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HIV-1 cell entry commonly uses, in addition to CD4, one of the chemokine receptors CCR5 or CXCR4 as coreceptor.
Knowledge of coreceptor usage is critical for monitoring disease progression as well as for supporting therapy with the
novel drug class of coreceptor antagonists. Predictive methods for inferring coreceptor usage based on the third
hypervariable (V3) loop region of the viral gene coding for the envelope protein gp120 can provide us with these
monitoring facilities while avoiding expensive phenotypic tests. All simple heuristics (such as the 11/25 rule) as well as
statistical learning methods proposed to date predict coreceptor usage based on sequence features of the V3 loop
exclusively. Here, we show, based on a recently resolved structure of gp120 with an untruncated V3 loop, that using
structural information on the V3 loop in combination with sequence features of V3 variants improves prediction of
coreceptor usage. In particular, we propose a distance-based descriptor of the spatial arrangement of physicochemical
properties that increases discriminative performance. For a fixed specificity of 0.95, a sensitivity of 0.77 was achieved,
improving further to 0.80 when combined with a sequence-based representation using amino acid indicators. This
compares favorably with the sensitivities of 0.62 for the traditional 11/25 rule and 0.73 for a prediction based on
sequence information as input to a support vector machine and constitutes a statistically significant improvement. A
detailed analysis and interpretation of structural features important for classification shows the relevance of several
specific hydrogen-bond donor sites and aliphatic side chains to coreceptor specificity towards CCR5 or CXCR4.
Furthermore, an analysis of side chain orientation of the specificity-determining residues suggests a major role of one
side of the V3 loop in the selection of the coreceptor. The proposed method constitutes the first approach to an
improved prediction of coreceptor usage based on an original integration of structural bioinformatics methods with
statistical learning.
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Introduction

HIV Cell Entry and Coreceptor Usage
HIV virions enter human host cells through consecutive

interaction with the CD4 cell surface receptor and one of the
two major coreceptors CCR5 and CXCR4. After binding to
CD4, a conformational switch in the surface protein gp120 of
HIV reveals the coreceptor binding site, most notably the
third hypervariable loop region V3. The V3 loop is
considered to be the major viral determinant for coreceptor
specificity [1]. After successful attachment to the host cell,
fusion of the viral and host cell membranes takes place [2,3].

The coreceptor selectivity of the viral population is of
central pathological and clinical importance.

Whereas in newly infected patients, CCR5-using (R5)
variants dominate, in about 50% of the patients CXCR4-
using (X4) variants appear during later stages of the disease
characterized by progression towards AIDS. The cause of the
observed coreceptor switch during progression is not fully
understood; however, the close relation between the increase
in the number of X4 variants and the decline of CD4þ cells
and the disease progression towards AIDS is commonly
agreed upon [4,5]. The categorization in R5 and X4 viral
variants is highly correlated with but not identical to other
categorization schemes into macrophage (M)-tropic and T
cell line (T)-tropic or nonsyncytium-inducing versus syncy-
tium-inducing variants [6].

Monitoring Coreceptor Usage
Coreceptor antagonists are a new drug class, providing

therapeutic options in addition to the established repertoire
of protease and reverse transcriptase inhibitors [5,7]. Using a
different mechanism and acting at a different stage of the
viral life cycle, they provide new points of attack against
multiresistant strains.
The observation that individuals carrying a 32-basepair

(bp) deletion in the CCR5 coreceptor are highly resistant
against HIV infection [8] specifically motivates the develop-
ment of CCR5 antagonists.
Some CCR5 antagonists have proven safe and effective in

phase II clinical trials [9] and are now being tested in phase III
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trials. While CCR5 inhibitors have already entered clinical
testing, candidates for CXCR4 inhibitors are in earlier stages
of development.

A major concern regarding drug treatment with CCR5
inhibitors is that it can select for the emergence of pre-
existing or newly produced CXCR4-using variants [10,11].
The close relation with disease progression necessitates tight
monitoring of coreceptor usage and possible switches while
administering inhibitors for CCR5 or CXCR4.

Although phenotypic assays for monitoring coreceptor
usage are commercially available, they are time-consuming
and costly. To become a routine part of clinical diagnosis,
inferring the phenotype from cheaper and faster genotypic
analysis is desired. This approach has already entered routine
clinical usage in resistance testing for the classical anti-HIV
drug targets protease and reverse transcriptase [12].

Various methods for predicting phenotype based on
sequence information are available. The most commonly
used 11/25 rule predicts a viral strain to be X4 in the presence
of positively charged amino acids at positions 11 or 25 of the
V3 loop [13]. More recently, methods based on statistical
learning techniques have been developed, which show
improved sensitivity in detecting X4 viral strains compared
with the simple 11/25 rule [14]. Neural nets [14], decision trees
[15], support vector machines (SVMs) [15], and position-
specific scoring matrices [1,16] have been applied, most of
them significantly outperforming the simple 11/25 rule [17].

