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CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation
and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria,
which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although
widely used, the current CpG island criteria incur significant disadvantages: (1) reliance on arbitrary threshold
parameters that bear little biological justification, (2) failure to account for widespread heterogeneity among CpG
islands, and (3) apparent lack of specificity when applied to the human genome. This study is driven by the idea that a
quantitative score of ‘‘CpG island strength’’ that incorporates epigenetic and functional aspects can help resolve these
issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic
states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector
machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA
attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the
epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate
the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an
open and transcriptionally competent chromatin structure. We extensively validate our results on independent
datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and
cell types, and we derive improved maps of predicted ‘‘bona fide’’ CpG islands. The mapping of CpG islands by
epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links
CpG island detection to their characteristic epigenetic and functional states. And it is superior to purely experimental
epigenome mapping for CpG island detection since it abstracts from specific properties that are limited to a single cell
type or tissue. In addition, using computational epigenetics methods we could identify high correlation between the
epigenome and characteristics of the DNA sequence, a finding which emphasizes the need for a better understanding
of the mechanistic links between genome and epigenome.

Citation: Bock C, Walter J, Paulsen M, Lengauer T (2007) CpG island mapping by epigenome prediction. PLoS Comput Biol 3(6): e110. doi:10.1371/journal.pcbi.0030110

Introduction

CpG islands are genomic regions characterized by an
exceptionally high CpG dinucleotide frequency [1–3]. In
humans, they are among the most important regulatory
regions, with functional roles in both normal and disease-
related gene expression [4,5].

Originally, CpG islands were discovered by virtue of an
epigenetic property, namely, the absence of DNA methyl-
ation: when the human genome was experimentally digested
with methylation-sensitive restriction enzymes, some ge-
nomic regions were cut into small fragments, while the bulk
of the genome remained uncut [6]. Since the restriction
enzyme (HpaII) used cuts DNA only at unmethylated CpG
dinucleotides, it was concluded that a small but significant
fraction of the genome is reproducibly unmethylated.

After a sample of these so-called HpaII tiny fragments had
been sequenced, it became obvious that they were highly GC-
rich and CpG-rich [3]. In an early computational analysis, this
observation was utilized to define such regions as CpG
islands, and a simple set of criteria was suggested to identify
them based on their DNA sequence alone [7]. According to
these so-called Gardiner-Garden sequence criteria, a genomic
region has to fulfill three conditions to classify as a CpG
island: (1) GC content above 50%, (2) ratio of observed-to-
expected number of CpG dinucleotides above 0.6, and (3)
length greater than 200 basepairs (bp). Because the amount of
sequence data strongly outnumbered the experimental data
available for DNA methylation, this definition quickly
replaced the original methylation-based concept.

Since their initial discovery, CpG islands have been subject
to extensive research. Today it is known that CpG islands
(according to the DNA sequence criteria mentioned above or
slightly modified variants) associate with more than three-
quarters of all known transcription start sites [8] and with
88% of active promoters identified in primary fibroblasts [9],
indicating that they bear important regulatory functions.
Furthermore, they are hot spots of specific histone modifi-
cations [10,11], they frequently bind ubiquitous transcription
factors such as SP1 [12], and they exhibit particularly
accessible chromatin structures [13]. For these reasons, CpG
islands have become indispensable for genome analysis and
annotation. For example, they play a fundamental role for
promoter prediction [14], and their use as candidate regions
for aberrant DNA methylation has contributed significantly
to our understanding of the epigenetic causes of cancer [15].
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However, the current sequence-based definitions of CpG
islands [7,16] incur several disadvantages, which hamper both
their theoretical and practical value. First, they are based on
three threshold parameters that lack a clear biological
justification. For example, it is unclear why 200 bp should
be the most appropriate minimum length to define CpG
islands, especially since even a random permutation of the
genome sequence would give rise to a substantial number of
CpG islands with this minimum length. A length threshold of
500 bp is also widely used, and its use was motivated by its
ability to exclude most Alu-repeat-associated regions [16], but
again, no systematic analysis or parameter selection method
has been applied to justify this particular value.

Second, current definitions are purely binary, i.e., a
particular region either qualifies as a CpG island or not.
This not only fails to account for the fact that CpG islands can
differ considerably in terms of their sequence composition
and epigenetic states [17], it can also lead to unintuitive
special cases. For example, even if a short CpG-rich region
fails to fulfill CpG island criteria on its own, the same region
may well fulfill the criteria after small and seemingly
unrelated changes of a few neighboring nucleotides. Thus,
the mapping of CpG islands is inherently unstable and
depends not only on the definition used but also on the exact
implementation of the mapping software. In contrast, the
introduction of a numerical score for CpG island strength
would allow distinguishing weak, intermediate, and strong
CpG islands, without the necessity of a fixed all-or-nothing
threshold.

Third, and most critically, sequence-based CpG island
criteria fail to distinguish between ‘‘bona fide’’ CpG islands—
which are typically unmethylated, serve as transcription
regulators, and exhibit an open and transcriptionally com-
petent chromatin structure—and CpG-rich regions lacking
these characteristics. More precisely, current CpG island
criteria seem to be sufficiently sensitive in the sense that they
detect most bona fide CpG islands in the human genome, but
their specificity is low, i.e., they give rise to a substantial

number of false positive classifications. For example, Yamada
et al. observed that almost a third of the putative CpG islands
analyzed showed significant DNA methylation [18], in contra-
diction to the original concept of CpG islands as unmethy-
lated regions.
To resolve the significant drawbacks of current sequence-

based CpG island criteria, it was suggested to abandon the
concept of CpG islands altogether and to replace it by direct
counting of CpG dinucleotides [19]. In this study, we propose
a less radical but arguably more viable strategy. Our approach
maintains the high sensitivity of current CpG island criteria,
but substantially improves their specificity, it introduces a
more biologically meaningful way of selecting thresholds, and
it accounts for the fact that CpG islands quantitatively differ
in their strength.
The fundamental concept of this study is to combine an

initial, sequence-based mapping of CpG islands with subse-
quent prediction of CpG island strength. CpG island strength
is expressed as a single quantitative score per CpG island,
summarizing its inherent tendency—across different cell
types and tissues—to exhibit an unmethylated, open, and
transcriptionally competent chromatin structure. It is calcu-
lated as a combination of epigenome predictions and
provides a measure for discrimination between bona fide
CpG islands and regions that are just CpG-rich but show no
evidence of the epigenetic and functional characteristics of
bona fide CpG islands. We evaluate the predicted CpG island
scores by comparison with large-scale experimental datasets
on DNA methylation and transcription initiation sites, since
absence of DNA methylation and presence of promoter
activity are regarded as characteristic of bona fide CpG
islands.
Figure 1 provides a schematic overview of our approach,

which is necessarily complex since we derive and benchmark
four different scores of CpG island strength using combina-
tions of large-scale epigenome datasets. From left to right, the
first step comprises preparation of seven training datasets,
based on pairwise overlaps between CpG island maps and
epigenome datasets. In the second step, a prediction model is
trained and its performance is estimated for each training
dataset. The resulting prediction models are then used to
score all CpG islands genome-wide. From these scores—in
step three—four CpG island scores are calculated. In step
four, a performance comparison on two large-scale evalua-
tion datasets shows that the ‘‘combined epigenetic score’’ is
the best indicator of CpG island strength and most predictive
of bona fide CpG islands. All training and testing in this study
is performed on Chromosomes 21 and 22 for reasons of data
availability. Predictions are calculated and validated on the
entire genome. The entire workflow as outlined in Figure 1
was repeated three times, for three widely used CpG island
maps. By comparing the results, we show that CpG island
strength predictions provide an improvement over each map,
and we are able to select the most appropriate setup for the
final maps of predicted bona fide CpG islands.

