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Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine
separately trained models of genomic signals and content. By combining separate models of relevant genomic
features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly
efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in
accounting for statistical dependencies among different parts of the gene model. With genomic information being
created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of
genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize
annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent
because of the success of support vector machines (SVM) in many classification tasks. We describe CRAIG, a new
program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is
trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate
datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over
published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.
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Introduction

Prediction of protein-coding genes in eukaryotes involves
correctly identifying splice sites and translation initiation and
stop signals in DNA sequences. There are two main gene
prediction methods. Ab initio methods rely exclusively on
intrinsic structural features of genes, such as frequent motifs
in splice sites and content statistics in coding regions. Notable
ab initio predictors include GenScan [1], Augustus [2],
TigrScan/Genezilla [3], HMMGene [4], GRAPE [5], MZEF [6],
and Genie [7]. Homology-based methods exploit extrinsic
features derived by comparative analysis. For instance,
ProCrustes [8], GeneWise, and GenomeWise [9] exploit
protein or cDNA alignments, while TwinScan [10], Double-
Scan [11], and NScan [12] rely on genomic DNA from related
informant organisms. Extrinsic features improve the accuracy
of predictions for genes with close homologs in related
organisms. Krogh [13] and Mathe et al. [14] review current
gene prediction methods.

GenScan was the first gene predictor to achieve about 80%
exon sensitivity and specificity in several single-gene bench-
mark test sets. More recent predictors have improved on
GenScan’s results by focusing on specific aspects of gene
prediction. For example, GenScanþþ improves specificity for
internal exons and Augustus improves prediction accuracy
on very long DNA sequences. Despite these advances, overall
accuracy on chromosomal DNA, particularly in regions with
low gene density (low GC content), is not yet satisfactory [15].
Gene-level accuracy, which is especially important for
applications, is a major challenge.

Improvements at the gene level could have a positive
impact on detecting gene-related biological features such as
signal peptide regions, promoters, and even 39 UTR micro-
RNA targets. Genes with very long introns and intergenic

regions represent more than 95% of the total number of
genes in most vertebrate genomes, and even a small improve-
ment on those could be significant in practice.
With the exception of MZEF, which uses a quadratic

discriminant function to identify internal coding exons, all of
the ab initio predictors mentioned above use hidden Markov
models (HMMs) to combine sequence content and signal
classifiers into a consistent gene structure. HMM parameters
are relatively easy to interpret and to learn. Content and
signal classifiers can be built effectively using a variety of
machine learning and statistical sequence modeling methods.
However, the combination of content and signal classifiers
with the HMM gene structure model is not itself trained to
maximize prediction accuracy, and the overall model does
not fully account for the statistical dependencies among the
features used by the various classifiers. Moreover, recent work
on machine learning for structured prediction problems
[16,17] suggests that global optimization of model parameters
to minimize a suitable training criterion can achieve better
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results than separate training of the various components of a
structured predictor.

To overcome the shortcomings outlined above, our gene
predictor uses a linear structure model based on conditional
random fields (CRFs) [17], hence the name CRAIG (CRF-
based ab initio genefinder). CRFs are discriminatively trained
Markovian state models that learn how to combine many
diverse, statistically correlated features of the input to
achieve high accuracy in sequence tagging and segmentation
problems. Our models are semi-Markov [18] to model more
accurately the length distributions of genomic regions. For
training, instead of the original conditional maximum-like-
lihood training objective of CRFs, we use the online large-
margin MIRA (Margin Infused Relaxed Algorithm) method
[19], allowing us to extend to gene prediction the advantages
of large-margin learning methods such as support vector
machines (SVMs) while efficiently handling very long training
sequences. Figure 1 presents schematically the differences in
the learning process between our method and the most
common generative approach for gene prediction.

Our model and training method allow us to combine a rich
variety of possibly overlapping genomic features and to find a
global tradeoff among feature contributions that maximizes
annotation accuracy. In particular, we model different types
of introns according to their length, which would have been
difficult to integrate in previous models. We were also able to
include rich features for start and stop signals and globally
balance their weights against the weights of all other model
features. These advances led to significant overall improve-
ments over the current best predictions for the most used
benchmark test sets: sensitivity and specificity of initial and
single exon predictions showed a relative mean increase [2] of
25.5% and 19.6%, respectively; at the gene level, the relative
mean improvement was 33.9%; the relative F-score improve-
ment on the ENCODE regions was 16.05% at the exon level.
These improvements were in good part due to the different
treatment of intronic states within the model, which in turn
increased structure prediction accuracy, particularly on
genes with long introns.

Some previous gene predictors have used discriminative

training to some extent. HMMGene uses a nongeneralized
HMM model for gene structure, which does not include
features associated with biological signals, but it is trained
with the discriminative conditional maximum likelihood
criterion [20]. However, conditional maximum likelihood is
more difficult to optimize than our training criterion because
it is required to respect conditional independence and
normalization for the underlying HMM. GRAPE takes a
hybrid approach for learning. It first trains parameters of a
generalized HMM (GHMM) to maximize generative like-
lihood, and then it selects a small set of parameters that are
trained to maximize the percentage of correctly predicted
nucleotides, exons, and whole genes used as surrogates of the
conditional likelihood. This approach is commonly used
when training data is limited, and it usually provides superior
results only in those cases [21]. However, the GRAPE learning
method does not globally optimize the training criterion.