Structural Basis of Coreceptor Usage
To date, information on the three-dimensional structure of

the V3 loop has not been exploited for predicting the
coreceptor type used by a viral population. Including
structural information can improve predictive performance
and, even more importantly, be a first step towards a deeper
understanding of the structural aspects of coreceptor usage.
Several studies analyzed conformational properties of the V3
loop. However, these investigations did not particularly
consider the impact on coreceptor usage. As Lusso [18]
points out, structural understanding of coreceptor specificity

is limited at the moment. In recent work, Watabe et al. [19]
suggested empirical potentials to assess the fit of sequence
variants to loop candidates generated by Monte Carlo
variation of NMR peptide structures. So far, structural
studies have been based on peptide structures, as no
completely resolved structure of gp120 was available. The
situation has changed with a recently published crystal
structure of the HIV-1 JR-FL gp120 protein including the
V3 loop by Huang et al. [20]. See Figure 1.
Although some evidence for conformational changes in the

loop structure exists, there is an ongoing debate about the
relevance of V3 loop conformation to coreceptor selectivity
[21–23]. Sharon et al. [21] suggest that alternative conforma-
tions of the V3 loop play a key role in determining the
coreceptor specificity of HIV-1. On the other hand, Scheib et
al. [22] argue that there is a predominant conformation for
both R5 and X4 variants and that varying sequence features
are responsible for specificity towards the respective cor-
eceptor.

Novel Structural Descriptor and Related Methods
Here, we describe the first structure-based approach to

predicting HIV-1 coreceptor usage. In particular, we propose
and evaluate a novel structural descriptor for capturing the
spatial distribution of five functionally defined atom types in
the V3 loop (see Figure 2).
In a practical scenario, only sequence data but no

structures will be available for different viral variants. Thus,
we chose to evaluate two approaches: (1) to use a simple
descriptor (V3SDCb), which approximates the position of all
functional side chain atoms by the fixed Cb positions of the
structure 2b4c [20]; and (2) a descriptor V3SDscwrl, which uses
the crystal structure 2b4c [20] as a rigid backbone template
for the V3 loop region and models side chains using SCWRL
[24]. SCWRL is a reliable and fast program to predict side
chains for large sets of sequences. By comparing the
descriptors V3SDCb and V3SDscwrl, which represent structures
of viral variants at two different levels of approximation, the
tradeoff between increased uncertainty and the improved
information about side chain location and length can be
assessed.
To specifically address the structural uncertainty in the

presence of insertions and deletions, we evaluate the
performance separately for sequence variants with substitu-
tions only, as opposed to variants also exhibiting insertions
and deletions relative to the reference V3 loop of the
structure 2b4c. To derive structural descriptors from the
modelled variants, the side chains are represented by func-
tional atoms, labelled as hydrogen-bond donor, acceptor,
ambivalent donor/acceptor, aliphatic, or aromatic ring,
according to Schmitt et al. [25]. For the subsequent
prediction based on an SVM, the spatial arrangements are
encoded by 15 distance distributions, one for each pair of
functional atom types. Thus, for each atom-type combination
(e.g., donor–donor, donor–acceptor, . . .) all Euclidean
distances between the respective atoms are computed and
condensed into a distribution function, similar to a smoothed
histogram.
The set of 15 distance distributions is used as vectorial

input to the SVM. See Figure 3 for a schematic overview and
the section Structural Descriptors for methodological details.
The proposed structure representation is related to ideas
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Author Summary

HIV-1 cell entry requires a chemokine coreceptor in addition to the
CD4 cell surface receptor. The two most common types of HIV
coreceptors are called CCR5 and CXCR4. Whereas CCR5-using viral
variants dominate directly after infection and during early stages of
the disease, in about 50% of the patients, CXCR4-using variants
appear in later stages of the disease, suggesting the coreceptor
switch to be a determinant of disease progression. HIV coreceptors
received substantial attention as antiviral drug targets, with CCR5
antagonists being currently tested in phase III clinical studies.
Treatment with coreceptor antagonists requires continuous mon-
itoring of coreceptor usage. The prominent role of coreceptors in
disease progression and their potential as antiviral drug targets
provides incentives for methodological improvements in coreceptor
prediction and better understanding of the underlying determining
factors regarding sequence and structural aspects. Our proposed
method is the first approach to predict coreceptor usage based on
structural information as opposed to established sequence-based
methods. Including structural information improves predictive
performance and is a first step towards a deeper understanding of
the structural aspects of coreceptor usage.
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from protein structure comparison and prediction. Distribu-
tions of atomic distances have been used successfully in
structure comparison [26,27]. In protein structure prediction,
distributions of distances have been applied as knowledge-
based potentials to evaluate the fit of a sequence to a specific
structure [28,29].