Results

Preparation of Traditional CpG Island Maps As the Basis
for Prediction
Our prediction of CpG island strength and mapping of

bona fide CpG islands started from traditional CpG island
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Author Summary

A key challenge for bioinformatic research is the identification of
regulatory regions in the human genome. Regulatory regions are
DNA elements that control gene expression and thereby contribute
to the organism’s phenotype. An important class of regulatory
regions consists of so-called CpG islands, which are characterized by
frequent occurrence of the CG sequence pattern. CpG islands are
strongly associated with open and transcriptionally competent
chromatin structure, they play a critical role in gene regulation, and
they are involved in the epigenetic causes of cancer. In this article
we make several conceptual improvements to the definition and
mapping of CpG islands. First, we show that the traditional
distinction between CpG islands and non-CpG islands is too harsh,
and instead we propose a quantitative measure of CpG island
strength to gradually distinguish between stronger and weaker
regulatory regions. Second, by genome-wide comparison of multi-
ple epigenome datasets we identify high correlation between
features of the genome’s DNA sequence and the epigenome,
indicating strong functional interdependence. Third, we develop
and apply a novel method for predicting the strength of all CpG
islands in the human genome, giving rise to an improved and more
accurate CpG island mapping.
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maps, which we derived by means of widely used sequence-
based CpG island criteria. This approach is unlikely to
significantly reduce the completeness of our mapping since
the original CpG island criteria [7] are regarded as highly
sensitive and there is no evidence that they miss a substantial
number of bona fide CpG islands.

The application of traditional CpG island finder algorithms
faces the problem of repetitive DNA in the genome. Some
evolutionarily recent repeat insertions are CpG-rich (e.g., Alu
elements) and could erroneously be identified as CpG islands
even though they most likely bear little regulatory function
[16]. Several methods have been suggested to address this
problem, but their efficacy has not been systematically
investigated. We therefore applied and compared three
widely used calculation methods: (1) repeat exclusion by
using strict thresholds for GC content (55%), CpG observed-
to-expected ratio (0.65), and CpG island length (500 bp) as
suggested by Takai and Jones [16]; (2) repeat exclusion by
combining the standard Gardiner-Garden thresholds [7] with
subsequent removal of all CpG islands that comprise less than
200 bp of nonrepetitive DNA; and (3) repeat exclusion by
applying the standard thresholds [7] to the repeat-masked
genome.

Using each of these methods, we derived a genome-wide
map of CpG islands. Method 1, which we refer to as TJU (for
‘‘Takai Jones unmasked’’), gave rise to 37,531 CpG islands
genome-wide. Method 2, which we refer to as GGF (for
‘‘Gardiner-Garden filtered’’), gave rise to 94,450 CpG islands

genome-wide. And method 3, which we refer to as GGM
(‘‘Gardiner-Garden masked’’), gave rise to 109,600 CpG
islands genome-wide. All three maps were processed in
parallel through most of this study.

Establishment of Training Datasets for CpG Islands
Strength Prediction
Absence of DNA methylation and presence of promoter

activity are regarded as characteristic of bona fide CpG
islands. Therefore, we hypothesized that computational
predictions of DNA methylation and promoter activity might
provide suitable scores of CpG island strength and thus
indicators for the genome-wide mapping of bona fide CpG
islands. In previous work focusing on human lymphocytes, we
showed that prediction of CpG island methylation is possible
with high accuracy based on the DNA sequence plus
additional information such as the DNA helix structure and
the distribution of repetitive DNA elements [20]. Our finding
has recently been independently confirmed for brain tissue
[21,22] and is expected to hold for a wide range of cell types
and tissues. Computational promoter prediction is a well-
studied topic and is also feasible with high accuracy across
different cell types and tissues (see Bajic et al. [14] and
references therein).
We therefore prepared training datasets for DNA methyl-

ation and promoter activity (calculation step 1 in Figure 1), to
be processed with our epigenome prediction pipeline (see
next section). Each training dataset was constructed by

Figure 1. Conceptual Overview

This figure outlines the workflow used in this study to derive quantitative scores of CpG island strength, and to evaluate their performance as predictors
of bona fide CpG islands. The arrows at the top describe the phases of the analysis, the cylinders correspond to input datasets (orange, blue, and brown
cylinders) and results datasets (grey and green cylinders), and the rectangular boxes represent major computational steps. The sigmas in the calculation
step 3 box stand for summation over the input. The figure is slightly simplified and focuses on a single CpG island map. In fact, the entire workflow was
performed separately for three CpG island maps that differ in the repeat-exclusion strategy used (TJU, GGF, and GGM), with subsequent benchmarking
of their performances (Figure 5).
doi:10.1371/journal.pcbi.0030110.g001
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identifying pairwise overlaps between the three CpG island
maps (Figure 1, orange cylinder) and experimental epige-
nome datasets on DNA methylation and promoter activity
(Figure 1, brown cylinder), giving rise to a set of positives (i.e.,
regions that exhibit characteristics of bona fide CpG islands)
as well as a set of negatives (i.e., regions that do not) for both
DNA methylation and promoter activity (Figure 1, grey
cylinders between calculation steps 1 and 2). For the
prediction of unmethylated versus methylated CpG islands,
training datasets were constructed using DNA methylation
data that Yamada et al. established for Chromosome 21q [18].
Similarly, for the prediction of CpG islands that show
evidence of promoter activity versus those that do not,
training datasets were constructed using the genome-wide list
of polymerase II preinitiation complex binding sites that Kim
et al. established for primary fibroblasts [9] (for consistency
with additional predictions that we report below, we
restricted the latter dataset to Chromosomes 21 and 22).

Construction of a General Pipeline for Epigenome
Prediction

Based on our experience with DNA methylation prediction
[20], we constructed a general epigenome prediction pipeline,
which performs calculation step 2 in the overview diagram
(Figure 1). Each prediction takes a training dataset as input
and performs three subsequent steps: calculation of predic-
tion attributes, performance estimation by cross-validation,
and genome-wide prediction. The outputs of the pipeline are
an overall performance estimate, a table of most predictive
attributes, and a predicted score for each CpG island
genome-wide.

More specifically, these steps are performed as follows. (1)
Prediction attributes are calculated: for each case in the
respective training dataset, the pipeline calculates 847
potentially predictive attributes from genome data. These
attributes belong to six groups: DNA sequence patterns,
repeat distribution, predicted DNA helix structure [23,24],
predicted transcription factor binding sites, genetic varia-
tion, and CpG island attributes (genes and gene-related
information are deliberately omitted to ensure that the
predictions are independent of manual curation expertise).
(2) Performance is estimated by cross-validation: using the
above attributes and the training data, the pipeline trains a
linear support vector machine to predict whether a CpG
island belongs to the set of positives or to the set of negatives.
Prediction performance is evaluated by calculating the
average correlation and accuracy over ten runs of a 10-fold

cross-validation. Furthermore, to understand which attrib-
utes contribute most significantly to high prediction per-
formance, two additional analyses are performed. First, the
support vector machine is trained not only on the combina-
tion of all attributes but also on each of the six attribute
groups separately. Second, Wilcoxon rank-sum tests are
calculated to identify the most significant of all 847 attributes.
On this basis, the optimal combination of attribute groups
can be selected (we use repeat distribution plus predicted
DNA helix structure plus CpG island attributes throughout
this study because these three attribute groups achieve high
prediction performance and capture complementary aspects
of the DNA). (3) CpG island scores are predicted genome-
wide: the linear support vector machine is trained on all
training data and is then applied to calculate a prediction
score between zero and one for all CpG islands genome-wide.
The resulting score describes the likelihood that a particular
CpG island belongs to the set of positives (i.e., regions that
exhibit characteristics of bona fide CpG islands) and is
therefore a potential indicator of CpG island strength.

