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Many complex networks such as computer and social networks exhibit modular structures, where links between nodes
are much denser within modules than between modules. It is widely believed that cellular networks are also modular,
reflecting the relative independence and coherence of different functional units in a cell. While many authors have
claimed that observations from the yeast protein–protein interaction (PPI) network support the above hypothesis, the
observed structural modularity may be an artifact because the current PPI data include interactions inferred from
protein complexes through approaches that create modules (e.g., assigning pairwise interactions among all proteins in
a complex). Here we analyze the yeast PPI network including protein complexes (PIC network) and excluding
complexes (PEC network). We find that both PIC and PEC networks show a significantly greater structural modularity
than that of randomly rewired networks. Nonetheless, there is little evidence that the structural modules correspond to
functional units, particularly in the PEC network. More disturbingly, there is no evolutionary conservation among
yeast, fly, and nematode modules at either the whole-module or protein-pair level. Neither is there a correlation
between the evolutionary or phylogenetic conservation of a protein and the extent of its participation in various
modules. Using computer simulation, we demonstrate that a higher-than-expected modularity can arise during
network growth through a simple model of gene duplication, without natural selection for modularity. Taken together,
our results suggest the intriguing possibility that the structural modules in the PPI network originated as an
evolutionary byproduct without biological significance.
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Introduction

Many complex networks are naturally divided into com-
munities or modules, where links within modules are much
denser than those across modules [1] (Figure 1). For example,
human individuals belonging to the same ethnic groups
interact more than those from different ethnic groups [2].
Studying the modularity of a network not only provides
structural information about the network, but may also reveal
the underlying mechanisms that determine the network
structure. The concept of modularity is not new to biologists.
In fact, cellular functions are widely believed to be organized
in a highly modular manner, where each module is a discrete
object composed of a group of tightly linked components and
performs a relatively independent task [3–7]. It is interesting
to examine whether this modularity in cellular function arises
from modularity in molecular interaction networks such as
the transcriptional regulatory network and protein–protein
interaction (PPI) network. Many authors have attempted to
separate modules in the PPI network based on either the
network topology alone or with additional information about
gene function and expression [8–16]. They generally report
high modularity in the PPI network, with evidence for a
rough correspondence between PPI modules and functional
units. All these analyses, however, suffered from a serious bias
in the current PPI data. The PPI data include binary
interaction information that is either directly obtained from
experiments such as the yeast two-hybrid (Y2H) assay [17,18],
or indirectly inferred from stable protein complexes [19].
High-throughput protein complex identification is usually
mass-spectrometry–based [20–23] (e.g., tandem-affinity puri-
fication). These methods involve the discovery of a complex

of interacting proteins including a tagged bait protein, but do
not provide information about direct pairwise protein–
protein interactions [19,24]. Some small-scale biochemical
methods, such as co-immunoprecipitation [25] and affinity
precipitation [26], can also identify protein complexes with-
out providing pairwise protein interaction information.
Protein complex data obtained by one of these methods are
then translated into binary PPIs by either the ‘‘matrix’’ or the
‘‘spoke’’model [19] (Figure 2). The matrix model assumes that
all members of a protein complex interact with each other,
whereas the spoke model assumes that all nonbait members
of a complex interact with the bait. It is obvious that use of
the matrix model creates PPI modules corresponding to
protein complexes. The spoke model can also affect
modularity because the bait is interpreted by the model as
a hub (i.e., a highly connected node), while in reality it may
not be a hub. Because the reliability of the two models is
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unknown, it is possible that the prevailing modularity of PPI
networks is an artifact of these models. In this work, we
explore the above possibility by analyzing the modularity of
two yeast PPI networks. The first is referred to as the PIC
network, as it is the PPI network including protein complex
data, whereas the second is named the PEC network, as it the
PPI network excluding all edges inferred from protein
complexes. Because we are assessing the modularity of the
PPI network per se, only the network topology will be used in
separating modules. Our analyses show that although both
PIC and PEC networks are highly modular, the identified
modules lack obvious correspondence to functional units and
are not evolutionarily conserved. We use computer simu-
lation to show that modularity can arise in a simple model of
network growth through gene duplication, without the
involvement of selection for modularity. Together, our
findings suggest that structural modules in PPI networks
may have arisen as an evolutionary byproduct without
biological significance.

Results

Do PPI Networks Show Modular Structures?
We downloaded the PPI data for the budding yeast

Saccharomyces cerevisiae from the Munich Information Center
for Protein Sequences (MIPS) [27]. The dataset was human-
curated and contained mostly binary interactions directly
observed in Y2H experiments. In addition, about 10% of the
binary interactions in the dataset were inferred using either
the spoke or matrix model from protein complexes identified
by high-confidence small-scale experiments. This entire
dataset is referred to as the PIC network here. Based on the
MIPS annotation, we removed from the PIC network those
binary interactions that were inferred from protein com-
plexes, resulting in the PEC network. Because it is only
meaningful to separate modules within a connected part of a
network, we studied the largest connected subset (i.e., the
giant component), of a network. The giant component
contains more than 90% of all nodes in the yeast PPI

network. For simplicity, we refer to the giant component of a
network as the network, unless otherwise noted. Table 1 lists
some important parameters for the PIC and PEC networks
studied here.
The extent of modularity for a particular modular