In the context of protein function, Stahl et al. [30] have
used distance-based descriptions to cluster active sites of
enzymes based on chemical and geometric properties. For the
analysis of protein–protein interaction interfaces, Mintseris
and Weng [31] have proposed atomic contact vectors which
consist of contact counts derived from thresholded distance
matrices. Aloy and Russell [32] have suggested empirical
potentials to assess the compatibility of a pair of sequences to
the contacts formed in a known complex of two respectively
homologous sequences. In a similar setting, MULTIPRO-
SPECTOR [33] uses a threading algorithm to align a pair of
sequences to a structurally resolved protein–protein com-
plex. In addition to the interface energy term as in [32], this

method also uses the threading score for the protomers
themselves.
Structural understanding in the present problem is

seriously hampered by the fact that structural details on
complexation with the coreceptor are unknown. This is why
we refrain from an attempt to integrate structural informa-
tion on the coreceptors. Another aggravating factor is that no
crystal structures are available for viral variants. As it is
unlikely that comprehensive structural data on the wealth of
viral variants will become available, modelling of side chains,
and potentially also changes in the backbone, is necessary.

Results/Discussion

Predictive Performance of Sequence-Based and Structural
Descriptors
To assess the predictive performance of the structure-

based descriptors, we compared the two variants V3SDCb and
V3SDscwrl against purely sequence-based predictions by the 11/

Figure 1. Crystal Structure of gp120 with the V3 Colored in Amber

doi:10.1371/journal.pcbi.0030058.g001

Figure 2. V3 of gp120 with Residue Labels

Labels in the first row are amino acid identifiers and V3 sequence reference numbers (relative to the subtype B consensus sequence of length 35), labels
in the second row are PDB file residue numbers in chain G of 2b4c. The loop has the same orientation as in Figure 1.
doi:10.1371/journal.pcbi.0030058.g002
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25 rule, which predicts X4 in the presence of positively
charged residues at positions 11 or 25, and Indicator. Indicator
performs prediction based on an SVM using a binary
sequence encoding, which uses a bit-vector to indicate the
presence or absence of a specific amino acid at a specific V3
loop sequence position. We evaluated the two structural
descriptors and the two sequence-based predictors on data
compiled from the Los Alamos HIV Sequence Database and
several publications [14,34–37]. The evaluation is performed
on a dataset containing 514 mutually distinct V3 sequences
(SEQindels,514) and a smaller subset, containing 432 sequences
without indels (SEQnoindels,432). Each of the sequences is
annotated as either using CCR5 only or being capable of
using CXCR4. See Materials and Methods for methodological
details and the Dataset and sequence alignment section for a
description of the dataset.

For measures of performance we used the sensitivity at the
specificity of the 11/25 rule, the area under the ROC curve
(AUC), the accuracy at a cutoff of 0.5 (for the posterior
probability obtained by the SVM), and the positive predictive
value (PPV) at the specificity of the 11/25 rule. Of all these

measures, we consider the sensitivity at the specificity of the
11/25 rule as most important in practice, because it focuses on
detecting X4 viral variants at an acceptable level of false
positives (R5 erroneously considered to be X4). See the
section Evaluation and definition of performance measures
for definitions of the performance measures.
Figure 4 contains ROC (receiver operating characteristic)

curves for a performance comparison of the methods. ROC
curves plot (1-Specificity) against Sensitivity for varied
decision cutoffs, ranging from predicting mainly R5 (towards
the lower left corner) to predicting mainly X4 (towards the
upper right corner). On our dataset (see the section Dataset
and sequence alignment for details), the 11/25 rule has a
sensitivity of 0.6186 while exhibiting a specificity of 0.9463.
Considering the routine clinical application of this simple
rule, the benefit of improving the sensitivity towards X4 viral
variants is obvious. For the fixed specificity of 0.9463 (i.e.,
maintaining a fixed number of false positives), the sequence-
based indicator prediction using a linear SVM improves
sensitivity to 0.7340. A similar improvement has been
reported previously [15,17] when applying statistical learning
methods in comparison to the traditional 11/25 rule.
For the simpler form of structural descriptor V3SDCb , the

performance is below the Indicator prediction at a sensitivity
of 0.6959. Still, this constitutes a considerable improvement
over the 11/25 rule. Thus, as features different from pure
sequence information are encoded in this structural descrip-
tor, its analysis can provide important insights regarding
structural features.
Using structural models for the sequence variants with side

chains placed by SCWRL [24], predictive performance
improves considerably over the simple structural descriptor
V3SDCb and even compared with the Indicator encoding. The
structural descriptor V3SDscwrl improves sensitivity to 0.7742.
SCWRL faces a hard task in optimizing side chain con-
formations as no direct contacts between the side chains
within the loop with side chains of binding partners are
present. However, the improved predictive performance
indicates that the additional information over the V3SDCb

descriptor helps in discriminating coreceptor usage.
One important aspect might be the information about side

chain length and volume, which is completely lost in the
V3SDCb descriptor.
An overview of predictive performance for further

measures can be found in Table 1. The observed ordering
of methods regarding performance are similar to the trend
observed for the sensitivities. The absolute performance