Results

Datasets
All the experiments reported in this paper use a gene

model trained on a nonredundant set of 3,038 single-gene
sequences. We built this set by combining the Augustus
training set [2], the GenScan training set, and 1,500 high-
confidence CDSs from EnsMart Plus [22], which are part of
the Genezilla training set (http://www.tigr.org/software/
traindata.shtml). We then appended simulated intergenic
material to both ends of each training sequence to make up
for the lack of realistic intergenic regions in the training
material, as described in more detail in Methods.
We compared CRAIG with GenScan, TwinScan 2.03 (with-

out homology features, also known as GenScanþþ), Genezilla
(formerly known as TigrScan), and Augustus on several
benchmark test sets. We also ran predictions with HMMGene,
the only other publicly available genefinder to use a
discriminative structure training method; we present some
prediction results with it in Methods. All programs we
compare with are based on similar GHMM models with
similar sequence features. Augustus uses two types of length
distributions for introns: short intron lengths are modeled
with an explicit distribution, but other introns use the default
geometric distribution. This difference made Augustus run
many times slower than the other programs in all our
experiments.
We evaluated the programs on the following benchmark

test sets.
BGHM953. This test set combines most of the available

single-gene test sets in one single set. It includes the
GeneParser I (27 genes) and II (34 genes) datasets [23], 570
vertebrate sequences from Burset and Guigo [24], 178 human
sequences from Guigo et al. [25], and 195 human, rat, and
mouse sequences from Rogic et al. [26]. Repeated entries were
removed. We combined different sets to obtain more reliable
evaluation statistics by smoothing out possible overfitting to
particular sequence types.
TIGR251. This test set consists of 251 single-gene sequen-

ces, which are part of the TIGR human test dataset (http://
www.tigr.org/software/traindata.shtml), and it is composed
mostly of long-intron genes.
ENCODE294. This test set consists of 31 test regions from

the ENCODE project [27,28], for a total of 21M bases,
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Author Summary

We describe a new approach to statistical learning for sequence
data that is broadly applicable to computational biology problems
and that has experimentally demonstrated advantages over current
hidden Markov model (HMM)-based methods for sequence analysis.
The methods we describe in this paper, implemented in the CRAIG
program, allow researchers to modularly specify and train sequence
analysis models that combine a wide range of weakly informative
features into globally optimal predictions. Our results for the gene
prediction problem show significant improvements over existing ab
initio gene predictors on a variety of tests, including the specially
challenging ENCODE regions. Such improved predictions, partic-
ularly on initial and single exons, could benefit researchers who are
seeking more accurate means of recognizing such important
features as signal peptides and regulatory regions. More generally,
we believe that our method, by combining the structure-describing
capabilities of HMMs with the accuracy of margin-based classifica-
tion methods, provides a general tool for statistical learning in
biological sequences that will replace HMMs in any sequence
modeling task for which there is annotated training data.
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containing 294 carefully annotated alternatively spliced genes
and 667 transcripts, after eliminating repeated entries and
partial entries with coordinates outside the region’s bounds.
This is the only test set that was masked using RepeatMasker
(http://www.repeatmasker.org/) before performing gene pre-
diction. Table 1 gives summary statistics for the training set
and the three test sets.

Predictions on all tests and for all programs—including
CRAIG—allow partial genes, multiple genes per region, and
genes on both strands. Alternative splicing and genes
embedded within genes were not evaluated in this work.
Any other program parameters were left at their default
values. For each program, we used the human/vertebrate gene
models provided with the software distributions. In all tests,
sequences with noncanonical splice sites were filtered out.
Accuracy numbers were computed with the eval package [29],
a standard and reliable way to compare different gene
predictions.

Prediction in Single-Gene Sequences
Table 2 shows prediction results for all programs on

BGHM957. CRAIG achieved better sensitivity and specificity
than the other programs at all levels, except for somewhat
lower base sensitivity but much higher base specificity than
GenScan. The relative F-score improvement for initial and
single exons over Genezilla, the second-best program overall
for this set, was 14.6% and 5.8%, respectively. Single-exon
genes were more difficult to predict for all programs, with
specificity barely exceeding 50% for the best program, but
CRAIG’s relative improvement in sensitivity was nearly 25%

over runner-up Genezilla. Terminal exon predictions were
also improved over the nearest competitors, but less
markedly so. The improved gene-level accuracy follows from
these gains at the exon level. GenScanþþ and Augustus
predicted internal exons with similar accuracy and their F-
scores were only slightly worse than CRAIG, but the overall
gene-level accuracy for GenScanþþ looks much worse because
it missed many terminal and single exons. GenScan also did
well in this set, but overall performance was somewhat worse
than the other programs.
Most of the genes in this set have short introns and the

intergenic regions are truncated, so prediction was relatively
easy and all programs did relatively well. The next section
compares performance on datasets with long-intron genes
and very long intergenic regions.

Prediction in Long DNA Sequences
As previously noted, TIGR251 has many genes with very

long introns, so it is expected to be harder to predict
accurately. This was confirmed by the results in Table 3.
Performance was worse for all programs and levels when
compared with the first set. However, CRAIG consistently
outperformed the other programs with an even wider
performance gap than in the first experiment. Here, base
and internal-exon accuracies were also substantially im-
proved. CRAIG’s relative F-score improvement for bases
and internal exons over Genezilla, the second-best program
in both categories, was 5.4% and 7.1%, respectively,
compared with approximately 1% for BGHM953. Other
types of exons also improved, as in the first experiment.