separation of a network is often measured by M ¼ RN
s¼1 [(ls/

L)� (ks/2L)
2], where N is the number of modules, L is the total

number of edges in the network, ls is the number of edges
within module s, and ks is the sum of the degrees of the nodes
in module s [28,29]. The degree of a node is simply the
number of edges that the node has. The particular separation
that maximizes M is considered the optimal modular
separation and the corresponding M is referred to as the
modularity of the network (Figure 1). In essence, M is the
difference between the observed and expected proportions of
within-module edges in the network. Here, the expected
proportion is computed from a nonmodular network where
edges are equally likely to be within and between modules.
Several algorithms are available to separate a network into

modules and obtain the maximalM. Empirical and simulation
studies showed that the method of Guimera and Amaral [28]
has the best performance because it can give the most
accurate module separation and highest M [30]. We therefore
used this method to separate modules in the yeast PIC and
PEC networks. To obtain the highest M, we used delicate
parameter settings in the simulated annealing algorithm. It
took a typical desktop computer ;3 d to separate a yeast PPI
network. The PIC network is separated into 26 modules with
a modularity of 0.6672, while the PEC network is divided into
22 modules with a modularity of 0.6583 (Table 1). The density
ratio, defined by the ratio of the number of within-module
edges to the number of between-module edges, is only slightly
lower for PEC than for PIC networks (Table 1).
A random network may also have a nonzero modularity by

chance or due to certain degree distributions [31]. Also, the
modularity values of two networks with different sizes or
different average degrees cannot be compared directly [31].
Thus, to measure the modularity of a network, we compare it
with a random network of the same size and same degree
distribution, which is generated by the local rewiring
algorithm [32]. To speed up the computation, we used
moderate parameter settings and faster runs (;4 h per
network) to estimate modularity. For the yeast PIC network,

Figure 1. An Example of a Small Network with a Modular Structure (A)

and Its Randomly Rewired Network (B)

Different colors show different modules separated by Guimera and
Amaral’s algorithm [28]. The modularity is 0.5444 for the network in (A)
and 0.2838 in (B), and the scaled modularity is 15 for the network in (A)
and 0 in (B).
doi:10.1371/journal.pcbi.0030107.g001
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Author Summary

Many complex networks are naturally divided into communities or
modules, where links within modules are much denser than those
across modules. For example, human individuals belonging to the
same ethnic groups interact more than those from different ethnic
groups. Cellular functions are also organized in a highly modular
manner, where each module is a discrete object composed of a
group of tightly linked components and performs a relatively
independent task. It is interesting to ask whether this modularity in
cellular function arises from modularity in molecular interaction
networks such as the transcriptional regulatory network and
protein–protein interaction (PPI) network. We analyze the yeast
PPI network and show that it is indeed significantly more modular
than randomly rewired networks. However, we find little evidence
that the structural modules correspond to functional units. We also
fail to observe any evolutionary conservation among yeast, fly, and
nematode PPI modules. We then show by computer simulation that
modular structures can arise during network growth via a simple
model of gene duplication, without natural selection for modularity.
Thus, it appears that the structural modules in the PPI network may
have originated as an evolutionary byproduct without much
biological significance.

Modularity of Protein Networks



the modularity for 500 randomly rewired networks has a
mean of 0.5466 and a standard deviation of 0.0023, while the
real PIC network has a modularity of 0.6555 under this
parameter setting (Figure 3A). We use z-score, or the number
of standard deviations higher than the random expectation to
measure the deviation of the modularity of a network from its
random expectation. This z-score, referred to as the scaled
modularity to differentiate it from z-scores of other proper-
ties, is (0.6555 – 0.5466)/0.0023 ¼ 47 for the PIC network.
Under the same parameter setting, the modularity for the
real PEC network is 0.6481. The modularity for 500 randomly
rewired PEC networks has a mean of 0.5764 and a standard
deviation of 0.0027 (Figure 3B). In other words, the scaled
modularity for the PEC network is (0.6481� 0.5764)/0.0027¼
27. Thus, both PIC and PEC networks show significantly
greater modularity than randomly rewired networks. As
expected, the scaled modularity of PIC is much greater than
that of PEC. This difference is largely due to the exclusion of
protein complex data in the PEC network. In fact, when we

randomly removed 10% of edges from the PIC network, the
scaled modularity decreased only slightly (from 47 to 42).
Given the substantive difference in scaled modularity, PIC

and PEC networks should also differ in the compositions of
their modules. We measured the similarity in module
composition between different separations of the same
network (or shared nodes in the case of different networks)
by the normalized mutual information (NMI) index [30]. A
higher NMI indicates a higher similarity in module compo-
sition. The NMI between the PIC network and PEC network is
0.35. As a control, we measured the NMI between the PIC
network and a reduced network generated by random
removal of 10% of the edges in PIC. This control NMI has a
mean of 0.41 and a standard deviation of 0.018 (from 200
replications). Thus, the NMI between PIC and PEC is
significantly lower than that between PIC and its randomly
reduced networks (p , 0.002) (Figure 3C). Because simulated
annealing is a stochastic algorithm, different runs may yield
slightly different partitions. We thus separated modules in
PIC and PEC networks with different random seeds 50 times,
and these replications confirmed that the above finding of a
lower NMI between PIC and PEC than by chance is genuine (p
, 10�10, Mann-Whitney U test). Together, these analyses
demonstrate that the inclusion of interactions inferred from
protein complexes in the PPI network has a great impact on
network modularity.