Figure 4. ROC Comparison of Predictive Performance: Sequence-Based

Predictions (11/25 rule and Indicator) and Structural Descriptors (V3SDCb

and V3SDscwrl) on the Dataset SEQnoindels,432

doi:10.1371/journal.pcbi.0030058.g004

Figure 3. Schematic Overview of the Structural Descriptor Computation and Coreceptor Usage Prediction

doi:10.1371/journal.pcbi.0030058.g003
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increases regarding AUC and accuracy are smaller. This is
because AUC and accuracy are less responsive to improve-
ments in detection of X4 variants due to the class imbalance
towards R5 samples.

In Table 2 the statistical significance of relative sensitivity
improvements between methods is tabulated. The improve-
ment from the 11/25 rule to the Indicator is significant at a p-
value of 0.0059 (paired Wilcoxon test), as is the improvement
of V3SDscwrl over Indicator (0.0137). The error bars in Figure 4
are nonoverlapping for the sensitivities at the specificity of
the 11/25 rule (dashed line). This also indicates significant
differences in predictive performances.

Combining Structural Descriptors with Sequence-Based
Representations

Considering the different type of information in the
sequence-based and the structural descriptors, we combined
the respective features to assess whether further predictive
improvements are feasible. The sequence-based and struc-
tural features were combined by concatenating the corre-
sponding feature vectors. As seen in Figure 4, combination of
the sequence-based Indicator encoding and the structural
descriptor V3SDscwrl further improves sensitivity to 0.8041 at
the specificity of the 11/25 rule (0.9463). This indicates that
sequence and structure convey complementary information,
to some extent. See Table 1 for further performance
measures and Table 2 for a significance assessment of the
relative improvement.

For a fixed specificity of 0.9, a similar increase from
sequence-only to structure-based descriptors can be ob-
served: 0.7946 (Indicator), 0.8474 (V3SDscwrl ), 0.8603 (V3SDscwrl

þ Indicator).

Viral Variants with Indels Relative to 2b4c
The previous performance assessment was done only on

viral variants without insertions or deletions relative to the
V3 region of 2b4c. However, for broad applicability it is
desired to cover sequences with indels as well. Investigating
the positions of observed insertions and deletions shows that
they are not uniformly distributed along the V3 region.
Instead, there are preferences for certain positions. Figure 5
illustrates the positional distribution of insertions and
deletions.

Around position 7, insertions and a few deletions can be
observed. After position 12 there is a rare three-residue
deletion, occurring in two sequences in our dataset. Between
positions 14 and 15 there is a rather common two-residue
insertion. The effect of this insertion on the b pairing within

the hairpin is unclear; it might disrupt the pairing. A rather
common deletion is observed at position 22. Higher rates of
insertions and deletions can be found around position 24, the
bulgy middle region. In this neighborhood it appears to be
easier to structurally adapt to insertions and deletions by
slight conformational changes.
For sequence variants containing insertions relative to the

V3 region of 2b4c, the inserted residues were ignored in the
descriptor. For variants with deletions, only the remaining
residues contributed to the descriptor.
For insertions as well as deletions, no remodelling of the

backbone or loop closure was performed.
We compare the sensitivity at the specificity of the 11/25

rule for the full dataset including indels with the performance
reported above in the section Predictive Performance of
Sequence-Based and Structural Descriptors. Whereas the
sensitivity of the 11/25 rule drops to 0.5782, the performances
for Indicator (0.7182), V3SDscwrl (0.7712), and for the combina-
tion of Indicator and V3SDscwrl (0.8052) change only slightly.
This shows that the proposed structural descriptor is
sufficiently robust to handle sequence variants containing
indels. See Protocol S1 for additional material on viral
variants with indels.

Identification of Discriminating Structural Features
To assess the importance of features in the structural

descriptors, we used three approaches for scoring how
characteristic the respective features are for each coreceptor
class. First, we analyzed the separation of the two coreceptor
classes by each feature using the Wilcoxon test-statistic
(Wilcoxon). Second, the ratios of feature variability between
and within the two coreceptor classes were assessed (variation
ratio). Third, a random forest classifier was used to estimate
the feature importance of each feature (RF importance).
Random forests are predictive classifiers and were applied

as substitutes for the SVMs above, because their construction
as an ensemble of decision trees allows the extraction of
feature importance measures. See Figure 6 for pairwise
scatter plots of the three importance measures and Figure 7
for an illustration of RF importance. Finally, we investigate the
relevant residue pairs contributing to the characteristic
features.
Wilcoxon separation of coreceptor types. The Wilcoxon

score highlights donor–aliphatic distances and aliphatic–
aliphatic distances similar to the random forest evaluation.
For donor–aliphatic distances, the important intervals are
2.5–4, 9–10, 12.5–18, and 25.5–26 Å. For the aliphatic–