Figure 1. Learning Methods: Discriminative versus Generative

Schematic comparison of discriminative (A) and generative (B) learning methods. In the discriminative case, all model parameters were estimated
simultaneously to predict a segmentation as similar as possible to the annotation. In contrast, for generative HMM models, signal features and state
features were assumed to be independent and trained separately.
doi:10.1371/journal.pcbi.0030054.g001
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Because of these better base and exon-level predictions, the
relative F-score improvement over runner-up Genezilla at the
gene level was about 57%.

Our final set of experiments was on ENCODE294. The
results are shown in Table 4. As previously mentioned, all
sequences in this set were masked for low-complexity regions
and repeated elements. Unlike previous sets, in which
masking did not affect results significantly, prediction on
unmasked sequences in this set was worse for all programs
(unpublished data). In particular, exon and base specificity
decreased an average of 8%.

We added a transcript-level prediction category to Table 4
to better evaluate predictions on alternatively spliced genes.
We closely followed the evaluation guidelines and definitions
by Guigo and Reese [28]. There, transcript and gene-level
predictions that are consistent with annotated incomplete
transcripts are counted correct, even in cases where the
predictions include additional exons. We relaxed this policy
to also mark as correct those predictions that contained
incomplete transcripts whose first (last) exon did not begin
(end) with an acceptor (donor). The reason for this change is
that no program can exactly predict both ends of such
transcripts. We developed our own programs to evaluate
single-exon, transcript, and gene-level predictions for in-
complete transcripts. Evaluations for other categories and for
complete transcripts were handled directly with eval.

To ensure consistency in the evaluation, we obtained all of
the programs except for Genezilla from their authors and we
ran them on the test set in our lab. Genezilla predictions for

this set were obtained directly from the supplementary
material provided by [28] so that we could measure the
potential differences between our evaluation method and
that reported in [28], particularly at the transcript and gene
level, for which we expected different results.
Overall, our results for all programs agree with those of

Guigo and Reese [28]. Genezilla’s base and exon-level results
using our evaluation program closely matched the published
values. Transcript and gene-level results computed by our
method were 1% better than the published numbers, which
roughly match the percentage of incomplete annotated
transcripts with no splice signals on either end. Computed
predictions for GenScan and Augustus were also somewhat
different, but not substantially so, from those reported by
Guigo and Reese [28], presumably because of differences in
program version and operating parameters.
Improvements in this set were similar to those obtained in

our second experiment. The relative F-score improvements
for individual bases and internal exons were 6% and 15.4%
over GenScanþþ and Augustus, the runner-ups in each
respective category. Improvement in prediction accuracy on
single, initial, and terminal exons is similar to that for the
other test sets. Transcript and gene-level accuracies were,
respectively, 30% and 30.6% better than Augustus, the
second-best program overall. This means that our better
accuracy results obtained in the first two single-gene
sequence sets scale well to chromosomal regions with multi-
ple, alternatively spliced genes.

Table 1. Dataset Statistics

Dataset Number of

Exons

Number of

Genes

Single Exon

Genes

Coding

(Percent)

Average Number

of Exons

Average Coding

Length (bp)

Average Transcript

Length (bp)

Average Intron

Length (bp)

Training 17,875 3,038 721 6.8 6.27 1,213 17,683 3,119

BGHM953 4,544 953 84 24.9 4.77 860 3,453 687

TIGR251 1,496 251 43 5.8 5.96 1,044 17,857 3,389

ENCODE294 2,842 294 65 4.6 8.3 1,305 28,179 4,094

BGHM953 is a standard benchmark set of single-gene sequences with high protein-coding content (;23%), short average transcript length (;3,000 bp), and short average intron length
(;700 bp). TIGR251 is also a single-gene sequence set but transcripts and introns are longer; genes in this set resemble our training set the most. BGHM953, and to some extent
TIGR251, are not representative of the whole human genome, because of their high relative frequencies of single-exon genes and coding loci. In contrast, ENCODE294 is a highly curated
dataset containing multiple-gene sequences with long intergenic regions and alternatively spliced genes with long introns. These characteristics more closely resemble real chromosomal
DNA. Results on ENCODE294 may thus be better estimates of performance on biologically interesting genomic sequences.
doi:10.1371/journal.pcbi.0030054.t001

Table 2. Accuracy Results for BGHM953

Level GenScan Genezilla GenScanþþ Augustus CRAIG

Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

Base 95.8 88.3 93.2 91.8 90.0 92.7 92.0 91.4 93.9 93.1

Exon All 80.5 77.8 78.9 80.7 68.9 75.9 79.3 81.7 82.0 86.3

Initial 62.5 62.6 65.3 66.8 62.5 70.5 60.3 66.6 73.4 78.2

Internal 89.1 83.9 84.6 87.1 86.5 88.1 86.1 88.5 84.8 91.3

Terminal 73.9 78.6 76.1 78.1 23.1 52.9 78.1 80.7 81.6 86.0

Single 59.5 47.9 67.9 52.8 38.1 39.3 66.7 49.6 83.3 49.3

Gene 40.7 37.7 47.2 47.0 13.9 13.7 45.1 44.1 57.1 56.1

Sensitivity (Sn) and specificity (Sp) for each level and exon type.
doi:10.1371/journal.pcbi.0030054.t002
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Significance Testing
In all tests and at all levels, CRAIG achieved greater