Are Structural Modules Functional Units?
Because we identified the PPI modules based entirely on

the topology of the network, it is important to ask whether
such structural modules correspond to functional units. To
address this question, we utilized the functional annotation of
yeast genes in the CYGD database [33]. At the highest level of
annotation, each yeast gene is classified into one or several of
17 functional categories (Figure 4). If the structural modules
correspond to functional units, we should expect a non-
random among-module distribution of the genes of a given
functional category. For example, in the PIC network, there
are 361 genes belonging to functional category A (cell type
differentiation; see Figure 4A). A v2 test showed that these
genes are not randomly distributed across the 26 PIC modules
(v2¼ 317, df¼ 25, p , 10�5; see the circles in Figure 4A). This
test was conducted for each functional category, and almost
all functional categories showed significant nonrandom
distributions across PIC modules (even after considering
multiple testing). In contrast, the PEC network has fewer
functional categories showing significant nonrandom distri-
butions. This trend is particularly evident at the highest level
of statistical significance (six categories in PEC versus 14 in
PIC) (Figure 4B).

Table 1. Summary Statistics of the Giant Component of the Protein Interaction Networks

Network Number of

Proteins

Number of

Interactions

Average

Degree

Number of

Modules

Average Number

of Proteins per Module

Density

Ratio

Modularity Scaled

Modularity

Yeast PIC network 3,885 7,260 3.74 26 149 2.60 0.6672 47

Yeast PEC network 3,695 6,403 3.47 22 168 2.52 0.6583 27

Fly PPI network 6,279 10,094 3.22 27 232 2.99 0.6851 29

doi:10.1371/journal.pcbi.0030107.t001

Figure 2. PPI Network Representations of Protein Complexes

(A) A hypothetical protein complex. Binary protein�protein interactions
are depicted by direct contacts between proteins. Although five proteins
(A, B, C, D, and E) are identified through the use of a bait protein (red),
only A and D directly bind to the bait.
(B) The true PPI network topology of the protein complex.
(C) The PPI network topology of the protein complex inferred by the
‘‘matrix’’ model, where all proteins in a complex are assumed to interact
with each other.
(D) The PPI network topology of the protein complex inferred by the
‘‘spoke’’ model, where all proteins in a complex are assumed to interact
with the bait; no other interactions are allowed.
doi:10.1371/journal.pcbi.0030107.g002
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If structural modules correspond to functional units, we
also expect that the majority of genes in a module belong to
only one or a few functional categories. In other words, each
module should have one or a small number of overrepre-
sented functional categories. Testing this prediction is not
easy because one gene may belong to multiple functional
categories. We thus used computer simulations. For example,
module 1 of the PIC network comprises 227 proteins, 92 of
which belong to functional category A (Figure 4A). We
randomly chose 227 genes from the network and counted the
number of category A genes. We repeated this procedure
100,000 times to estimate the probability that the number of
category A genes in the randomly picked 227 genes is equal to
or greater than 92. This probability is indicated with different
colors in the small squares of Figure 4A. Because 17
functional categories were tested for each module, to control
for multiple testing we used 10�3 as the cutoff for statistical
significance for each category. It can be seen that in 16 (62%)
of the 26 PIC modules, at least one functional category is
enriched. In comparison, only 7 (32%) of the 22 PEC modules
have at least one enriched functional category. The above
difference between PIC and PEC modules is statistically
significant (p , 0.05, v2 test).
The two analyses above revealed nonrandom distributions

of protein functions across structural modules. To quantita-
tively measure how well structural modules correspond to
functional units, we used a correlation analysis. For a pair of
proteins from a PPI network, we ask if they belong to the
same module (co-membership) and if they belong to the same
functional category (co-functionality). Two proteins are
considered to possess co-functionality as long as they share
at least one function. If structural modules correspond well to
functional units, protein pairs within the same module should
share function whereas protein pairs across modules should
not share function. In other words, we should observe a
strong positive correlation between co-membership and co-
functionality of protein pairs. We enumerated all possible
protein pairs and found the correlation to be statistically
significant in both PIC (p , 10�300) and PEC (p , 10�100)
networks. However, the level of correlation is extremely low
in both PIC (r2¼ 0.0813%) and PEC (r2¼ 0.00675%) networks
(Figure 4C and 4D), indicating that less than 0.1% of the
variance in protein-pair co-membership is explainable by co-
functionality. We also found that the r value for PEC is
significantly lower than that for PIC when we repeated
module separations 50 times with different random seeds (p
, 10�5, Mann-Whitney U test). The observation of a low level
of correlation is not due to the presence of many multifunc-
tional proteins, because the low correlation is also observed
even when we consider only monofunctional proteins (r2 ¼
0.0384% and p , 10�37 for PIC; r2 ¼ 0.0331% and p , 10�30

for PEC). Hence, although there is significant non-random-
ness in protein functions across structural modules, the
correspondence between structural modules and functional
units is extremely weak in both PIC and PEC networks,
especially in the latter.
We also examined the cellular locations of each protein [34]

and tested whether members of a structural module tend to
be co-localized, as would be expected if structural modules
represent functional units. Our results were generally similar
to those for functional categories. Although some nonrandom
patterns were observed, the correspondence between struc-

Figure 3. The Modularity of Yeast PIC and PEC Networks Compared with

That of Their Randomly Rewired Networks, and the Similarity of Module

Compositions between PIC and PEC Networks Compared with the

Random Expectation

(A,B) The observed modularity is indicated by the vertical arrow. The bars
show the frequency distribution of the modularity from 500 randomly
rewired networks. Scaled modularity, or the difference between the
modularity of a real network and the expected modularity of a randomly
rewired network in terms of the number of standard deviations, is
indicated at the top area of the panel.
(C) The observed similarity between PIC and PEC networks, measured by
NMI, is indicated by the vertical arrow. The bars show the frequency
distribution of the NMI between PIC and 200 reduced networks (by
random removal of 10% edges from the PIC network). The result shows
that the difference between PEC and PIC is not simply because the PEC
network is 10% smaller than the PIC network.
doi:10.1371/journal.pcbi.0030107.g003
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tural modules and cellular locations is extremely weak in both
PIC and PEC networks, especially in the latter (Figure S1).