Table 1. Performance on the Dataset SEQnoindels,432

Performance

Measure

11/25

Rule

Indicator V3SDCb V3SDSCWRL V3SDSCWRL

þ Indicator

Sensitivitya 0.6186 0.7340 0.6959 0.7742 0.8041

AUC 0.7824 0.9215 0.9122 0.9266 0.9348

Accuracyb 0.8727 0.9000 0.8933 0.9126 0.9156

PPVa 0.7692 0.7980 0.7894 0.8065 0.8124

aAt the specificity of the 11/25 rule.
bFor cutoff¼ 0.5.
doi:10.1371/journal.pcbi.0030058.t001

Table 2. Significance of Sensitivity Improvements at the
Specificity of the 11/25 Rule

Sensitivity Improvement p-Value

11/25 rule -. Indicator 0.0059

Indicator -. V3SDSCWRL 0.0137

V3SDSCWRL -. V3SDSCWRL þ Indicator 0.0098

Indicator -. V3SDSCWRL þ Indicator 0.0020

Predictions were pooled for ten folds in cross-validation; the significance is computed
over ten replicates of cross-validation.
Significances were obtained by a paired Wilcoxon test.
doi:10.1371/journal.pcbi.0030058.t002
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aliphatic distances 10–15, 19–21 Å are the most outstanding
intervals, while acceptor–acceptor distances at several dis-
tinct peaks appear at 5.5–7.5, 15–16, 24, and 34 Å. See
Protocol S1 for feature importance according to the Wilcoxon
score.

Ratio of feature variation between and within groups. The
variation ratio score shows a high correlation with the Wilcoxon
score. The top 50 features are donor–aliphatic distances in
the intervals 2.5–4, 8.5–10, 12.8–17.5, and 23.5–28.5 Å, as well

as aliphatic–aliphatic distances 7.5–8, 10.5–15, 19.5–21, and
24.5–26 Å. See Protocol S1 for feature importance according
to the variation ratio score.
Random forest feature importance. On our dataset,

random forests yield predictions with a performance close
to the performance of the nonlinear SVM used above in
the section Predictive Performance of Sequence-Based and
Structural Descriptors. However, random forests facilitate
feature interpretation by scoring features with an importance

Figure 5. Distribution of Insertions and Deletions over the V3 Loop

The x-axis labels denote V3 sequence reference numbers (relative to the subtype B consensus sequence of length 35) like those annotated in Figure 2.
Positions 7a, 12a, 12b, 12c, 14a, 14b, 18a, 18b, and 24a are insertions relative to the structure PDB 2b4c as well as the subtype B consensus sequence.
doi:10.1371/journal.pcbi.0030058.g005

Figure 6. Pairwise Scatter Plots of the Feature Importance Measures Wilcoxon, Variation Ratio, and RF Importance against Each Other

doi:10.1371/journal.pcbi.0030058.g006
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measure (mean decrease in Gini coefficient). Compared with
the two feature assessment scores above, RF importance
provides a multivariate evaluation, considering also mutual
relationships between features with respect to the predictive
model.

In the RF importance analysis, three feature groups stand out
(see Figure 7). The 50 highest-scoring features regarding
mean decrease in Gini coefficient are all from the three
groups donor–aliphatic, aliphatic–aliphatic, and donor–do-
nor. Donor–aliphatic distances provide important features
over a broad range of distances. Most outstanding distance
intervals are: 4, 9–18, 23–30, and 33 Å. Aliphatic–aliphatic are
similarly important over a wide distance range: 7, 12–14, 19–
21, and 25 Å. The importance of donor–donor distances
shows a distinct peak at around 28 Å. In contrast to the
Wilcoxon importance ranking, acceptor–acceptor distances
are not considered to be highly important.

Correlating the Wilcoxon scores with the RF importance
scores reveals that all of the top 50 RF features have aWilcoxon
score above 20 (see Figure 6). This indicates that a high
Wilcoxon separation is required for a high RF importance score,
but not vice versa. In general, the score variabilities for the
Wilcoxon and variation ratio scores are higher than for the RF
importance score; however, the top 50 features are similar in all
three scoring schemes.