improvements in specificity than in sensitivity. We inves-
tigated whether the improvements in exon sensitivity
achieved by CRAIG could be explained by chance. Any exon
belonging to a particular test set is associated with two
dependent Bernoulli random variables for whether it was
correctly predicted by CRAIG and by another program. We
computed p-values with McNemar’s test for dependent,
paired samples from CRAIG and each of the other programs
over the three test sets, as shown in Table 5. The null
hypothesis was that CRAIG’s advantage in exon predictions is
due to chance. The p-values were ,0.05 for all entries, except
for the TIGR251 experiments against Genezilla and the
ENCODE294 experiments against Genezilla and GenScan; in
general, these two genefinders proved to be very sensitive at
the cost of predicting many more false positives. p-Values for
the combined test sets were all below 0.001, showing that
CRAIG’s advantage was extremely unlikely to be a chance
event.

We also trained and tested an additional variant of CRAIG,
in which we did not distinguish between short and long
introns; this configuration corresponds closely to the state
model representation used in most previous works. Following
Stanke and Waack [2], we used the relative mean improve-
ment:

r ¼
DSnexon þ DSpexon þ DSngene þ DSpgene

4
ð1Þ

as the measure of differences in prediction accuracy between
the CRAIG variant and CRAIG itself. The term DSnexon
denotes the mean increase in exon sensitivity and is defined
as

DSnexon ¼

X
t2T

nt 3 DSntexon
X
t2T

nt

where nt is the number of annotated genes in dataset t, T ¼
fBGHM953, TIGR251, ENCODE294g, and DSntexon is the
difference in exon sensitivity between CRAIG and the CRAIG
variant on dataset t. The other terms are defined similarly.
The improvement obtained by CRAIG with respect to the
variant was r ¼ 3.6. This result was as expected: there was an
improvement in accuracy from including the extra intron
state in the gene model, but even the simpler variant was
more than competitive with the best current genefinders.

Discussion

It is well-known that more gene prediction errors occur on
regions with low GC content, which have higher intron and
intergenic region density [15]. This behavior can also be
observed on our combined results, as shown in Figure 2A. It
also can be noticed that CRAIG had the best F-score for all
intron lengths. Except for CRAIG and HMMGene, the F-
scores for all other predictors were very close for all lengths.
CRAIG’s advantage over its nearest competitors became more

Table 3. Accuracy Results for TIGR251

Level GenScan Genezilla GenScanþþ Augustus CRAIG

Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

Base 90.1 70.1 90.8 78.1 86.6 77.1 81.3 77.9 90.4 86.8

Exon All 73.1 59.5 77.8 69.6 66.4 66.1 65.0 67.0 79.3 82.1

Initial 47.6 34.5 61.5 52.1 49.0 47.7 48.6 41.0 71.6 69.6

Internal 80.5 68.9 82.9 75.9 79.1 77.4 69.0 80.5 81.5 88.4

Terminal 68.3 52.8 71.6 61.1 30.8 48.2 64.4 53.8 76.4 74.3

Single 39.5 27.7 62.8 52.9 18.6 17.4 53.5 33.8 76.8 54.1

Gene 21.1 14.9 31.9 27.1 12.0 10.5 28.3 22.4 48.2 44.0

Sensitivity (Sn) and specificity (Sp) for each level and exon type.
doi:10.1371/journal.pcbi.0030054.t003

Table 4. Accuracy Results for ENCODE294

Level GenScan Genezilla GenScanþþ Augustus CRAIG

Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

Base 84.0 62.1 87.6 50.9 76.7 79.3 76.9 76.1 84.4 80.8

Exon All 59.6 47.7 62.5 50.5 51.6 64.8 52.1 63.6 60.8 72.7

Initial 28.0 23.5 36.4 25.0 25.5 47.8 34.7 38.1 37.3 55.2

Internal 72.6 54.3 73.9 63.2 68.0 62.8 59.1 74.7 71.7 81.2

Terminal 33.0 31.6 36.7 28.5 25.7 53.9 37.6 45.5 33.3 52.6

Single 28.1 31.0 44.1 14.5 35.0 45.7 43.9 25.5 55.9 26.4

Transcript 8.1 11.4 10.3 9.9 6.0 17.0 10.9 16.9 13.5 23.8

Gene 16.7 11.4 20.6 9.9 12.5 17.0 22.3 16.9 26.6 23.8

Sensitivity (Sn) and specificity (Sp) results for each level and exon type.
doi:10.1371/journal.pcbi.0030054.t004
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apparent as introns increased in length. However, all gene-
finders experience a significant drop in accuracy, at least 25%
between 1,000 bp and 16,000 bp. For introns shorter than
1,000 bp, Augustus performs almost as well as CRAIG, in part
because of its more complex, time-consuming model for
short intron lengths.