CpG Island Strength Estimated by Predicted DNA
Methylation and Promoter Activity
Processing the training data for DNA methylation and

promoter activity through our epigenome prediction pipe-
line showed that the pipeline can distinguish with high
accuracy between unmethylated and methylated CpG islands
and, similarly, between CpG islands that exhibit evidence of
promoter activity (namely polymerase II preinitiation com-
plex binding sites) and those that do not (Tables 1, S1, and
S2). A closer inspection of the most predictive attributes
helps us to understand how this prediction performance is
achieved (Tables S3 and S4). First, unmethylated CpG islands
contain significantly fewer tandem repeats and segmental
duplications than their methylated counterparts. Second,
polymerase II preinitiation complex–bound CpG islands
overlap more frequently with highly conserved regions than
do unbound CpG islands. And third, both unmethylated and
polymerase II preinitiation complex–bound CpG islands are
highly enriched with CpG-rich sequence patterns and regions
of low predicted DNA rise (which is an important aspect of
DNA helix structure [23,24]). These results support the
hypothesis that the prediction score for DNA methylation
at CpG islands as well as the prediction score for polymerase
II preinitiation complex binding at CpG islands are both
suitable indicators of CpG island strength. We denote their
genome-wide prediction values derived by the epigenome

Table 1. Prediction Performance for DNA Methylation and Promoter Activity at CpG Islands

CpG Island Map Overlap Prediction for Unmethylated versus Methylated Overlap Prediction for Polymerase II PIC Binding

Correlation Accuracy Correlation Accuracy

TJU 0.661 85.3% 0.416 74.0%

GGF 0.573 81.7% 0.665 84.2%

GGM 0.561 81.1% 0.608 81.7%

This table shows the performance that the prediction pipeline achieves for the distinction between CpG islands that overlap with unmethylated regions and those that overlap with
methylated regions (left), and similarly for the distinction between CpG islands that overlap with experimentally determined sites of polymerase II preinitiation complex (PIC) binding and
those that do not (right). All values are calculated over a 10-fold cross-validation that was repeated ten times with random partitioning.
doi:10.1371/journal.pcbi.0030110.t001
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prediction pipeline as the ‘‘predicted unmethylated score’’
and the ‘‘predicted promoter activity score,’’ respectively, and
evaluate their predictiveness for CpG island strength below.

CpG Island Strength Estimated by Predicted Epigenetic
State and Chromatin Structure

CpG island scores that focus exclusively on the absence of
DNA methylation or on evidence of promoter activity may be
insufficient for capturing all aspects of the complex epi-
genetic and functional states that characterizes bona fide
CpG islands. To construct a more comprehensive epigenetic
scoring of CpG island strength, we collected five additional
large-scale epigenome datasets from the literature, each one
describing a different aspect of an open and transcriptionally
competent chromatin structure: histone H3K4 di- and
trimethylation [10], histone H3K9/14 acetylation [10], DNase
I hypersensitivity [13] and SP1 transcription factor binding
[12]. All these datasets cover the nonrepetitive parts of
human Chromosomes 21 and 22, to which we confine our
analysis.

A genomic co-localization analysis that we performed
showed that all five datasets of epigenetically modified
regions indeed exhibit significant overlap with all three
CpG island maps (Figure 2). Briefly, this analysis involved two
steps. First, the absolute number of pairwise overlaps along
Chromosomes 21 and 22 was counted for each pairwise
combination of epigenetic modification map and CpG island
map (Figure 2A). Second, these numbers were normalized by
the expected frequency of overlap under the assumption of
CpG islands and epigenetically modified regions being
uniformly distributed (Figure 2B), to correct for length and
frequency differences (see Materials and Methods for details).

Intriguingly, the enrichment observed in the genomic co-
localization analysis was not independent between datasets
but highly skewed towards a specific subset of CpG islands
that frequently overlap with several epigenetic modifications
simultaneously (Table 2). For example, CpG islands that show

evidence of two out of five epigenetic modifications simulta-
neously are observed 10-fold to 20-fold more frequently than
expected under a random model. We therefore concluded
that all five epigenetic modifications do in fact capture
different epigenetic indicators of a single concept, namely,
whether or not a particular CpG island fosters an open and
transcriptionally competent chromatin structure.
To convert this observation into a method for scoring CpG

island strength, we prepared training datasets and applied
our prediction pipeline separately for each of the five
epigenetic modifications (calculation steps 1 and 2 in Figure
1). In all cases, the support vector machine was able to
distinguish with significant accuracy between CpG islands
that overlap with the particular epigenetic modification and
those that do not (Tables 3 and S5). A closer inspection of the
most predictive attributes showed that CpG islands exhibiting
overlap with the epigenetic modification are more likely to
contain CpG-rich patterns, are more conserved, and exhibit a
characteristic predicted helix structure (see Table S6 for a list
of most significant differences). Furthermore, we observed
high correlations between the prediction scores for all five
epigenetic modifications (Table S7), which provided addi-
tional support for the conclusion that they represent aspects
of a single concept. Therefore, for each CpG island we
calculated the average over all five predictions and thereby
derived a single ‘‘open chromatin score’’ (calculation step 3 in
Figure 1). Finally, since the predicted unmethylated score, the
predicted promoter activity score, and the open chromatin
score can be assumed to capture complementary aspects of a
CpG island’s epigenetic and functional state, we combined
these three scores into an additional consensus score that we
call the ‘‘combined epigenetic score’’ of CpG island strength.

Independent Evaluation of CpG Island Strength
Predictions
For each of the predictions described above, the perform-

ance was assessed by means of cross-validation (Tables 1, 3,

Figure 2. Co-Localization between the Five Components of the Open Chromatin Score and the Three CpG Island Maps

(A) shows the relative frequency of overlap between epigenetically modified sites and CpG islands (percentage values).
(B) shows the degree of over-representation relative to a simulated case where sites are uniformly distributed over the chromosomes (base-2 log
scores). Yellow boxes correspond to frequent overlap, blue boxes to rare overlap. H3D, histone H3K4 dimethylation; H3T, histone H3K4 trimethylation;
H3A, histone H3K9/14 acetylation; DHS, DNase I hypersensitive sites; TFS, SP1 transcription factor binding, plus the CpG island abbreviations used
throughout this study (TJU, GGF, and GGM). (B) is symmetrical as the result of averaging, therefore only the upper right triangular matrix is reported. (A)
is not symmetrical, as is obvious from an example: 51.4% of all 578 known DNase I hypersensitive sites on Chromosomes 21 and 22 overlap with a GGM
CpG island, while only 5.0% of all 5,913 GGM CpG islands overlap with an experimentally determined DNase I hypersensitive site.
doi:10.1371/journal.pcbi.0030110.g002
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S1, S2, and S5). While this procedure can provide an accurate
estimate of the prediction performance expected on new
data of the same type, it is not sufficient for establishing the
prediction scores as a quantitative indicator of CpG island
strength. First, all training and testing was restricted to
Chromosomes 21 and 22; therefore, it could not be assessed
how well the predictions generalize to the entire genome.
Second, cross-validation on a single dataset cannot exclude
the risk of overfitting to the special properties of this
particular dataset, which can include both biological factors
(such as tissue-specific and cell-type-specific effects) and
experimental problems (such as bias towards specific genome
regions).

Therefore, we performed an additional evaluation, based
on two large-scale datasets (Figure 1, blue cylinder): (1) a
random sample of unmethylated and methylated regions in
the human genome derived from brain tissue by means of
large-scale tag sequencing of DNA fragments generated by
methylation-sensitive restriction enzymes [25], and (2) a
genome-wide map of experimentally determined transcrip-
tion start sites obtained for a wide range of tissues by the
FANTOM3 project [26]. Independent evaluation (without
retraining) on these datasets can overcome both limitations
of the previously described cross-validations. First, the two
datasets cover the entire (nonrepetitive) human genome, not
only two chromosomes like the training data. Second, both
datasets deviate significantly in terms of tissue type, cell type,
and experimental protocol from all training datasets used
throughout this study. Hence, any significant prediction
performance that the CpG island scores achieve on these
evaluation datasets can be attributed to inherent and robust
properties of the CpG islands themselves.

The first evaluation dataset was constructed by identifying
overlap between CpG islands and regions of known methyl-
ation state, giving rise to experimentally positive CpG islands
(i.e., overlapping with unmethylated regions) and experimen-
tally negative CpG islands (i.e., overlapping with methylated
regions). The second evaluation dataset was constructed by
identifying overlap between CpG islands and experimentally
determined transcription start sites. CpG islands that harbor
at least three independent transcription initiation events
were included in the set of positives, while all remaining CpG
islands were included in the set of negatives.