Identification of residues contributing to important fea-
tures. For each of the important distance intervals high-
lighted above and for each pair of residue types, we examine
which residue pairs of the given type contribute to respective

distance intervals. The analysis is performed for the four
donor–aliphatic distance intervals 4 6 0.5, 9 to 18, 23 to 30,
and 33 6 0.5 Å; the four aliphatic–aliphatic distance intervals
7 6 0.5, 12 to 14, 19 to 21, and 25 6 0.5 Å; and donor–donor
atoms in the distance of 28 6 0.5 Å. For each of these
intervals we compute a measure of relevance for residue
pairs.
The measure consists of the fraction of X4 variants in

which this pair contributes to the respective interval minus
the fraction of R5 variants in which this residue pair
contributes. As shown in Figure 7, donor–aliphatic pseudo-
atoms at distances between 9 to 18 Å are most prominent
regarding RF importance score. See Figure 8 for a graphical
representation of relevant residues and residue pairs at this
distance interval. Edges between two residues are scaled by
the contributions of this residue pair to the respective
distance range. Edges colored in gray are pointing to X4
variants, whereas edges colored in red characterize residue
pairs specific for R5 strains. Residue 11(306) contributes to
several characteristic features in various residue pairings. The
dominant impact of residue 11(306) reflects its role in the 11/
25 rule and agrees with other univariate residue importance
studies [17]. Further relevant residues are 3(298), 7(302),
13(308), 18(315), 20(317), 22(319), 24(321), 25(322), and
32(328). Interestingly, residues 22(319) and 13(308) seem to
be overrepresented for R5 viral variants, whereas the other
residues are mainly indicators of X4 strains. See Protocol S1
for further tabulation of relevant residue pairs.
The other distance intervals mainly confirm the relevant

Figure 7. Random Forest Feature Importance Measured by the Mean Decrease in Gini Coefficient

doi:10.1371/journal.pcbi.0030058.g007

Figure 8. Importance of Residue Pairs for Donor–Aliphatic Pseudo-Atoms at Distances between 9 Å to 18 Å

The width of the edges is proportional to the difference in contributions to the descriptor features of the two coreceptor classes. Edges in gray denote
residue pairs characteristic for X4 variants, edges in red mark residue pairs contributing to R5-specific descriptors. Residues that are considered to be
important for several distance intervals are marked in green. The loop has the same orientation as in Figures 1 and 2.
doi:10.1371/journal.pcbi.0030058.g008
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residues found above. In addition, for aliphatic–aliphatic
pseudo-atoms at distances between 7 Å 6 0.5 Å, a close
coupling of R5-specific features for residues 12(307) and
19(316) are highlighted. Residue 27(323) exhibits several weak
R5-indicating pairings for aliphatic–aliphatic pseudo-atoms
at distances between 25 Å 6 0.5 Å as well as for donor–
aliphatic atoms at distances between 23 Å to 30 Å. Donor–
donor distances confirm the donor–aliphatic results, similar
key residues are clearly highlighted here.

Except for residue 19(316), the side chains of all relevant
residues in the b hairpin tip are on the same side of the loop
(pointing outwards from the paper plane in Figure 2),
suggesting a major direct or indirect role of this side (called
upside) of the tip in determining the selectivity towards the
two coreceptor types. At residue 19(316), R5 variants have
more hydrogen donor or acceptor groups compared with X4
variants. X4 variants are more aliphatic and have fewer
acceptors at position 18(315) compared with R5 variants. For
residue 20(317), X4 variants have less pi and more donor
groups relative to R5. For the remaining residues of the loop,
we observe a slight tendency towards aliphatic residues
pointing to the upside of the loop relative to the hairpin
tip, in particular in residues 7(302), 11(306), 24(321), and
32(328). Interestingly, most of the features highlighted in the
analysis above are indicators for X4 variants, only a few are
descriptive of R5 strains.

Conclusion and Outlook
The proposed descriptor yields a considerable perform-

ance increase over the established 11/25 rule and even
compares favorably with newer methods based on statistical
learning (Indicator). In contrast to purely sequence-based
coreceptor usage predictions, the proposed structural repre-
sentation captures the relative three-dimensional arrange-
ment of chemical groups. From a biophysical perspective, this
relative placement of chemical groups is determining which
coreceptor the viral variant will bind. Due to its robustness
with respect to sequence variants containing indels, it can be
applied in realistic scenarios and on large-scale datasets. The
most interesting aspect of the proposed descriptor is its
integration of structural data, providing the first application
of structural data in the context of coreceptor usage
prediction. The combination of methods from structural
bioinformatics with statistical learning methods allows for
competitive performance as well as interpretation of cor-
eceptor usage at the structural level.