Intron analysis of individual test sets, as shown in Figure
2B–2D, reveals that, except for ENCODE294, CRAIG con-
sistently achieved an intron F-score above 75%, even for

lengths more than 30,000 bp; in contrast, the F-scores of all
other programs fell to lower than 65%, even for introns as
short as 8,000 bp. The results show that CRAIG predicts genes
with long introns much better than the other programs. This
hypothesis was also confirmed with experiments on an edited
version of ENCODE294 in which the original 31 regions were
split into 271 contig sequences and all of the intergenic
material was deleted except for 2,000 bp on both sides of each
gene. This edited version was further subdivided into subsets
with—ALT_ENCODE155—and without—NOALT_EN-
CODE139—alternative splicing. Figure 3 shows intron pre-
diction results for this arrangement. It can be observed that
intron prediction on NOALT_ENCODE139, a subset of 139
genes, has the same characteristics as either TIGR251 or
BGHM953, that is, a rather flat F-score curve as intron length
increases. The same cannot be said about complementary
subset ALT_ENCODE155, whose significant drop in accuracy
for long introns can be explained by the presence of
alternative splicing.
We claimed in the Introduction that a key aspect of our

model and training method is the ability to combine various
genomic features and to find a global tradeoff among their

Figure 2. F-Score as a Function of Intron Length

Results for all sets combined (A) and for individual test sets shown in subfigures (B–D). The boxed number appearing directly above each marker
represents the total number of introns associated with the marker’s length. For example, there were 1,475 introns with lengths between 1,000 and
2,000 base pairs for all sets combined (A).
doi:10.1371/journal.pcbi.0030054.g002

Table 5. Significance Testing

Dataset GenScan Genezilla GenScanþþ Augustus

BGHM953 0.03 1.66 3 10�6 5.2 3 10�66 1.3 3 10�5

TIGR251 2.2 3 3.1�7 0.22 1.4 3 10�23 1.4 3 10�25

ENCODE294 0.17 �0.5 2.33 3 3�22 4.7 3 10�16

All 5.7 3 10�6 6.2 3 10�4 8.2 3 10�105 3.45 3 10�35

McNemar test results (p-value upper bounds) of paired exon sensitivity predictions
between CRAIG and each of the other programs.
doi:10.1371/journal.pcbi.0030054.t005
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contributions so that accuracy is maximized. Being able to
identify introns longer than 30,000 bp with prediction
accuracy comparable to that achieved on smaller introns is
evidence that our program does a better job of combining
features to recognize structure. Another way to see how well
features have been integrated into the structure model is to
examine signal predictions. It is well-known that translation
initiation sites (TIS) are surrounded by relatively poorly
conserved sequences and are harder to predict than the
highly conserved splice signals. Also, stop signals present
almost no sequence conservation at all and their prediction
depends solely upon how well the last acceptor (in multi-exon
genes) or the TIS (in single-exon genes) was predicted.
Therefore, a simple splice site classifier can perform fairly
well using only local sequence information. In contrast, TIS
and stop signal classifiers are known to be much less accurate.
Given these observations, we expected CRAIG to improve the
most on TIS signal prediction accuracy, as all other programs
examined in this work use individual classifiers for signal
prediction, whereas CRAIG uses global training to compute
each signal’s net contribution to the gene structure. Figure 4
shows the improvement in signal prediction accuracy for
CRAIG when compared with the second-best program in
each case. CRAIG shows improvement for all types of signals,

but the improvement was most marked for TIS, especially in
specificity. It can also be observed that the improvement on
stop signals follows from the co-occurring improvement on
both acceptor and TIS signals. The final outcome is that
CRAIG makes fewer mistakes in deciding where to start
translation and stop translation, which is one of the main
reasons for its significant improvement at the gene level.
There is great potential for including additional informa-

tive features into the model without algorithm changes, for
instance, features derived from comparative genomics. To
facilitate such extensions, we designed CRAIG to allow model
changes without recompiling the Cþþ training and test code.
The finite-state model, the features, and their relationships to
states and transitions are all specified in a configuration file
that can be changed without recompiling the program. This
flexibility could be useful for learning gene models on
organisms that may require a different finite-state model or
a different set of features.

Materials and Methods

Gene structures. In what follows, a gene structure consists of either
a single exon or a succession of alternating exons and introns,
trimmed from both ends at the TIS and stop signals. We distinguish
two different types of introns: short—980 bp or less—and long—
more than 980 bp. Figure 5 shows a gene finite-state model that
implements these distinctions.

Linear structure models. In what follows, x ¼ x1. . .xP is a sequence
and s¼ s1. . .sQ is a segmentation of x, where each segment sj¼ hpj,lj,yji
starts at position pos(sj)¼pj, has length len(sj)¼ lj, and state label lab(sj)
¼ yj, with pjþ1 ¼ pj þ lj � P and 1 � lj � B for some empirically
determined upper bound B. The training data. t ¼ fðxðtÞ; sðtÞÞgTt¼1
consists of pairs of a sequence and its preferred segmentation. For
DNA sequences, xi 2 RDNA¼fA, T, G, Cg, and each label lab(sj) is one
of the states of the model (Figure 5). A segment is also referred to as a
genomic region; that is, an exon, an intron, or an intergenic region.