All four CpG island scores were then evaluated against
these two evaluation datasets using receiver operating
characteristic (ROC) curves, which is the standard method

for benchmarking classifiers in machine learning [27]
(calculation step 4 in Figure 1). These ROC curves interpret
the score of any one CpG island as its predicted likelihood of
being a bona fide CpG island. For all possible thresholds on
the CpG island score, they describe the tradeoff between the
true positive rate (i.e., the percentage of bona fide CpG
islands that are detected, also called sensitivity) and the false
positive rate (i.e., the percentage of negatives that are
erroneously classified as bona fide CpG islands, which is
equal to one minus specificity) and thereby assess how well
the particular CpG island score predicts the evaluation
datasets. A purely random score would on average result in
a ROC curve that is a straight line from (0,0) to (1,1); the
closer the curve bends towards the top left corner, the better
is the performance of the evaluated CpG island score.
The ROC curves show that all four CpG island strength

predictions that we constructed (i.e., the predicted unmethy-
lated score, the predicted promoter activity score, the open
chromatin score, and the combined epigenetic score)
perform significantly better than random (Figure 3) and can
therefore be used to improve the accuracy of CpG island
mapping. Nevertheless, we observe several differences. On
both evaluation datasets, the predicted unmethylated score
performs worst of all four scores. This contrasts with the high
accuracy of the methylation prediction itself (Table 1) and
points to high divergence between the training dataset and
the evaluation datasets, possibly arising from tissue specificity
of DNA methylation as well as from experimental biases. The
predicted promoter activity score performs well for both
evaluation datasets, which is also the case for the open
chromatin score. Finally, the combined epigenetic score, i.e.,
the consensus prediction of all three individual CpG island
scores, performs better than each individual score. This result
shows that the three individual scores—each derived from
data for different cell types and for different aspects of CpG
island strength—do provide complementary information that
can be combined to increase prediction performance.
For comparison, we also plotted the performance of the

GC content, the CpG observed-to-expected ratio, and the
length of CpG islands, interpreting them as indicators of CpG
island strength (Figure 3), and we observed a surprising result.
On the one hand, GC content performs only slightly better
than random, and the CpG observed-to-expected ratio—
arguably the most natural sequence-based indicator of CpG
island strength—performs substantially worse than the
promoter activity score, the open chromatin score, and the

Table 2. A Subset of CpG Islands Exhibits Highly Significant Overlap with Multiple Epigenetic Modifications Simultaneously

CpG Island Map Observed/Expected Frequency of Overlap with n out of Five Epigenetic Modifications

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

TJU 949/1,238.5 ¼ 0.8 180/113.3 ¼ 1.6 99/6.2 ¼ 16.0 71/0.2 ¼ 355.0 50/0.0 9/0.0

GGF 4,290/4,545.8 ¼ 0.9 284/301.6 ¼ 0.9 117/10.6 ¼ 11.0 97/0.0 63/0.0 7/0.0

GGM 5,260/5,549.7 ¼ 0.9 345/351.9 ¼ 1.0 130/11.2 ¼ 11.6 115/0.3 ¼ 383.3 56/0.0 7/0.0

This table contrasts the observed and the expected frequencies with which CpG islands overlap with a certain number (zero to five) of the five epigenetic modifications that contribute to
the open chromatin score (i.e., histone H3K4 di- and trimethylation, histone H3K9/14 acetylation, DNase I hypersensitivity, and SP1 binding). The format of the table entries is as follows:
observed frequency/expected frequency¼over-representation ratio. Expected frequencies were calculated by simulation under the assumption of uniform distribution. Overlap with four
or more epigenetic modifications was too rare to occur in these simulations. Hence, no degrees of over-representation were calculated for the two rightmost columns.
doi:10.1371/journal.pcbi.0030110.t002
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combined epigenetic score. On the other hand, CpG island
length (which one might have dismissed as a rather technical
aspect of the sequence-based CpG island definition, designed
to exclude short and insignificant CpG islands) turns out to
perform very well, second only to the combined epigenetic
score in terms of overall prediction performance (i.e., area
under the ROC curve [27], averaged over Figure 3A to 3F).
Although this finding contributes little to the main impetus
of this paper, which is to reconcile CpG island mapping with
the epigenetic and functional concept of bona fide CpG
islands, it can help us to design a simple heuristic to
approximate the combined epigenetic score. We discuss this
point in more detail in a separate section below.

In addition to the analysis by ROC curves, we performed a
second evaluation, to assess whether the combined epigenetic
score predicts not only the likelihood that a particular CpG
island exhibits promoter activity (as shown by the ROC
curves), but also the strength of its promoter activity. To that
end, we plotted the number of transcription start site tags (as
an indicator of promoter strength) for all CpG islands that
harbor experimentally determined transcription start sites at
all against the combined epigenetic score (Figure 4). The
results show that promoter CpG islands with a high combined
epigenetic score indeed exhibit substantially stronger pro-
moter activity than promoter CpG islands with a low
combined epigenetic score.

Selection of the Most Appropriate CpG Island Map As the
Basis for Prediction

Up to this point, we carried out all analyses in parallel for
the three CpG island maps that we derived using different
repeat-exclusion strategies (TJU, GGF, and GGM). To select
the most appropriate setup for the final map of predicted
bona fide CpG islands, we benchmarked these strategies on
both evaluation datasets. Since ROC curves cannot easily
account for the different number of CpG islands in each of
the three maps, we constructed an alternative type of diagram
for this purpose (Figure 5). This diagram plots the precision
of the classification (i.e., the percentage of predicted bona
fide CpG islands that are supported by the DNA methylation
dataset [Figure 5A] or by the transcription start site dataset
[Figure 5B]) and the true positive rate (i.e., the percentage of
unmethylated CpG islands [Figure 5A] or CpG islands
harboring transcription start sites [Figure 5B] that are

correctly predicted) against the total number of CpG islands
that are selected for any particular threshold.
The results show that there is generally high agreement

between the performance of the combined epigenetic score
on each of the three CpG island maps (Figure 5), apart from
the trivial fact that the overall sizes of the three maps differ.
Nevertheless, the combined epigenetic score performs
slightly better on the GGM map (i.e., repeat exclusion using
RepeatMasker, with subsequent application of the Gardiner-
Garden criteria for CpG island detection) than on the two
alternative maps, and this setup was therefore chosen. The
GGM map has two additional advantages. First, in contrast to
the GGF map, it does not require choosing a cutoff for the
maximum repeat content that is permitted per CpG island.
Second, in contrast to the TJU map, the DNA sequence
parameters used to derive the GGM map are so permissive
that virtually every nonrepetitive, CpG-rich region that
exceeds 200 bp is selected and scored. Thus, scores are also
calculated for regions that show little potential to be bona
fide CpG islands but which may be of interest for compre-
hensive scans of particular genomic regions.
At http://rd.plos.org/10.1371_journal.pcbi.0030110_01, we

report the combined epigenetic score for all CpG islands that
fulfill the Gardiner-Garden criteria on the repeat-masked
genome (GGM). Since our evaluations showed that the
combined epigenetic score provides an accurate and robust
estimate of CpG island strength (i.e., of a CpG island’s
inherent tendency to exhibit an open and transcriptionally
competent chromatin structure), these scores are useful for a
number of applications. For example, they add important
quantitative information to support functional genome
annotation as well as the interpretation of experimental
epigenome data, and they can be used to prioritize candidate
regions, e.g., when selecting a fixed number of most
promising regulatory CpG islands for experimental followup.