Despite its good performance, there are several limitations
and possible directions for improvement, either by methodo-
logical enhancements or by integration of further exper-
imental data. As almost no side chain interactions take place
within the V3 loop and the binding partner is not available in
the structural model, SCWRL faces a difficult task in
optimizing side chains. One possible way of relaxing this
difficulty is by considering ensembles of alternative side chain
conformations in the structural descriptor. From a methodo-
logical point of view, alternative conformations are easy to
integrate into the distance distributions in a weighted
manner. A further possible bottleneck is the assumption of
a fixed backbone structure. Further understanding of the
structure–function relationship of coreceptor usage or new
insights in the debate mentioned above [21–23] could be
incorporated into the descriptor. Instead of the fixed back-

bone structure, several alternatives are possible. Experimen-
tally resolved peptide structures could be used to model
sequence variants or molecular dynamics simulations could
be used to generate ensembles of backbone variants. With all
these alternatives, the proposed descriptor provides a generic
way of incorporating new structural information on V3 loop
conformation; especially interesting would be crystal struc-
tures of X4 viral variants.
Another interesting perspective is to correlate the discrim-

inative spatial features of the V3 region to spatial arrange-
ments in the coreceptor. Published chemokine receptor
models [38,39] could be used to generate such spatial
descriptions and to search for complementary arrangements
of physicochemical properties. Finally, the proposed method
to describe the spatial arrangement of physicochemical
properties is not limited to the demonstrated application,
in principle. By providing a vectorial representation of a
binding site, it can be used as a generic way of describing and
comparing any set of binding sites regarding geometric and
physicochemical features involved in different protein–
protein interactions.

Materials and Methods

Dataset and sequence alignment. From the HIV Sequence Database
at Los Alamos National Laboratory and several publications [14,34–
37], we obtained 1,100 clonal samples with annotated coreceptor
phenotype from 332 patients. To reduce the risk of positively biased
results, we removed all duplicate V3 sequences (i.e., sequences with
100% sequence identity to another sequence in the dataset), resulting
in 514 mutually distinct sequences. For each of the samples, the
coreceptor phenotype is denoted as R5, X4, or R5/X4. R5/X4 are viral
strains being capable of using either of the two coreceptors. R5/X4
and X4 variants were pooled into a single class (called X4 in the sense
of X4-capable), as opposed to variants that are limited to using CCR5
(called R5 in the sense of R5-only). The dataset after duplicate
removal contains 363 R5 and 151 X4 samples.

We aligned these sequences using the multiple alignment package
MUSCLE [40] with default parameters. Visual inspection showed no
obvious degeneracies or problems in the alignment. The alignment of
this sequence dataset (called SEQindels,514) shows that 82 sequences
contain insertions and deletions relative to 2b4c. By restricting the
set SEQindels,514 to V3 variants without indels relative to the V3 region
of 2b4c, we obtained 432 mutually distinct V3 loop sequences (called
SEQnoindels,432). Of those sequences, 97 are X4 variants, 335 are R5
strains.

11/25 charge rule and indicator sequence encoding. The traditional
11/25 rule is an empirically derived procedure routinely used in
clinical practice to predict coreceptor usage. It predicts a viral
variant to be X4 if there is a positively charged amino acid at V3
position 11 or 25 [13]. Among simple sequence rules (i.e., not based
on statistical learning), Resch et al. consider the 11/25 rule to be the
best predictor of coreceptor usage [14].

Various statistical learning methods were used to improve
predictive performance [1,14,15]. Here we use linear SVM prediction
based on an indicator encoding of the sequences (Indicator) [17]. A
viral variant is encoded by an indicator vector (consisting of only
zeros and ones). Each component in this vector indicates the
presence or absence of a specific amino acid at a specific V3 position.

Structural descriptors. The protein structure of the HIV-1 JR-FL
gp120 protein including the V3 loop (Protein Data Bank (PDB)
structure 2b4c [20], based on a CCR5-using JR-FL variant) was
retrieved from the RCSB PDB (http://www.pdb.org). The V3 loop in
chain G ranging from residues 296 to 331 was extracted. Based on this
loop backbone, we model the side chain positions for each sequence
variant using SCWRL [24]. As no structure information for the
sequence variants is directly available, we chose to evaluate two
approaches: (1) to use a simple descriptor (V3SDCb), which approx-
imates the position of all functional side chain atoms by the fixed Cb
positions of 2b4c; and (2) a descriptor V3SDscwrl, which is based on
modelled side chains. This way the tradeoff between increased
uncertainty and the improved information about side chain location
and length can be assessed.
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We then represent the side chains by five functional atom types,
labelled as hydrogen-bond donor, acceptor, ambivalent donor/
acceptor, aliphatic, or aromatic ring. Amino acids R, N, Q, K, and
W are classified as donors. Acceptors are N, D, Q, and E. Ambivalent
donor/acceptors comprise H, S, T, and Y. As aliphatic amino acids, we
consider A, R, C, I, L, K, M, P, T, and V. Pi-stacking centers are H, F,W,
and Y. This definition follows [25], but does not assign backbone
centers as pi-stacking. For aliphatic and aromatic interaction centers,
all involved atom positions were averaged per residue to compute a
pseudo-atom. In contrast to [25], who weight atoms by their solvent
access for computing the pseudo-atom of aliphatic side chains, we
used the unweighted average of the respective carbons as the solvent
exposure of the V3 loop, which can be seen as rather uniform.