A first-order Markovian linear structure model computes the score
of a candidate segmentation s¼ s1. . .sQ of a given input sequence x as
a linear combination of terms for individual features of a candidate
segment, the label of its predecessor, and the input sequence. More
precisely, each proposed segment sj is represented by a feature vector
f(sj,lab(sj�1),x) 2 <D computed from the segment, the label of the
previous segment, and the input sequence around position pos(sj). A
weight vector, w 2 <D, to be learned, represents the relative weights of
the features. Then, the score of candidate segmentation s for
sequence x is given by

Figure 3. F-Score versus Intron Length for the Encode Test Set

Results in subfigures (A) and (B) correspond to the subset of alternatively
spliced genes and its complementary subset, respectively.
doi:10.1371/journal.pcbi.0030054.g003

Figure 4. Signal Accuracy Improvements

CRAIG’s relative improvements in prediction specificity (orange bar) and
sensitivity (blue bar) by signal type. In each case, the second-best
program was used for the comparison: Genezilla for starts, Augustus for
stops, and GenScanþþ for splice sites.
doi:10.1371/journal.pcbi.0030054.g004
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Swðx; sÞ ¼
XQ

j¼1
w � f ðsj ; labðsj�1Þ; xÞ ð2Þ

For gene prediction, we need to answer three basic questions. First,
given a sequence, x, we need to efficiently find its best-scoring
segmentation. Second, given a training set t ¼ fðxðtÞ; sðtÞÞgTt¼1, we
need to learn weights w such that the best-scoring segmentation of x(t)

is close to s(t). Finally, we need to select a feature function f that is
suitable for answering the first two questions while providing good
generalization to unseen test sequences. The next three subsections
answer these questions.

Inference for gene prediction. Let GEN(x) be the set of all possible
segmentations of x. The best segmentation of x for weight vector w is
given by:

ŝ ¼ arg max
s2GENðxÞ

Swðx; sÞ ð3Þ

We can compute ŝ efficiently from x using the following Viterbi-
like recurrence:

Mði; yÞ ¼

maxy9;1�l�minfi;BgMði� l; y9Þþ
w � f ðhi� l; l; yi; y9; xÞ

0
�‘

if i . 0
if i ¼ 0

otherwise

8>><
>>:

ð4Þ

It is easy to see that Mði; yÞ ¼ maxs2GENi;yðxÞSwðx; sÞ;where GENi,y(x)
is the set of all segmentations of x1. . .xi that end with label y.
Therefore, Sw(x,ŝ) ¼ M(P þ 1,END), where END is a special
synchronization state inserted at position P þ 1. The actual
segmentations are easily obtained by keeping back-pointers from
each state-position pair (y,i) to its optimal predecessor (y9,i�l). The
complexity of this algorithm is O(PBm2), where m is the number of
distinct states and B is the upper bound on the segment length,
because the runtime of w � f is independent of P, B, or m. To reduce
the constant factor from these dot product computations, most w � f
values are precomputed and cached. For introns and intergenic
regions, the feature function f is a sum of per-nucleotide
contributions, so the dynamic program in Equation 4 needs only
to look at position i � 1 when y corresponds to such regions.
Therefore, B needs to be only the upper bound for exon lengths,
which was chosen following Stanke and Waack [2]. For long
sequences, the complexity of the inference algorithm is therefore
dominated by the sequence length P.

Online large-margin training. Online learning is a simple, scalable,
and flexible framework for training linear structured models. Online
algorithms process one training example at a time, updating the
model weights to improve the model’s accuracy on that example.

Large-margin classifiers, such as the well-known SVMs, provide strong
theoretical classification error bounds that hold well in practice for
many learning tasks. MIRA [30] is an online method for training
large-margin classifiers that is easily extended to structured problems
[19]. Algorithm 1 shows the pseudocode for the MIRA-based training
algorithm we used for our models. For each training sequence, x(t), the
algorithm seeks to establish a margin between the score of the correct
segmentation and the score of the best segmentation according to the
current weight vector that is proportional to the mismatch between
the candidate segmentation and the correct one. MIRA keeps the
norm of the change in weight vector as small as possible while giving
the current example (x(t),s(t)) a score that exceeds that of the best-
scoring incorrect segmentation by a margin given by the mismatch
between the correct segmentation and the incorrect one. The
quadratic program in line 5 of Algorithm 1 formalizes that objective,
and has a straightforward closed-form solution for this version of the
algorithm. Line 11 of the algorithm computes w as an average of the
weight vectors obtained at each iteration, which has been shown to
reduce weight overfitting [31]. The training parameter N is
determined empirically using an auxiliary development set.

Algorithm 1. Online Training Algorithm.
Training data t ¼ fðxðtÞ; sðtÞÞgTt¼1. L(s

(t),ŝ) is some nonnegative real-
valued function that measures the mismatch between segmentation ŝ
and the correct segmentation s(t). The number of rounds N is
determined using a small development set.

1: w(0) ¼ 0; v¼ 0; i ¼ 0
2: for round ¼ 1 to N do
3: for t ¼ 1 to T do
4: ŝ ¼ argmaxs2GEN ðxÞ SwðiÞ ðxðtÞ; sÞ
5: ŵ ¼ argminw9jjw 9� wðiÞjj2

subject to Sw9(x
(t),s(t)) � Sw9(x

(t),ŝ) � L(s(t),ŝ)
6: w(i þ 1)  ŵ
7: v  v þ w(i þ 1)

8: i  i þ 1
9: end for
10: end for
11: w¼ v / (N*T)

Successful discriminative learning depends on having training data
with statistics similar to the intended test data. However, this is not
the case for gene training data. The main distribution mismatch is
that reliable gene annotations available for training are for the most
part for single-gene sequences with very small flanking intergenic
regions.

To address this problem, we created long training sequences
composed of actual genes separated by synthetic intergenic regions as
follows. For each training sequence, we generated two extra inter-
genic regions and appended them to both sequence ends, making
sure that the total length of both flanking intergenic regions followed
geometric distributions with means 5,000, 10,000, 60,000, and 150,000
bp for each of four GC content classes, respectively [3,10]. The
synthetic intergenic regions were generated by sampling from GC-
dependent, fourth-order interpolated Markov models (IMMs), with
the same form as the models we used to score the intergenic state.