Are Structural Modules Evolutionarily Conserved?
If a structurally defined PPI module represents a functional

unit, the composition of the module should be evolutionarily
conserved. To test this prediction, we applied the same
module separation algorithm to the fruit fly (Drosophila
melanogaster) PPI network, which was constructed from binary
PPIs obtained in high-throughput Y2H experiments [35].
Because the fly data do not contain any interactions inferred
from protein complexes, we expect that the fly PPI network
behaves more similarly to the yeast PEC network than to the
PIC network. We thus examine the evolutionary conservation
of modular structures between the yeast PEC network and the
fly network.

We separated the fly network into 27 modules, with a
modularity of 0.6851 and a scaled modularity of 29 (Table 1).
Hence, the scaled modularity of the fly network is comparable

to that of the yeast PEC network (27). There are 691
orthologous proteins between the giant component of the
yeast PEC network and that of the fly network. We here again
use NMI to measure the similarity in module compositions
between two networks. The NMI value between the yeast PEC
and fly PPI networks is 0.14. If the modular structures are
evolutionary conserved between the two networks, the above
NMI value should be significantly greater than that between
the actual fly network and a randomly separated yeast
network. We randomly separated the yeast PEC network into
26 modules by conserving the actual module sizes and then
computed NMI between the real fly modules and the
randomly separated yeast modules. To make this comparison,
we repeated this process 10,000 times and obtained the
frequency distribution of NMI (Figure 5A). The observed NMI
between the real fly and real yeast networks falls in the
central part of the distribution, indicating that the yeast and
fly modules are no more similar to each other than by chance

Figure 4. Lack of Obvious Correspondence between Structural Modules and Functional Units

(A,B) Each functional category is indicated by a letter (A to Q). In parentheses next to the letter is the percentage of proteins in the network that belong
to that functional category. Note that one protein may belong to more than one category. The circles next to the grid show the statistical significance of
nonrandom distributions of genes of the same functional categories across modules. Each small square in the grid shows the statistical significance of
enrichment of a particular function in a module. For the circles and squares, significance levels are indicated by different colors.
(C,D) Show the correlation between co-membership in structural modules and co-functionality for all pairs of proteins in the PIC and PEC networks,
respectively. The circle size is proportional to the number of protein pairs. The line shows the linear regression and r is the correlation coefficient.
doi:10.1371/journal.pcbi.0030107.g004
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(p . 0.6) and revealing a complete lack of evolutionary
conservation in PPI modules between the two species.

Because modular structures are often hierarchically or-
ganized [7], it is possible that a low level of structure is
evolutionarily conserved despite the lack of conservation at
the whole-module level. Pairwise relationships between
proteins represent the lowest possible structure in the PPI
network. We invented a conservation index for pairs of
proteins (CIP). Between species X and Y, CIP is defined as the
probability that the Y orthologs of two X proteins belonging
to the same module in X also belong to the same module in Y.
CIP is 0.048 between the yeast and fly, which is not
significantly different from the expectation derived by
comparison of the fly network to a random separation of
the yeast network (p . 0.6; 10,000 simulations; Figure 5B).
Thus, even at the lowest structural level, yeast and fly modules
are not evolutionarily conserved. Note that CIP measures the
conservation of co-membership in a module between two
proteins, regardless of whether these two proteins interact
with each other. CIP does not measure the conservation of
PPIs. If two yeast proteins engage in a PPI and their
respective fly orthologs also engage in a PPI, these two PPIs
are referred to as orthologous PPIs [36]. Between the yeast
PEC and fly PPI networks, there are 45 orthologous PPIs. In
comparison, between the fly network and 1,000 randomly
rewired yeast networks (with the degree of each node
unchanged), there are only 0.58 orthologous PPIs on average
(standard deviation ¼ 0.75). Thus, orthologous PPIs are
evolutionarily conserved between the two species.

We also examined the evolutionary conservation of
structural modules between yeast and the nematode Caeno-
rhabditis elegans. Although the PPI data for C. elegans are highly
incomplete, with only 2,387 proteins and 3,825 interactions in
the giant component, the results we obtained (Figure S2) are
similar to those from the comparison between yeast and fruit
fly networks.

Does Participation in Different Modules Affect the
Evolutionary Rate of a Protein?

If structural modules represent functional units, proteins
with links to many modules should be evolutionarily more
conserved than those with links largely within a module,

because multifunctional or pleiotropic proteins tend to be
conserved [37,38]. Guimera and Amaral [28] defined the
participation coefficient of a node by PC = 1 � RN

i¼1 (ki/k)
2,

where k is the degree of the node, ki is the number of links
from the node to any nodes in module I, and N is the total
number of modules. A high PC indicates that a node
participates in the functioning of many modules. These
authors found that the propensity for an enzyme gene to be
lost during evolution is negatively correlated with the PC of
the enzyme in the metabolic network [28]. Such an
observation strongly suggests that the modular structure in
the metabolic network has biological significance. It is
therefore useful to examine PC for the proteins in the PPI
network. It has previously been debated whether the degree
of a protein in the PPI network influences its evolutionary
rate [39–44]. Because past studies did not exclude PPIs
inferred from protein complexes, it is possible that some of
previous results were due to artifacts of such inferences.
Separate analyses of the PIC and PEC networks may help to
answer this question.
We first measured the rate of protein evolution by the