For the subsequent statistical analysis, the spatial arrangement of
these functional properties is encoded by distance distributions. For
each of the 15 combinations of functional atom types (i.e., donor–
donor, donor–acceptor, etc.), pairwise Euclidean distances between
the respective pseudo-atoms in the V3 loop are calculated. Note that
the number of these distances depends on the number of pseudo-
atoms in the two groups. From these distance matrices, we derive
distance distributions using a kernel density estimate with Gaussian
kernel and bandwidth of 1 Å. The density estimates are then
discretized by uniform sampling at intervals of 0.5 Å, resulting in a 15
(distance distributions for atom type combinations) times 100
(sample points) dimensional vector. The resulting vector is used as
a structural descriptor for a given sample, as an alternative to the
purely sequence-based indicator representation, and used as input to
the statistical learning method. The bandwidth as well as the sampling
intervals for the distance-based descriptors have been set to
reasonable values based on empirical observations. To keep
computation times feasible, they were not optimized systematically.

Prediction based on support vector machines. For the sequence
indicator encoding (Indicator), a linear kernel is used, as previous
studies showed that nonlinear kernels do not help for simple
sequence encodings [17]. For prediction based on the structural
descriptors, a radial basis function kernel [41] is applied, as it
provides better performance than a linear kernel in this case. In both
cases probabilistic predictions are obtained from the SVM by the
method of Platt [42] to get estimates of prediction confidence and a
scoring classifier for the ROC analysis.

To optimize SVM parameters, we conducted parameter grid
searches. For the linear kernel (Indicator), we varied the cost
parameter log2 C in [-7, 2]. For the radial kernel (V3SDCb, V3SDscwrl),
we varied the cost parameter log2 C in [-6, 5] and the gamma
parameter log2 c in [-15, �5]. Optimal parameter values were
obtained from ten bootstrap samples of the dataset and kept fixed
for the subsequent analysis and evaluation. Each bootstrap sample
contained 9/10 of the number of samples in the original dataset
(drawn with replacement), using the default in the R package e1071
[43].

Evaluation and definition of performance measures. To assess
predictive performance for the structural descriptors, we performed
ten replicates of 10-fold cross-validation. Evaluation of predictive
performance was done using ROCR [44]. The measures used for
evaluationof predictive performance are sensitivity at the specificity of
the 11/25 rule, AUC, accuracy, and PPV. In the following, Ŷ denotes the
predicted coreceptor class and Y is the coreceptor actually used for a
sample. P and N denote the number of positives (X4) and negatives
(R5). TP and TN denote the number of correctly predicted positives
and negatives, and FP and FN denote the number of samples
incorrectly predicted as positive or negative, respectively. Sensitivity

is defined as P(Ŷ¼X4jY¼X4) and is estimated as TP/P. The specificity
P(Ŷ ¼ R5jY ¼ R5) is estimated as TN/N. The AUC is calculated by
adding the area of trapezoid strips under the ROC curve. This is
equal to the value of the Wilcoxon-Mann-Whitney test statistic and
also to the probability that the classifier will score a randomly drawn
positive sample higher than a randomly drawn negative sample [45].
The accuracy is defined as P(Ŷ¼ Y) and estimated by (TPþ TN)/(Pþ
N) at the cutoff 0.5 for the posterior class probability. The PPV P(Y¼
X4j Ŷ¼ X4) is estimated as TP/(TPþ FP).

Measures for feature interpretation. For evaluation of the
importance of the features in the structure-based descriptor, we
used three scoring schemes. First we used the -log10(p-value) of the
Wilcoxon rank-sum statistic (Wilcoxon) [46]. As a second measure we
utilized the ratio of feature variation between and within groups
(variation ratio), which is frequently used in gene ranking for
microarray analysis [47]. For a feature i, this ratio is

scoreðiÞ ¼
RjRkIðYj ¼ kÞð�xki � �xiÞ
RjRkIðYj ¼ kÞðxij � �xkiÞ

;

where �xi and �xki denote the average of feature i across all samples and
across samples belonging to class k only.

Third, we used the random forest feature importance scores (RF
importance) based on the mean decrease of the Gini index [48].

Software and computational details. Computations on the
sequence variants and structural models were performed using
Python and Biopython [49]. For computationally intensive parts,
Grid Engine was employed for running the analysis on a compute
cluster. Analysis of the results and prediction was performed using
the statistical language R [50] with the packages e1071 [43], random-
Forest [51], and ROCR [44]. Protein structure visualizations in Figures
1, 2, 3, and 8 were created using PyMOL [52]. The source code for
prediction and analysis is available upon request.

Supporting Information
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Found at doi:10.1371/journal.pcbi.0030058.sd001 (6.6 MB PDF).
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