Algorithm 1 also requires a loss function, L, and a small
development set on which to estimate the number of rounds, N. As
loss function, we used the correlation coefficient at the base level [24],
since it combines specificity and sensitivity into a single measure. The
development set consisted of the 65 genes previously used in
GenScan [1] to cross-validate splice signal detectors.

Features. The final ingredient of the CRAIG model is the feature
function f used to score candidate segments based on properties of
the input sequence. A typical feature relates a proposed segment to
some property of the input around that segment, and possibly to the
label of the previous segment.

Properties.We started by introducing basic sequence properties that
features are based on. These properties are real-valued functions of
the input sequence around a particular position. Some properties
represent tests, taking the binary values 1 for true and 0 for false. For
any test P,||P|| denotes the function with value 1 if the test is true, 0
otherwise.

The tests

subuði; xÞ ¼ jju ¼ x½i : iþ juj � 1�jj

Figure 5. Finite-State Model for Eukaryotic Genes

Variable-length genomic regions are represented by states, and bio-
logical signals are represented by transitions between states. Short and
long introns are denoted by IS and IL, respectively.
doi:10.1371/journal.pcbi.0030054.g005
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check whether substring u occurs at position i 2 x. For example, x ¼
ATGGCGGA would have subA(1,x)¼ 1, subTA(2,x)¼ 0, and subGGC(3,x)
¼ 1.

The property scorey(i,x) computes the score of a content model for
state y at position i. This score is the probability that nucleotide i has
label y according to a k-order interpolated Markov model [32], where
k¼ 8 for coding states and k¼ 4 for noncoding states.

The property gcc(i,x) calculates the GC composition for the region
containing position i, averaged over a 10,000-bp window around
position i.

Each feature associates a property to a particular model state or
state transition.

Binning. Properties with multimodal or sparse distributions, such as
segment length, cannot be used directly in a linear model, because
their predictive effect is typically a nonlinear function of their value.
To address this problem, we binned each property by splitting its
range into disjoint intervals or bins, and converting the property into
a set of tests that checked whether the value of the property belonged
to the corresponding interval. The effect of this transformation was
to pass the property through a stepwise constant nonlinearity, each
step corresponding to a bin, where the height of each step was
learned as the weight of a binary feature associated to the
appropriate test.

For example, following GenScan [1], we mapped the GC content
property gcc to four bins: ,43, 43–51, 51–57, and .57. For other
properties, we used regular bins with a property-specific bin width.
For instance, exon length was mapped to 90 bp–wide bins.

Test and feature combinations. We used Boolean combinations of tests
and binary features to model complex dependencies on the input.
Conjunctions can model nucleotide correlations, for example donors
of the form G�1G5, that is, donors with G at positions �1 and 5.
Likewise, disjunctions were used to model consensus sequences, for
example, donors of the form U3, that is, donors with either an A or a
G at position 3.

In general, for two binary functions f and g, we denoted their
conjunction by f ^ g and their disjunction by f _ g.

State features. State features encode the content properties of the
genomic regions associated to states: exons, introns, and intergenic
regions. State features do not depend on the previous state, so we
omitted the previous state argument in these feature definitions.

Coding/noncoding potential. This feature corresponds to the log of the
probability assigned to the region by the content scoring model:

potðs; xÞ ¼ 1
lenðsÞ

XposðsÞþlenðsÞ

k¼posðsÞ
log scorelabðsÞðk; xÞ � llabðsÞ

where ly is the arithmetic mean of the distribution of log scorey on
the training data. For coding regions, the sum is computed over
codon scores instead of base scores. Other features related to log
scorey also included in f are the coding differential and the score log-
ratios between intronic and intergenic regions.

Phase biases. Biases in intron and exon phase distributions have
been found and analyzed by Fedorov et al. [33]. We represented
possible biases with the straightforward functions

biaspðs; xÞ ¼ jjlabðsÞ ¼ Ipjj

where p¼ 0,1,2 is a phase and Ip is the corresponding intronic state.
Length distributions. The length distributions of exons and introns

have been extensively studied. Raw exon lengths were binned to allow
our linear model to learn the length histogram from the training
data. For long introns, with length .980, we used 980/len(s) as the
length feature, whereas shorter introns used max f245/len(s),1g.

For each genomic region type, we also provided length-dependent
default features whose weights expressed a bias for or against regions
of that length and type. The value of these features is len(s)/ky, where
ky is the average length of all y-labeled segments. For introns and
intergenic regions, we used separate, always-on default features for
the four classes of GC content discussed above.

Coding composition. In addition to coding potential scores, which
give broad, smoothed statistics for different genomic region types, we
also defined count features for each 3-gram (codon) and 6-gram
(bicodon) in an exon, and similar count features for the first 15 bases
(five codons) of an initial exon. The 3-gram features were further split
by GC content class. The general form of such a feature is

countu;pðs; xÞ ¼
XposðsÞþm

i¼posðsÞþp
subuði; xÞ if labðsÞ¼ Ep

0 otherwise

8>><
>>:

where p¼ 0,1,2 is the phase, u is the n-gram, and m is the window size,
which is len(s) for a general exon count, and minflen(s),15g for special
initial exon features, which attempt to capture composition
regularities right after the TIS.