number of nonsynonymous nucleotide substitutions per
nonsynonymous site (dN) between orthologous genes of yeast
species S. cerevisiae and S. bayanus. We chose this species pair
because their divergence level is appropriate for obtaining
informative and reliable dN estimates [45]. We found that the
dN of a protein is significantly negatively correlated with its
total degree in the yeast PIC network (p , 0.001; Table 2), but
not with its degree in the PEC network (p . 0.4). Thus, when
protein complexes are not considered, there is no significant
correlation between dN and degree. When we separated the
links of a node into within-module links and between-module
links, we found a significant correlation between dN and the
within-module degree (i.e., the number of within-module
links) in the PIC network. This correlation is again absent in
the PEC network, suggesting that the correlation between dN
and within-module degree is largely attributable to protein
complexes. In neither the PIC nor the PEC network did we
find a significant correlation between dN and the between-
module degree (i.e., the number of links across modules).
Similar results were found between dN and PC of a protein
(Table 2). Furthermore, even when we divided the proteins

Figure 5. Lack of Evolutionary Conservation between the Yeast and Fruit Fly PPI Modules

(A) The observed NMI between yeast and fruit fly modules is not significantly different from chance expectation. The bars show the distribution of NMI
between yeast and fly modules when the yeast modules are randomly separated.
(B) The observed CIP (conservation index for pairs of proteins) between yeast and fruit fly modules is not significantly different from chance expectation.
The bars show the distribution of CIP between yeast and fly modules when the yeast modules are randomly separated.
doi:10.1371/journal.pcbi.0030107.g005
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into different topological roles by their PCs and degrees, as
was done by Guimera and Amaral for the metabolic network,
no significant correlation between these roles and dN was
observed (Table 2, bottom two rows).

We also measured the rate of protein evolution by the
propensity for gene loss (PL) across 12 fungal species whose
draft genome sequences are available. The results obtained
for PL are qualitatively similar to those for dN (Table 2).
Taken together, there is no observable impact of the within-
module, between-module, or total PPI degree of a protein on
its evolutionary rate when protein complexes are excluded.
Furthermore, if structural modules correspond to functional
units, a protein with higher participation in various modules
should be more pleiotropic (or multifunctional) and thus
should be more conserved in evolution [37,38]. However, we
found no impact of the extent of participation in various
modules on the evolutionary rate of a protein. This negative
result is consistent with the idea that structural modules do
not correspond to functional units.

The growth rate of a yeast strain with a gene deleted can
measure the importance of the gene under the tested
condition. Growth rate is known to be negatively correlated
with the PPI degree of a gene [39,46–48]. We confirmed this
result in both PIC and PEC networks, although the
significance is only marginal in the latter (Table 2). Interest-
ingly, for both networks, this significance is also found for
within-module degrees, but not for between-module degrees.
This phenomenon may arise because the between-module
degree is often much smaller (mean ¼ 1.04 for PIC and 0.98
for PEC) than the within-module degree (mean¼ 2.70 for PIC
and 2.48 for PEC) and thus contributes less to the total degree
of a node. Growth rate also contains the information of gene
essentiality, as essential genes have zero growth rates whereas
nonessential genes have positive growth rates. Thus, similar
results are obtained when we analyze the genes by gene
essentiality rather than by growth rate.

Can Modularity Originate as an Evolutionary Byproduct?
Because both PIC and PEC networks have significantly

higher modularity than that of their randomly rewired
networks but the identified modules exhibit little biological
significance, it is puzzling how the modular structure could
have arisen in evolution. Earlier studies suggested that

modularity can originate by gene duplication [49,50]. How-
ever, in these studies modularity is defined by hierarchical
clustering or a clustering coefficient, which lacks an objective
function to identify the best module separation and to
compute network modularity. We thus conducted computer
simulations to examine whether the network modularity as
defined in this paper can arise from evolution by gene
duplication. Because duplication–divergence models can
generate many network features similar to real PPI networks
[50,51] and have clear biological bases [52–54], we simulated
network growth by a duplication–divergence model starting
from a pair of connected nodes. Briefly, at each step, a node
(A) is randomly picked and duplicated along with all its edges
to generate its paralogous node (A9). We refer to two edges,
one from A and the other from A9, as a pair of edges if they
both end at the same third node. To simulate functional
divergence after gene duplication, we randomly remove one
edge from each pair of edges, until A and A9 share 90% of
edges. This duplication–divergence process was repeated 300
times to generate a network of 302 nodes. The resulting
network has 212 nodes in its giant component (Table S1, first
row). We found the modularity and scaled modularity of this
simulated network to be 0.6717 and 29, respectively (Figure 6;
Table S1). We conducted ten simulation replications, and all
cases show similarly high modularity and scaled modularity
that are comparable with those of the yeast and fly PPI
networks (Table S1). In fact, we found that many different
combinations of simulation parameters can give rise to
modular networks, and the specific model of evolution by
gene duplication (e.g., the subneofunctionalization model
[52]) does not appear to matter much to the result of high
modularity (unpublished data). Although self-interactions can
be biologically important, they are not considered in our
simulation because such interactions are disregarded in the
module separation algorithm of Guimera and Amaral [28].