Mapping of Predicted Bona Fide CpG Islands Using the
Combined Epigenetic Score
Although our analysis emphasizes the importance of

quantitative information on CpG island strength, to distin-
guish gradually between bona fide CpG islands and those
CpG-rich regions that show no evidence of a regulatory role
(Figures 3 and 4), we acknowledge that certain applications
would benefit from a fixed threshold on the combined
epigenetic score. For example, to derive a genome-wide list of

Table 3. Prediction Performance for the Distinction between CpG Islands That Overlap with a Particular Epigenetic Modification and
Those That Do Not

CpG Island

Map

Overlap Prediction for

Histone H3K4me2 Histone H3K4me3 Histone H3K9ac/H3K14ac DNase I Hypersensitivity for SP1 Binding

Correlation Accuracy Correlation Accuracy Correlation Accuracy Correlation Accuracy Correlation Accuracy

TJU 0.294 67.5% 0.302 68.5% 0.380 72.5% 0.368 71.4% 0.374 72.2%

GGF 0.308 68.2% 0.431 73.8% 0.398 72.6% 0.548 79.3% 0.433 73.5%

GGM 0.324 68.8% 0.397 72.7% 0.407 73.3% 0.54 79.1% 0.417 73.5%

For each component of the open chromatin score, this table shows the performance that the prediction pipeline achieves for the distinction between CpG islands that overlap with that
particular epigenetic modification and those that do not. All values are calculated over a tenfold cross-validation that was repeated ten times with random partitioning.
H3K4me2, H3K4 dimethylation; H3K4me3, H3K4 trimethylation; H3K9ac/H3K14ac, H3K9/14 acetylation.
doi:10.1371/journal.pcbi.0030110.t003
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predicted bona fide CpG islands or for selecting regions to be
spotted on a CpG island microarray, it is necessary to make a
tradeoff between thresholds that are low enough to achieve
high sensitivity (i.e., most bona fide CpG islands are included)
and high enough to maintain high specificity (i.e., few CpG-
rich regions that show no evidence of a regulatory role are
selected).

Fortunately, the way the combined epigenetic score is
defined immediately suggests a threshold that balances
sensitivity and specificity and carries a biologically mean-
ingful interpretation. Since the combined epigenetic score is
the average of the confidences with which a particular CpG
island is predicted (1) to be unmethylated, (2) to exhibit
promoter activity, and (3) to foster open chromatin structure,
it assigns a value between zero and one to each CpG island
that reflects its overall epigenetic and functional state. A
value of zero thus corresponds to a completely silenced,
inactive, and inaccessibly buried CpG island, while a value of
one corresponds to an unmethylated, highly accessible CpG
island with strong promoter activity. Between these two
extremes, a value of 0.5 corresponds to CpG islands that are
equally likely to be bona fide CpG islands or not. This value
therefore provides a suitable threshold for CpG island
mapping, as it balances sensitivity and specificity. We would
recommend this threshold for most applications.

Nevertheless, certain tasks (e.g., genome annotation) may

require increased sensitivity to annotate as many bona fide
CpG islands as possible and would therefore profit from a less
stringent threshold, such as 0.33. Conversely, a highly
conservative threshold of 0.67 is useful when selecting
candidate regulatory regions for experimental followup, to
minimize the risk of wasting resources on false positives. To
support decision-making about the most appropriate map to
use for a particular application, Table 4 provides quantitative
data on true positive rates and false positive rates calculated
for both evaluation criteria, DNA methylation and promoter
activity.
Using the GGM map as the basis (109,600 CpG islands for

the entire human genome) and the combined epigenetic
score as the indicator of CpG island strength, we calculated
maps of predicted bona fide CpG islands. Using the balanced
0.5 threshold, 21,631 genomic regions are predicted as bona
fide CpG islands (19.7%); for the highly sensitive 0.33
threshold, this value is 46,182 (42.1%); and for the highly
specific 0.67 threshold, we predict 10,281 bona fide CpG
islands genome-wide (9.4%). All CpG island maps are
available for download and inspection as UCSC Genome
Browser [28] tracks at http://rd.plos.org/10.1371_journal.
pcbi.0030110_01.
The genomic distribution of bona fide CpG islands is

summarized in Table S8. Furthermore, we assessed how
frequently bona fide CpG islands associate with genes, exons,

Figure 4. Box Plots Comparing the Promoter Strength between High-Scoring and Low-Scoring Promoter CpG Islands

This figure shows box plots of the average number of transcription start site tags per CpG island (as an indicator of promoter strength), restricted to
those CpG islands that show experimental evidence of promoter activity at all (i.e., at least three transcription start site tags fall within the CpG island).
Separate box plots are drawn for CpG islands that fall into different intervals in terms of their combined epigenetic score (i.e., 0 to 0.2, 0.2 to 0.4, etc.).
The standard box plot format is used (boxes show center quartiles, whiskers extend to the most extreme data point that is no more than 1.5 times the
interquartile range from the box, and non-overlapping notches provide evidence of significantly different medians), and outliers are hidden.
doi:10.1371/journal.pcbi.0030110.g004

Figure 3. ROC Curves Comparing the Performance of Four Prediction Scores and Three Sequence Criteria against DNA Methylation and Promoter

Activity

This figure compares the prediction performance of four CpG island scores that are based on epigenome prediction (upper legend box) and of three
simple sequence criteria (lower legend box). In (A), (C), and (E), overlap with unmethylated regions is used for evaluation, and in (B), (D), and (F), overlap
with experimentally determined transcription start sites (as an indicator of promoter activity) is used instead. All graphs plot the true positive rate
against the false positive rate in the form of ROC curves [27]. The scales on top of the plots display the threshold values for the combined epigenetic
score that correspond to the tradeoff between false positive rate and true positive rate at any one position. The thresholds for the combined epigenetic
score are highlighted by triangles: 0.5 (balance between sensitivity and specificity), 0.33 (high sensitivity), and 0.67 (high specificity). Averaged across all
six graphs, the ROC area under the curve performance measure (i.e., the percentage of the unit square that lies below the ROC curve [27]) amounts to
the following values: predicted unmethylated score, 65.4%; predicted promoter activity score, 74.8%; open chromatin score, 72.2%; combined
epigenetic score, 75.8%, GC content, 67.1%; CpG observed-to-expected score, 70.6%; and CpG island length, 75.5%.
doi:10.1371/journal.pcbi.0030110.g003
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annotated transcription start sites, and highly conserved
regions (Table S9). As expected, predicted bona fide CpG
islands are highly associated with annotated transcription
start sites and evolutionarily conserved regions, and this
effect is stronger for the specific threshold than for the
balanced and the sensitive thresholds. However, even of the
10,281 strongest CpG islands in the human genome, i.e., those
whose scores exceed the highly specific 0.67 threshold, more
than 40% do not overlap with an Ensembl-annotated tran-
scription start site. Thus, we conclude that our prediction of
CpG island strength identifies a significant number of regions
with open and transcriptionally competent chromatin struc-
ture that are not known promoters of protein-coding genes.

Evaluation of CpG Island Length As a Heuristic for the
Combined Epigenetic Score

As outlined above, the combined epigenetic score has a
conceptual advantage over more conventional ways of
predicting CpG island strength because it directly links
CpG island maps to the epigenetic and functional role that
CpG islands are assumed to play in the human genome.
However, it bears one significant disadvantage: the calcula-
tion of the combined epigenetic score is complex and
computationally demanding. While we alleviate this issue by
providing precalculated maps for the current assemblies of
the human genome, it would be helpful to have a second
estimate of CpG island strength available that is significantly
simpler to calculate, even at the cost of a somewhat reduced

performance. As suggested above and supported by Figure 3,
CpG island length can be used in this way. It is substantially,
though not perfectly, correlated with the combined epige-
netic score (Pearson’s r¼ 0.59), and it gives rise to a ROC area
under the curve [27] performance that is not dramatically
lower than that of the combined epigenetic score (Figure 3).
However, it is unclear what might be suitable thresholds to

map bona fide CpG islands on the basis of their length,
since—in contrast to the combined epigenetic score—CpG
island length does not reflect any specific epigenetic concept.
We propose that the most appropriate solution is to select
thresholds such that the resulting maps resemble those
calculated from the combined epigenetic score in terms of
the false positive rate. That is, the length heuristic should not
make more errors when detecting bona fide CpG islands than
the combined epigenetic score, but it may well detect fewer
(worse) or more (better) bona fide CpG islands, as measured
by the true positive rate. Table 4 provides a performance
comparison of bona fide CpG island maps derived from the
combined epigenetic score versus maps derived using the
CpG island length heuristic, with thresholds selected such
that the false positive rate is as close as possible to that of the
maps derived from the combined epigenetic score. Taking
the results for both evaluation datasets into account and
rounding to the closest hundred, we concluded that a
minimum length of 700 bp is the most appropriate threshold
for the balanced case. For sensitive mapping, the most

