shuffling the neuron labels as
described above in the prediction assay). To calculate p-values we
repeated the shuffling 1,000 times and computed the probability to
achieve a score equal or higher than the score of the original
(nonshuffled) data. This methodology was chosen since, in contrast
to the prediction assay, the scores obtained by the shuffling
procedure were not normally distributed.

Feature selection—Prediction assay. Feature selection was used to
find a small subset of genes that yield high accuracy prediction (at
least as equally good as that obtained with all the features). A filtering
feature selection method was used, ranking the features according to
their average mutual information with respect to the multiclass
targets [37]. For various sizes, x, of feature sets (x¼ 2, 3, 5, 10, 17, 30,
53, 93, 164, 289, taking the first x features in the ranked list), the
average AUC performance achieved by KNN (similar procedure as in
the general case) was calculated (note that the ranking of the features
and selecting the optimal K were performed only on part of the data,
and measuring the actual performance measure was done on a
validation set, not available to the training stages). Statistical
significance was computed for the feature set with the highest AUC.
The significance level was calculated against an empirical null
hypothesis constructed from repeating the feature selection proce-
dure with the same shuffling procedure described above in the
‘‘prediction without selection’’ case, and applying the same t-test. (Q–
Q plots verify a normal distribution which has permitted us to
perform the t-test)

Feature selection—Covariation correlation assay. Here we used a
greedy backward elimination algorithm [37], starting from the
complete gene set and iterating while eliminating genes via a greedy
algorithm that maximized the correlation covariation measure. In
each iteration, 25% of the features (genes) were eliminated according
to their marginal influence on the covariation correlation measure
when excluded. The feature selection process was repeated ten times,
each utilizing 90% of the data, to avoid overfitting and local minima.
The selected set of genes used throughout this paper includes only
genes that were selected in all ten repetitions of the feature selection
process. The statistical significance of the outcome was calculated
against an empiric null hypothesis constructed from repeating the
identical feature selection procedure with a shuffling procedure as
described above, for 1,000 times. The p-values for testing the
statistical significance of the optimal feature set were computed as
follows: for each number of features, j, we calculated the mean
correlation achieved when applying the feature selection to the
shuffled data Cj

null and its standard deviation Sj
null (this forms a null

hypothesis empirical distribution). For the correlation achieved by
the maximum chosen set, Cj*

true (on the actual nonshuffled data), with
j* being the number of features in the chosen set, we calculated its
variation from the null model D ¼ (Cj*

true�Cj*
null)/ Sj*

null. The p-value
was the probability of achieving such a variation, D (or larger) in any
of the 1,000 shuffled repetitions with any number of features (for
each shuffle we considered the optimal number of features max-
imizing the variation from the null model). Hence, if significant it
testifies that the probability of achieving such a variation by chance
(no matter with how many features) is low. The significance level of
the size of the gene set chosen (those selected in all ten repetitions)
was computed versus the probability of achieving similar sizes or
larger when applying an identical procedure to randomly shuffled
data.

Hypergeometric enrichment test. Given are N genes, where D of
them are related to synaptogenesis. Utilizing the hypergeometric
distribution, we computed the probability of selecting a sample of n
genes for which at least k genes were related to synaptogenesis.
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