Discussion

In this work, we conducted a comprehensive analysis of
modular structures in yeast protein interaction networks.
Rather than lumping binary PPIs directly observed in
experiments with those indirectly inferred from protein
complexes, we separately analyzed the PIC network, which

Table 2. Relationship between the Degree of a Protein and Its Importance to Growth or Evolutionary Rate

Degree PIC Network PEC Network

dN Propensity for

Gene Loss

Growth Rate of Single-

Gene Deletion Strain

dN Propensity for

Gene Loss

Growth Rate of Single-

Gene Deletion Strain

Total degree �0.06a (,0.001)b �0.03 (0.055) �0.05 (0.004) �0.01 (0.464) �0.01 (0.507) �0.04 (0.057)

Within-module degree �0.07 (,0.001) �0.04 (0.014) �0.07 (,0.001) �0.03 (0.104) �0.02 (0.218) �0.04 (0.023)

Between-module degree 0.00 (0.866) �0.01 (0.594) �0.02 (0.224) 0.01 (0.479) �0.01 (0.732) �0.02 (0.315)

Participation coefficient 0.01 (0.545) 0.00 (0.835) �0.01 (0.524) 0.03 (0.143) 0.00 (0.934) �0.02 (0.428)

Binned participation coefficient

for nonhub proteins

0.00 (0.830) 0.00 (0.786) �0.03 (0.110) 0.02 (0.290) 0.00 (0.967) �0.03 (0.053)

Binned participation coefficient

for hub proteins

0.23 (0.317) 0.00 (1.000) 0.00 (1.000) 0.05 (0.826) �0.44 (0.040) �0.23 (0.308)

aSpearman’s rank correlation coefficient.
bp-Value of Spearman’s rank correlation.
doi:10.1371/journal.pcbi.0030107.t002.
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includes inferred binary PPIs, and the PEC network, which
excludes inferred binary PPIs. This distinction is necessary
because inferences of binary interactions from protein
complexes introduce errors to the network structure, which
hamper accurate measurement of network modularity. Given
that protein complexes likely represent true (functional)
modules in the network, the unanswered question is whether
the network structure is still modular when the PPIs inferred
from protein complexes (;10% in our PIC network) are
removed. We found that both PIC and PEC networks are
significantly more modular than expected by chance, the
scaled modularity of the PIC network is substantively greater
than that of the PEC network, and the module compositions
of the two networks are significantly different. The latter two
results are expected, because the current models for inferring
binary PPIs from protein complexes tend to increase
modularity. Consistent with these results, we found that the
fruit fly PPI network, which is entirely based on experimen-
tally determined binary PPIs, has a comparable scaled
modularity to that of the yeast PEC network.

In spite of the presence of significant modularity in the
yeast PEC network, the identified structural modules do not
appear to correspond to functional units. This is reflected in
three analyses. First, for some functional categories, their
member genes are distributed randomly among structural
modules. Second, for most structural modules, there are no
enriched functional categories. Third, for protein pairs, the
correlation (r2) between co-membership in a module and co-
functionality, although significantly greater than zero, is lower
than 0.1%. Our results contradict several previous studies
which claimed that PPI modules correspond well to functional

units [8–16]. This difference is in part owing to the inclusion
of protein complexes in these early studies. Furthermore,
some studies utilized more than the PPI network topology in
separating modules. For example, Tornow and Mewes
considered gene co-expression patterns [15]. Although such
practices may help identify functional modules, they do not
objectively evaluate whether the PPI network itself has a
biologically meaningful modular structure. Many studies also
suffered from the lack of an efficient algorithm to identify the
maximum modularity, resulting in suboptimal modular
separations with many small modules. For example, Pereira-
Leal and colleagues [13] separated the yeast PPI network into
1,046 modules, with an average size of eight proteins per
module. A small module may appear to have a better
functional correspondence than a large module, because the
chance probability of functional similarity among a few
proteins is considerably greater than that among a large
number of proteins. Because the module separation algorithm
we used here is superior to the earlier algorithms [30], under
the same definition of modularity our results are expected to
be more reliable than those based on inferior algorithms.
Although many authors have claimed that PPI networks are

modular with significant functional correspondence, none
have examined the evolutionary conservation of PPI modules.
By comparing the yeast PEC network and fly PPI network, we
found that PPI modules are not more conserved than the
chance expectation at the whole-module level. Furthermore,
even at the protein–pair level, the PPI modules are not more
conserved than by chance. These findings are consistent with
our observation of minimal correspondence between yeast
PEC modules and functional units. Interestingly, PPIs are

Figure 6. A Random Network Generated by Gene Duplication Followed by Subfunctionalization Shows High Modularity (Modularity¼ 0.6717, Scaled

Modularity ¼ 29)

Different colors represent different modules identified by Guimera and Amaral’s algorithm [28].
doi:10.1371/journal.pcbi.0030107.g006

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1071018

Modularity of Protein Networks



found to be conserved between the yeast and fly, suggesting
that the lack of conservation of modules cannot be trivially
explained by the lack of conservation of individual inter-
actions in the network.

The participation coefficient of a node measures the extent
of the distribution of links from the node to all modules. If
PPI modules correspond to functional units, proteins with
high participation coefficients should have higher degrees of
pleiotropy (or multifunctionality) and be more conserved
than those with low participation coefficients, because
pleiotropic or multifunctional proteins are known to be
evolutionarily conserved [37,38]. This correlation was not
observed in either the PIC or PEC network when either dN or
PL was used as a measure of a protein’s evolutionary rate.
Thus, the results again point to the lack of correspondence
between PPI modules and functional units.