Figure 5. Performance of the Combined Epigenetic Score Compared between CpG Island Maps That Use Different Repeat-Exclusion Strategies

This figure plots the precision (i.e., the percentage of experimentally supported bona fide CpG islands among all selected CpG islands) and the true
positive rate (i.e., the percentage of experimentally supported bona fide CpG islands that are selected) over the total number of cases predicted as bona
fide CpG islands, for any valid threshold on the combined epigenetic score. Evaluation criteria are absence of DNA methylation (A) and presence of
promoter activity as indicated by experimentally determined transcription start sites (B). The three scales on top of each plot display the score
thresholds that correspond to the number of CpG islands selected. Dashed lines show the three thresholds that were used to derive the final bona fide
CpG island maps on the basis of the GGM dataset. Numbers on the x-axis are significantly lower in (A) than in (B) because of the fact that the DNA
methylation dataset covers only a random sample of unmethylated and methylated CpG islands, while the promoter activity dataset covers essentially
all nonrepetitive CpG islands genome-wide.
doi:10.1371/journal.pcbi.0030110.g005

Table 4. Performance Comparison between the Combined Epigenetic Score and the CpG Island Length

Evaluation

Dataset

Type of

Mapping

CpG Island Scoring Method Comparison 1 Comparison 2

Threshold False Positive

Rate

True Positive

Rate

Threshold False Positive

Rate

True Positive

Rate

DNA methylation Sensitive Combined epigenetic score 0.33 25.5% 80.0% 0.31 28.1% 82.1%

DNA methylation Sensitive CpG island length 315 bp 25.4% 77.1% 300 bp 28.1% 78.0%

DNA methylation Balanced Combined epigenetic score 0.5 5.2% 57.3% 0.48 5.7% 61.7%

DNA methylation Balanced CpG island length 759 bp 5.2% 53.4% 700 bp 5.7% 56.4%

DNA methylation Specific Combined epigenetic score 0.67 0.8% 36.0% 0.67 1.2% 36.2%

DNA methylation Specific CpG island length 1,496 bp 0.8% 17.2% 1,400 bp 1.2% 22.0%

Promoter activity Sensitive Combined epigenetic score 0.33 30.8% 67.3% 0.33 30.7% 67.2%

Promoter activity Sensitive CpG island length 300 bp 30.7% 69.2% 300 bp 30.7% 69.2%

Promoter activity Balanced Combined epigenetic score 0.5 7.9% 45.7% 0.52 6.5% 43.1%

Promoter activity Balanced CpG island length 624 bp 7.9% 45.6% 700 bp 6.5% 42.7%

Promoter activity Specific Combined epigenetic score 0.67 1.8% 25.9% 0.71 1.2% 21.7%

Promoter activity Specific CpG island length 1,225 bp 1.8% 19.3% 1,400 bp 1.2% 13.9%

This table compares the performance of bona fide CpG island mapping using the combined epigenetic score with a simple length-based mapping heuristic. Comparison 1 indicates the
performance of the three standard thresholds of the combined epigenetic score (sensitive, 0.33; balanced, 0.5; and specific, 0.67), as well as the performance of corresponding maps
derived using the highest CpG island length threshold that leads to a lesser or equal false positive rate. Comparison 2 is a similar comparison, in which the CpG island length thresholds are
fixed (sensitive, 300 bp; balanced, 700 bp; and specific, 1,400 bp), while the thresholds for the combined epigenetic score are selected so that the false positive rate of the corresponding
maps are less than or equal to the length-based false positive rate. All results are based on the GGM map and are reported separately for the two evaluation criteria, DNA methylation and
promoter activity. In the ‘‘Threshold’’ columns, the fixed thresholds are in bold; in the ‘‘True Positive Rate’’ columns, the higher scores are in bold.
doi:10.1371/journal.pcbi.0030110.t004
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appropriate minimum length is 300 bp, and for specific
mapping, the most appropriate minimum length is 1,400 bp.
Direct performance comparison with the maps derived from
the combined epigenetic score shows that this length-based
heuristic performs equally well for sensitive mapping (slightly
worse for DNA methylation, slightly better for promoter
activity), but falls short for both the balanced and the specific
maps (Table 4). Differences are particularly strong for the
specific case, where the map based on the combined
epigenetic score predicts 65% (DNA methylation: true
positive rate of 36.2% versus 22.0%) and 56% (promoter
activity: 21.7% versus 13.9%) more bona fide CpG islands
than the heuristic when false positive rates are fixed to 1.2%
for both maps.

We conclude that the length-based heuristic can be used
for a general mapping of bona fide CpG islands, preferably
with a minimum length threshold of 300 bp. However, as soon
as high specificity is desirable, we strongly recommend using
the maps of predicted bona fide CpG islands that are based
on the combined epigenetic score. This conclusion is
consistent with the observation that exclusively sequence-
based CpG island maps achieve high sensitivity but lack
specificity, i.e., they include many regions that fail to exhibit
the epigenetic and functional characteristics of bona fide
CpG islands.

Discussion

The CpG island strength as a theoretical concept captures
the inherent tendency of a particular CpG island to exhibit
the characteristic epigenetic and functional state of bona fide
CpG islands. This includes, but is not limited to, absence of
DNA methylation as well as presence and strength of
promoter activity. The concept of CpG island strength is
abstracted from any tissue-specific or cell-type-specific
variation of the epigenetic states. It should be viewed as a
description of the default state that is encoded in the DNA
sequence of a particular CpG island, and which the CpG
island will assume in the absence of any strong influences
towards variation (such as imprinting-related differential
methylation or cancer-related epigenetic silencing). Since we
observed clear-cut quantitative differences among CpG
islands (Figure 4) and a highly significant clustering of
epigenetic modifications in a subset of CpG islands (Table
2), we conclude that this concept adds important information
to traditional CpG island maps. Furthermore, it provides a
straightforward solution for the lack of specificity of these
maps.

To predict CpG island strength for each CpG island in the
human genome, we initially predicted multiple epigenetic
modifications independently. These genome-wide predic-
tions were highly correlated with each other, hence we could
combine them into a consensus prediction of CpG island
strength. The predictive power of this combined epigenetic
score (and of several alternative CpG island scores) was
evaluated on large-scale experimental datasets of DNA
methylation and promoter activity. We also selected and
justified biologically plausible thresholds on the combined
epigenetic score, leading to maps of predicted bona fide CpG
islands that are more accurate than current sequence-based
maps. For example, even the most restrictive definition [16]
of CpG islands (TJU) gives rise to approximately one-third

methylated CpG islands, i.e., CpG-rich regions that fail to
exhibit the characteristics of bona fide CpG islands according
to our evaluation dataset. Using a sensitive threshold of 0.33
on the combined epigenetic score, this value can be reduced
by two-thirds, while losing less than 8% of unmethylated,
potentially bona fide CpG islands (Figure 3A). Similar
improvements were observed when evaluating promoter
activity and for two additional CpG island maps (GGF and
GGM). We therefore conclude that a post-processing step
utilizing bioinformatic predictions significantly increases the
accuracy of CpG island mapping and can help overcome the
weaknesses of current CpG island definitions. We also showed
that a simple length-based mapping heuristic that selects only
CpG islands with a minimum length of 300 bp on the repeat-
masked genome is suitable for sensitive mapping of bona fide
CpG islands but performs substantially worse than the
combined epigenetic score when high specificity is desired.
The fundamental advance of our analysis was to move

beyond a purely sequence-based definition of CpG islands
(which many researchers have tried to optimize in the past
[29–33]) and to incorporate epigenome and chromatin data.
This approach is consistent with the common notion of CpG
islands being functionally and epigenetically exceptional
regions, but gave rise to two conceptual difficulties. First,
such data are tissue-specific and cell-type-specific. It is thus
necessary to abstract the experimental data from these
variations to derive a single CpG island map for the human
genome (instead of specific maps for all major tissues and cell
types). Second, comprehensive epigenome data are currently
available only for Chromosomes 21 and 22, not for the entire
genome. We addressed both issues by introducing epigenome
prediction as the method for scoring CpG island strength,
instead of using epigenome data directly.
Our epigenome predictions utilize a strong link that