Masking.We represented the presence of tandem repeats and other
low complexity regions in exonic segments by the function:

maskðs; xÞ ¼ jj 1
lenðsÞ

XposðsÞþlenðsÞ

k¼posðsÞ
subNði; xÞ.0:5jj

After training, this feature effectively penalizes any exon whose
fraction of N occurrences exceeds 50% of its total length.

Table 6 shows all the state features associated with each segment
label.

Transition features. Transition features look at biological signals
that indicate a switch in genomic region type. Features testing for
those signals looked for combinations of particular motifs within a
window centered at a given offset from the position where the
transition occurs. Features of the following form, which test for motif
occurrence, are the building blocks for the transition features:

Table 6. State Features for Each Segment Label

Segment Label Category State Features

Intergenic Length len(s)/ky

Score pot(s,x)

Intron Short only maxf980/len(s),1g len(s)/ky

Long only 980/len(s)/ky len(s)/ky

Phase biasp(s,x)

Score pot(s,x)

Exon Length bins len(s)ky

Content mask(s,x) countu,p(s,x)

Score pot(s,x)

This summary elides some dependencies of features on state labels. For example, the
feature pot(s,x) would behave differently depending on whether s is an intron, exon, or
intergenic segment, as described in the text.
doi:10.1371/journal.pcbi.0030054.t006

Table 7. Transition Features per Signal Type

Type Region Signal Features

Start Signal PWM�4,7; PWM�4,7 ^ PWM�4,7;

ConsPWM�4,7,CAMCATGSMSV

Upstream WWAM5,3,�20,�6

Peptide PepWWAM5,1,3,3; PepWWAM15,1,13,13

Stop Signal PWM�5,5; WWAM5,3,6,20

Donor Signal PWM�3,7; PWM�3,7 ^ PWM�3,7;

ConsPWM�3,7,MAGGTRAGTG

ConsPWM�3,7,MAGGTRAGTG ^ PWM�3,7

Upstream f 2phase^ WWAM5,3–6,�5

Downstream WWAM5,3,8,20

Acceptor Signal PWM�7,3; PWM�7,3 ^ PWM�7,3;

ConsPWM�7,4,YYYYYCYAGRB;

ConsPWM�7,4,YYYYYCYAGRB ^ PWM�7,3

Branch point WWAM5,3,�36,�20

Pyrimidine region WWAM3,2,�28,�8;

ConsPWM�7,4,YYYYYCYAGRB ^ WWAM3,2,�28,�8

PepWWAM is a WWAM defined at the amino-acid level, as described in the text.
ConsPWM uses feature disjunctions to check whether the given consensus sequence
appears at the given position. The feature set conjunction located in the donor’s
upstream region specifies a phase-dependent WWAM between positions �6 and �5.
doi:10.1371/journal.pcbi.0030054.t007
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motifp;u;wðs; y9; xÞ ¼
Xw

2

d¼�w
2

subuðposðsÞ þ pþ d; xÞ

where p is the offset, w is the window width, and u is the motif. This
feature counts the number of occurrences of u within p 6 w/2 bases of
the start of segments.

In principle, all sequence positions are potential signal occur-
rences, but in practice one might filter out unlikely sites, using a
sensitivity threshold proportional to level of signal conservation, thus
decreasing decoding time.

Burge and Karlin [1] model positional biases within signals with
combinations of position weight matrices (PWMs) and their general-
izations, weight array models (WAMs) and windowed weight array
models (WWAMs), with very good results. It is straightforward to
define these models as sets of features based on our motifp,u,w feature,
as shown here in the WWAM case:

WWAMw;n;q;rðs; y9; xÞ ¼ fmotifp;u;wðs; y9; xÞ : u 2
Xn

DNA

; q � p � rg ð5Þ

PWMs and WAMs are special cases of WWAMs and can thus be
defined by PWMq,r ¼ WWAM1,1,q,r and WAMq,r ¼ WWAM1,2,q,r. This
means that we can use all of these techniques to model biological
signals in CRAIG with the added advantage of having all signal model
parameters trained as part of the gene structure.

Correlations between two positions within a signal are captured by
conjunctions of motif features. For example, the feature conjunction

motif�3;A;1ðh156; 20; I1i;E1; xÞ ^motif2;T;1ðh156; 20; I1i;E1; xÞ

would be 1 whenever there is an A in position�3 and a T in position 2
relative to a donor signal occurring at position 156 in x, and 0
otherwise.

We can also extend the feature conjunction operator to sets of
features: if A and B are sets of features, such as the WWAM defined in
Equation 5, we can define the set of features A ^ B¼ff ^ g : f 2 A, g 2 Bg.

In Equation 5, if we use the amino acid alphabet
P

AA instead ofP
DNA, and work with codons instead of single nucleotides, we can

model signal peptide regions. If we sum over disjunctions of motif
features, we can easily model consensus sequences.

Table 7 shows the motif feature sets for each biological signal. The
parameters required by each feature type were either taken from the
literature [1] or by search on the development set.

We included an additional feature set, motivated by previous work
[2], to learn splice site information from sequences that only contain
intron annotations. For any donor (acceptor), we first counted the
number of similar donors (acceptors) in a given list of introns. A
signal was considered to be similar to another if the Hamming
distance between them was at most 1. The features were induced by a
logarithmic binning function applied over the total number of
similarity counts for Hamming distances 0 and 1.
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