Taken together, our analyses strongly suggest that the yeast
PEC network has a modular structure, which, nevertheless,
lacks detectable biological significance. One may argue that
the PEC network actually contains biologically important
structural modules, but such modules are difficult to identify
due to the incompleteness and inaccuracy of current PPI
data. While this possibility cannot be entirely ruled out, we
note that the PPI data we used here are generally regarded as
of relatively high quality [27]. Furthermore, according to
recent estimates, our PPI data should cover 25% to 50% of all
PPIs in the yeast interactome [24,55]. Several observations,
such as the negative correlation between the growth rate of a
single-gene deletion yeast strain and the PPI degree of the
gene (Table 2), suggest that the current PPI data contain
biologically meaningful signals. An alternative explanation of
the PPI modularity that lacks biological significance is that
modularity may be an evolutionary byproduct. Inspired by
earlier studies [49,50], we demonstrate by computer simu-
lation that a simple model of gene duplication–divergence
can generate networks with a scaled modularity comparable
to that observed in the yeast and fly PPI networks. This result
suggests that the modularity in the PPI networks may indeed
have no biological significance and has not been under
selection. Because gene duplication is the primary source of
new genes and new gene functions [56], our simulation is
biologically relevant. It is possible that evolutionary processes
other than gene duplication also contributed to the origin of
network modularity. For example, if assortative links (i.e.,
links between nodes of similar degrees) are disfavored, as has
been observed in PPI networks [57,58], modularity may arise.
PPI networks also have clustering coefficients higher than
chance expectation, meaning that two proteins that both
interact with the third one also tend to interact with each
other [3]. Natural selection for higher clustering coefficients
for some nodes of the network may also raise modularity.

It has been intensely debated to whether there is a negative
correlation between the PPI degree of a protein and the
evolutionary rate (dN) of the protein [39–44]. We found this
correlation to be statistically significant for the PIC network,
but not significant for the PEC network. These observations
suggest that the significant correlation is simply due to lower
evolutionary rates for proteins involved in protein complexes
than those not involved in complexes. Our result is consistent
with a recent study reporting the lack of a significant
correlation when PPIs were curated from literature [39].
Because proteins involved in complexes tend to have excep-

tionally high degrees as a result of indirect inference of PPIs by
the matrix or spoke model, our result is also consistent with
the finding that only the most prolific interactors tend to
evolve slowly [44]. Recently, Han and colleagues [59] classified
hubs (i.e., high-degree nodes) in the PPI network into party
hubs and date hubs. The former are those proteins whose
interaction partners have similar expression profiles across
various conditions, whereas the latter are those whose partners
have different expression profiles. Party hubs have been
interpreted as proteins that function within a biological
process (or a functional module), whereas date hubs are
thought to link different functional modules. Fraser reported
that party hubs are evolutionarily more conserved than date
hubs, and suggested that this pattern may reflect a tendency
for evolutionary innovations to occur by altering the proteins
and interactions between rather than within modules [60]. A
closer examination of the party hubs and their partners reveals
that the majority of them form protein complexes, whereas
date hubs and their partners do not form complexes. Thus,
Fraser’s observation is explainable by a lower evolutionary rate
of proteins involved in complexes than those not in
complexes, without invoking additional evolutionary forces.
PPI networks have been subject to many structural, func-

tional, and evolutionary analyses in the past few years. Our
results show that removing a small fraction (;10%) of PPIs that
are inferred from protein complexes can have a substantial
effect on the analysis. This observation raises a warning about
many results regarding PPI networks, because they have usually
been based on the PIC network that contains many potentially
false PPIs inferred for members of protein complexes. As such
false interactions are not randomly distributed in the network,
their potential detrimental effect is particularly alarming. The
PIC data we used do not contain high-throughput protein
complex data such as those in [21,22]. In many PPI databases,
such as BIND [61], DIP [62], and the new literature-curated
dataset [63], about half or more of the PPIs are inferred from
protein complexes. The recent genome-wide surveys of all
protein complexes in the yeast added even more complexes to
the PPI data. Inclusion of inferred PPIs from these complexes
would affect the network structure evenmore.We caution that
use of such PPI data may produce misleading results.
Systems biology is a nascent field with many hopes as well

as much hype [64]. It has been of great interest to identify
nonrandom topological structures such as motifs and
modules in molecular networks [5,28,65]. Such nonrandom
patterns are often interpreted as having functional signifi-
cance and having been particularly favored by natural
selection [28,66,67]. While this may be true in many cases, a
nonrandom network structure can also originate as a
byproduct of other processes without having its own
function. Recent studies suggested that motifs in transcrip-
tional regulatory networks do not represent functional units
and are not subject to natural selection [68]. Rather, random
gene duplication and mutation could give rise to motifs [69].
A recent study even suggested that the high abundance of
feed forward loops in regulatory networks could be an
evolutionary byproduct [70]. Our results add yet another
network structure that is widely believed to be of great
biological importance to this growing list of potential
evolutionary byproducts. That being said, the modular
organization of cellular functions is real, and whether this
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organization is also an evolutionary byproduct or has been
actively selected for remains to be scrutinized.

Materials and Methods

The yeast, fly, and nematode PPI networks. The budding yeast (S.
cerevisiae) PPI data were from the MPact dataset [27] of MIPS (ftp://
ftpmips.gsf.de/yeast/PPI/PPI_18052006.tab), which contains human-
curated high-throughput and small-scale binary interactions directly
observed in experiments, as well as binary interactions inferred from
high-confidence protein complex data. Only nonself physical
interactions were considered. After excluding PPIs involving mito-
chondrial genes, we built the PPI network named PIC (PPI including
protein complexes). The giant component of the PIC network is
composed of 3,886 proteins linked by 7,260 nonredundant inter-
actions. To build the PEC (PPI excluding protein complexes) network,
we retained only those binary interactions in the PIC network that
had direct experimental evidence. The giant component of the PEC
network contains 3,696 proteins linked by 6,403 interactions.