connects the DNA characteristics of individual CpG islands
with their epigenetic states. As illustrated schematically in
Figure 6, CpG islands differ in terms of their epigenetic
states, in particular in their inherent tendency towards either
open and transcriptionally competent or inaccessible and
silenced chromatin structure. Similarly, CpG islands differ in
terms of their DNA characteristics and genomic locations,
including length and CpG frequency, preferred DNA helix
structure, association with conserved regions, frequency of
transcription start sites, and distribution of repetitive DNA
elements. Intriguingly, epigenetic state and DNA character-
istics are highly correlated, as indicated by the consistently
high prediction accuracies that we observed throughout this
study: CpG islands that are frequently unmethylated, exhibit
promoter activity, and/or foster open chromatin structure
also exhibit exceptional DNA characteristics, including high
levels of CpG enrichment, high conservation, significant
repeat depletion, and a specific predicted helix structure. On
the other hand, methylated and transcriptionally inactive
regions (that still fulfill the traditional CpG island criteria)
exhibit converse DNA characteristics. This high degree of
correlation between DNA characteristics and epigenetic state
extends beyond CpG islands: our prediction pipeline also
achieved high prediction performances for the distinction
between regions that exhibit an open and transcriptionally
competent chromatin structure and a set of randomly
selected genomic regions (unpublished data). We therefore
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conclude that the human genome and epigenome are
significantly correlated.

Potential limitations of this study arise from the epigenome
datasets that were employed for training and evaluation.
First, two out of the five ChIP-on-chip datasets that we used
are based on ligation-mediated PCR amplification [9,12],
which creates an experimental bias towards GC-rich regions
(the other three are based on a more appropriate linear DNA
amplification method [10]). Second, the lists of over-repre-
sented regions from the ChIP-on-chip studies that we used
are most likely overly conservative [34]. However, in spite of
these shortcomings of the underlying datasets, we observed
consistent results across multiple datasets, which were
obtained from different cell types, in different labs, and with
different experimental protocols. Therefore, such error
sources are highly unlikely to invalidate our main results. A
second limitation concerns our ability to exhaustively
evaluate the performance of the predictions: because the
concepts of CpG island strength and of bona fide CpG islands
describe inherent properties of CpG islands, which abstract
from their epigenetic state in a particular tissue or cell type,
they are difficult to measure experimentally. We therefore
performed our evaluations on datasets that significantly
deviate in their experimental and biological characteristics
from all training data that was used, and we paid as much
attention to deriving consistent and biologically plausible
predictions of CpG island strength as to achieving the highest
performance on the evaluation criteria. Finally, for reasons of
data availability we focused on epigenetic modifications that
are associated with open and transcriptionally competent
chromatin. Future extensions of this work should include
repressive epigenetic modifications as well, such as histone
H3K9 methylation and H3K27 methylation. On this basis,
combined with larger datasets, it may be possible to

deconstruct the predicted CpG island strength into individ-
ual components for all major epigenetic modifications.
The CpG island strength predictions and maps of predicted

bona fide CpG islands described in this study are currently
being used in several ongoing research projects, with topics
ranging from imprinting regulation and epigenome profiling
[35] to cancer-related hypermethylation, and have so far
proved to be highly useful, both for guiding the selection of
candidate regulatory regions and for supporting the inter-
pretation of experimental results.

Materials and Methods

CpG island maps. To calculate genome-wide CpG island maps
according to the traditional sequence-based definition, we down-
loaded both the unmasked and the repeat-masked versions of the
hg17/NCBI35 human genome assembly from the UCSC Genome
Browser Web site [28], and we ran a slightly modified version of the
CpG Island Searcher script [16] with the following parameters.
Calculation of the TJU map: GC content above 55%, CpG observed-
to-expected ratio above 0.65, length above 500 bp, based on the
unmasked genome. Calculation of the GGF map: GC content above
50%, CpG observed-to-expected ratio above 0.6, length above 200 bp,
based on the unmasked genome. Calculation of the GGM map: GC
content above 50%, CpG observed-to-expected ratio above 0.6,
length above 200 bp, based on the repeat-masked genome. Finally, for
GGF we determined the number of nonrepetitive basepairs by
comparison with the repeat-masked genome version and discarded
all CpG islands for which this value was below 200 bp.

Epigenome prediction pipeline. For the prediction of DNA
methylation, promoter activity, and the five components of the open
chromatin score, we implemented a custom computer program. This
epigenome prediction pipeline is based on our experience with the
prediction of DNA methylation published previously [20], and it
implements several significant extensions. First, a 20-fold speedup of
the program over the original version, achieved by optimization of
the source code and of the database structure, now permits genome-
wide analysis at acceptable speed. Second, a front end for Web-based
analysis was implemented, which enables us to make the prediction
pipeline available to interested researchers on a cooperation basis
(see http://rd.plos.org/10.1371_journal.pcbi.0030110_02 for details).
Unrestricted public access to this Web service is not yet feasible
because of high computational demand of the prediction pipeline,
but it is planned for the future.

Briefly, the prediction pipeline works as follows. It takes a training
set as input that consists of two lists of genomic positions (i.e.,
chromosome, start and end of the region relative to the hg17/NCBI35
genome assembly), the first one representing the positive cases and
the second one the negative cases. Then, four consecutive steps are
performed.

First, to prepare the DNA-based prediction, a wide range of DNA
attributes are calculated for all training cases and, in addition, for all
CpG islands in the human genome. These attributes belong to six
classes: (1) DNA sequence patterns and properties (426 attributes), (2)
repeat attributes, frequency, and distribution (311 attributes), (3)
predicted DNA helix structure (28 attributes), (4) predicted tran-
scription factor binding sites (68 attributes), (5) evolutionary
conservation and single nucleotide polymorphisms (ten attributes),
and (6) CpG island attributes (four attributes). Most attributes take
the form of frequencies or numerical scores, averaged over the CpG
island and standardized to a default window size of one kilobase (see
Table S10 for the full list of attributes and for information on their
calculation). The data for most of these attributes were collected from
annotation tracks in the UCSC Genome Browser [28] (as of
September 2005), with some exceptions: the attributes for classes 1
and 6 were calculated directly from the DNA sequence, and the
attributes for class 3 were calculated from the DNA sequence by
averaging over oligonucleotides with known structure [24].

Second, to estimate the prediction performance that a linear
support vector machine can achieve for classification of positives and
negatives, it is repeatedly trained and tested on partitions of the
training dataset following a four-step procedure. (1) If the larger set
(either positives or negatives) contains more than twice as many sites
as the smaller set, it is randomly downsampled such that the class
imbalance never exceeds 67% versus 33% (this precaution limits
potential bias towards predicting the majority class). (2) Using 10-fold

Figure 6. Parallelism between Specific DNA Characteristics and the

Epigenetic and Functional State of CpG Islands

This figure illustrates the link between the genome sequence and the
epigenome at CpG islands, which enabled us to predict epigenetic states
from characteristics of the genome sequence. CpG islands in the human
genome can apparently be ordered on a scale of increasingly open and
transcriptionally competent chromatin structure (left) and simultane-
ously on a scale of characteristic DNA attributes (right), with high
correlation between both scales.
doi:10.1371/journal.pcbi.0030110.g006
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cross-validation, a linear support vector machine [36] as implemented
in the Weka package [37] is repeatedly trained on 90% of the cases
and tested on the remaining 10% (with default parameters). (3) Cross-
validation is repeated ten times with random partition assignments.
(4) The overall prediction performance is measured by the
correlation coefficient between the predictions and the correct
values on the test set of the cross-validations and by the percent
accuracy of correctly predicted test set cases [38], averaged over all
cross-validation runs.

Third, to understand which DNA attributes contribute to high
prediction performances, the analysis described in the previous step
is repeated for all six attribute groups separately (Tables S1, S2, and
S5). In addition, single-attribute significance testing is performed on
all 847 attributes (Tables S3, S4, and S6), using the nonparametric
Wilcoxon rank-sum test with an overall significance threshold of 5%
per statistical analysis. p-Values are adjusted for multiple testing
alternatively by the highly conservative Bonferroni method (which
controls the family-wise error rate) and by a more recent method that
controls the false discovery rate [39].