The fruit fly (Drosophila melanogaster) PPI data came from [35] (http://
www.bme.jhu.edu/labs/bader/publications/giot_science_2003/
flyconf.txt). A moderate confidence level (0.25) was chosen to
generate the fly PPI network with a comparable average degree to
the yeast PEC network. In total, the giant component of the fly PPI
network contains 6,280 proteins linked by 10,210 interactions, all
generated by Y2H experiments.

The nematode (C. elegans) PPI data were from [71] (http://vidal.dfci.
harvard.edu/interactomedb/WI5.txt). Only the PPIs identified by Y2H
experiments are used. In total, the nematode PPI network contains
2,624 proteins and 3,967 interactions, of which 2,387 proteins and
3,825 interactions are in the giant component.

Functional categories of yeast proteins. We used the yeast
functional annotations in the CYGD database [33] (ftp://ftpmips.gsf.
de/yeast/catalogues/funcat/funcat-2.0_data_18052006), considering
only the highest level of annotation. Functional categories containing
,15 proteins and the category of unknown functions were removed.
The cellular localization data for yeast proteins were from [34] (http://
yeastgfp.ucsf.edu/allOrfData.txt). Similarly, ambiguous localizations
and localizations with ,15 proteins were not used.

Evolutionary conservation of modules and proteins. The list of
orthologous genes between the yeast and fly was provided by He and
Zhang [46], who used reciprocal best-hits in BLASTP searches to define
gene orthology (E-value cutoff¼10�10). The same method was used to
identify the yeast and nematode orthologous genes. The dN values
between S. cerevisiae and S. bayanusorthologous geneswere computedby
a likelihoodmethod andobtained fromZhang andHe [45].Weused the
parsimonyprinciple to infer thePL (i.e., thenumberof gene loss events)
for each of the S. cerevisiae genes throughout the knownphylogeny of 12
fungi. The protein sequences predicted from the complete genome
sequences of the 12 species were downloaded from ftp://genome-ftp.
stanford.edu/pub/yeast/data_download/sequence (S. cerevisiae, S. baya-
nus, S. paradoxus, and S. mikatae), ftp://ftp.ncbi.nih.gov/genomes/Fungi
(Candida glabrata, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces
hansenii, and Yarrowia lipolytica), http://www.broad.mit.edu/annotation/
genome/neurospora/Home.html (Neurospora crassa), http://www.broad.
mit.edu/seq/YeastDuplication (K. waltii), and http://www.sanger.ac.uk/
Projects/S_pombe/ (Schizosaccharomyces pombe). A S. cerevisiae gene is
considered to be lost in speciesX if it does not hit any genes inX (Evalue
cutoff¼10�1) but has a hit in at least one species that is more distantly
related to S. cerevisiae than X is related to S. cerevisiae. Here X refers to
one of the ten fungi that are neither S. cerevisiae nor S. pombe, the latter
being the most distantly related species to S. cerevisiae in our study.

The growth rates of the yeast single-gene deletion strains were
originally generated by the Stanford Genome Technological Center
[72], and we here used the dataset curated and provided by Zhang and
He [45].

Normalized mutual information. NMI was described in detail in
[30]. Briefly, let us define the matrix N, where each row corresponds
to a module in separation X and each column corresponds to a
module in separation Y. Each member Nij in the matrix represents the

number of nodes in the ith module of X that appear in the jth module
of Y. The calculation of NMI is given by

NMIðX;YÞ ¼
�2
XnX
i¼1

XnY
j¼1

Nijlog
NijN
Ni:N:j

� �

XnX
i¼1

Ni:log
Ni:

N

� �
þ
XnY
j¼1

N:jlog
N:j

N

� �

where nX and nY are the number of modules in module separation X
and Y, respectively. The sum over row i of matrix Nij is denoted Ni,
and the sum over column j is denoted Nj. If two module separations
are identical, the NMI between them reaches the maximum value of 1.

Data and program availability. Datasets used in this work and
computer programs made for the analyses can be downloaded from
http://www.umich.edu/;zhanglab/download.htm.

Supporting Information

Figure S1. Lack of Obvious Correspondence between Structural
Modules and Protein Cellular Locations

(A,B) Each cellular location is indicated by a letter (A to U). In
parentheses next to the letter is the percentage of proteins in the
network that belong to that cellular location. Note that one protein
may belong to more than one location. The circles next to the grid
show the statistical significance of nonrandom distributions of genes
of the same cellular locations across modules. Each small square in
the grid shows the statistical significance of enrichment of a
particular location in a module. For the circles and squares,
significance levels are indicated by different colors.
(C,D) Show the correlation between co-membership in structural
modules and co-localization in cellular components for all pairs of
proteins in the PIC and PEC networks, respectively. The circle size is
proportional to the number of protein pairs. The line shows the
linear regression and r is the correlation coefficient.

Found at doi:10.1371/journal.pcbi.0030107.sg001 (389 KB PDF).

Figure S2. Lack of Evolutionary Conservation between the Yeast and
Nematode PPI Modules

(A) The observed NMI between yeast and nematode modules is not
significantly different from chance expectation. The bars show the
distribution of NMI between the yeast and nematode modules when
the yeast modules are randomly separated.
(B) The observed CIP (conservation index for pairs of proteins)
between yeast and nematode modules is not significantly different
from chance expectation. The bars show the distribution of CIP
between the yeast and nematode modules when the yeast modules are
randomly separated.

Found at doi:10.1371/journal.pcbi.0030107.sg002 (253 KB PDF).

Table S1. Summary Statistics of the Giant Component in the Random
Networks Generated by the Duplication–Divergence Model

Found at doi:10.1371/journal.pcbi.0030107.st001 (75 KB PDF).
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