Fourth, to derive a score for all CpG islands in the human genome,
a linear support vector machine is trained as described above, but
now on the full training dataset (with downsampling if necessary, to
enforce a maximum class imbalance of 67% versus 33%). The trained
prediction model is then used to predict the likelihood of belonging
to the set of positives for each CpG island genome-wide. Likelihoods
are calculated as implemented by the Weka package [37]. The
resulting quantitative predictions can assume values between zero
and one, where a value of zero corresponds to a high-confidence
negative prediction, a value of 0.5 to a borderline case, and a value of
one to a high-confidence positive prediction. This quantitative
prediction can then be used directly as a CpG island score or it can
be subjected to further calculations as described below.

Prediction scores for CpG island strength. The calculation of all
four CpG island scores made use of the prediction pipeline,
combined with appropriate training data. Calculations were per-
formed on the hg17/NCBI35 genome assembly. Where necessary, data
were remapped using the UCSC Genome Browser liftOver tool [28].

The predicted unmethylated score is based on training data from
an experimental analysis of CpG island methylation in human
lymphocytes [18] (dataset obtained from the supplementary material
of [18]). Using methylation-specific restriction enzyme and PCR,
Yamada et al. measured DNA methylation states for 149 CpG-rich
regions on Chromosome 21q, of which 132 cases showed an
unambiguous methylation pattern and could be mapped to the
current genome assembly. All CpG islands that overlap (by at least 1
bp) with one of the 103 unmethylated regions were combined into the
positive training set, and all CpG islands that overlap with one of the
29 methylated cases were combined into the negative training set.
The resulting training dataset was then processed by the prediction
pipeline to derive predicted unmethylated scores for all CpG islands
according to TJU, GGF, and GGM.

The predicted promoter activity score is based on training data
from an experimental analysis of polymerase II preinitiation complex
binding in human fibroblasts [9] (dataset obtained from the
supplementary material of [9]). Using the ChIP-on-chip protocol
and a highly conservative method for identifying regions of over-
representation from the raw data, Kim et al. derived a genome-wide
map of the most likely binding sites. All CpG islands on Chromosome
21 and 22 that overlap by at least 1 bp with one of these binding sites
were combined into the positive training set. The negative training
set was constructed from those CpG islands on Chromosome 21 and
22 that are at least 500 bp away from the nearest binding site. The
resulting training dataset was then processed by the prediction
pipeline to derive predicted promoter activity scores for all CpG
islands according to TJU, GGF, and GGM.

The open chromatin score is based on training data from several
large-scale analyses. (1) Using the ChIP-on-chip protocol, Bernstein et
al. [10] derived histone modification data for the HepG2 cell line,
including H3K4 di- and trimethylation and H3K9/14 acetyla-
tion (dataset obtained from http://www.broad.mit.edu/cell/
chromatin_study). Their analysis comprised the nonrepetitive parts
of Chromosomes 21 and 22, for which they calculated sites of
significant over-representation. (2) Using DNase I digestion and
subsequent massively parallel signature sequencing, Crawford et al.
[13] derived a genome-wide profile of DNase I hypersensitive sites in
CD4þT cells (dataset obtained from the UCSC Genome Browser [28]).
(3) Using the ChIP-on-chip protocol, Cawley et al. [12] derived
binding data for the ubiquitous transcription factor SP1 in the Jurkat
cell line (dataset obtained from http://transcriptome.affymetrix.com/
publication/tfbs). Their data comprises the nonrepetitive parts of

Chromosomes 21 and 22, for which they calculated sites of significant
over-representation. For each of the five epigenetic modifications,
respectively, we constructed a training dataset as follows. All CpG
islands on Chromosome 21 and 22 that overlap with the most
significant sites for the respective epigenetic modification (as
reported by the original authors) were included in the positive
training set, and all CpG islands on Chromosome 21 and 22 that were
at least 500 bp away from the nearest site were included in the
negative training set. All five resulting training datasets were then
processed by the prediction pipeline, and the five predictions for
each CpG island were averaged, to derive open chromatin scores for
all CpG islands according to TJU, GGF, and GGM.

The combined epigenetic prediction score is calculated for each
CpG island as the (unweighted) average of its predicted unmethylated
score, its predicted promoter activity score, and its open chromatin
score. Since all three components can assume values from zero to
one, the same is true for their average.

Evaluation on experimental datasets of DNA methylation and
promoter activity. For the evaluation on DNA methylation, we used a
dataset by Rollins et al. [25], who identified 3,073 unmethylated and
2,565 methylated domains in human brain tissue (dataset obtained
from http://epigenomics.cu-genome.org/html/meth_landscape).
Their data are based on paired-end sequencing from two DNA
libraries that were constructed by digestion with methylation-
sensitive restriction enzymes, such that one library is highly enriched
with unmethylated regions while the other contains almost exclu-
sively methylated regions. We regarded a CpG island as unmethylated
if it overlapped by at least 25% with an unmethylated domain and as
methylated if it overlapped by at least 25% with a methylated
domain. No cases were observed where a single CpG island
overlapped with an unmethylated and a methylated domain simulta-
neously.

For the evaluation of promoter activity, we used a dataset from the
FANTOM3 consortium [26], who performed large-scale CAGE
analysis (i.e., tag sequencing of 59 ends of full-length mRNA) on
cDNA libraries derived from a wide range of tissues and cell types
(dataset obtained from http://gerg01.gsc.riken.jp/cage_analysis/
export/hg17prmtr). All CpG islands that contained at least three tags
(i.e., experimental evidences of independent transcription initiation
events) were regarded as CpG islands with promoter activity, while all
other cases were regarded as CpG islands that show either no or only
spurious promoter activity.

ROC curves were constructed in the usual way [27], using the
ROCR library [40] and the R statistical package (http://www.r-project.
org). The diagrams that compare the different repeat-exclusion
strategies (Figure 5) were constructed using the same tools, with some
customizing to ensure that every unmethylated domain is counted
only once for the true positive rate, even if it overlaps with several
CpG islands simultaneously. All R scripts are available on request.

Co-localization analysis. To show that the five components of the
open chromatin score exhibit significant overlap with each other and
with the three CpG island maps (TJU, GGF, and GGM), we performed
a co-localization analysis of these eight datasets on Chromosomes 21
and 22. To this end, a custom script was written that counts the
number of sites of one type that overlap with a second type, for all
pairs of site types (i.e., epigenetically modified regions and CpG
islands). From these values, overlap percentages were calculated and
plotted as a heat map (Figure 2A).

However, frequent and long regions are obviously more likely to
overlap with other sites than are rare and short regions. We therefore
normalized the observed frequency of overlap by the expected
frequency for a uniform distribution, using the following procedure.
(1) For each site type, we derived a random control set with similar set
size, length distribution, and repeat overlap. Technically, for each
record in the corresponding dataset, a random site of identical length
was drawn from the entire length of Chromosomes 21 and 22. If this
random site was within five percentage points of its corresponding
record in terms of repeat content, it was retained; otherwise, a new
random site was drawn. (2) Pairwise frequencies of overlap between
all control regions were counted. (3) Steps 1 and 2 were repeated 20
times, and frequencies of overlap were averaged. (4) The observed
frequencies of overlap for the real data were divided by the averaged
random overlap frequencies, giving rise to n-fold over- and under-
representations. Figure 2B reports base-2 log scores of these over-
representations (under-representation relative to the expected over-
lap did not occur).

Data availability. Genome-wide maps of predicted bona fide CpG
islands and CpG island strength scores can be accessed online and
downloaded at http://rd.plos.org/10.1371_journal.pcbi.0030110_01.
Furthermore, they are available as custom tracks on the UCSC
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Genome Browser Web site and as Distributed Annotation System
tracks (www.biodas.org) for visualization within the Ensembl genome
browser. The source code of the prediction pipeline is available on
request from cbock@mpi-inf.mpg.de.
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