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From Morphology to Neural Information:
The Electric Sense of the Skate

Marcelo Camperi1*, Timothy C. Tricas®3, Brandon R. Brown'

1 Department of Physics, University of San Francisco, San Francisco, California, United States of America, 2 Department of Zoology, University of Hawaii at Manoa, Honolulu,
Hawaii, United States of America, 3 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America

Morphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed
electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral
electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.g., a prey
organism). We compute the coincident electric signals that develop across an array of the skate’s electrosensors, using
electrodynamics married to precise morphological measurements of sensor location, infrastructure, and vector
projection. Our results demonstrate that skate morphology enhances electrosensory information. Not only could the
skate locate prey using a simple population vector algorithm, but its morphology also specifically leads to quick shifts
in firing rates that are well-suited to the demonstrated bandwidth of the electrosensory system. Finally, we propose
electrophysiology trials to test the modeling scheme.
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Introduction

Sensor placement and arrangement are crucial for any
sensory system used to locate the distance and bearing of a
stimulus source, and this is true for a variety of modalities. In
addition to stereo vision in much of the animal kingdom,
echolocation (e.g., the barn owl) and mechanosensory
location (e.g., the sand scorpion) uses multiple sensors to
locate prey with requisite precision [1-3].

Electrosensitive vertebrates, including monotremes (e.g.,
the platypus), siluriforms (e.g., the catfish), osteoglossomorphs
(e.g., the knifefish), and chondrostreans (e.g., the sturgeon and
the paddlefish), typically possess large populations of in-
dependent electrosensitive organs. Obviously, multiple or-
gans enhance signal-to-noise ratio by an increased number of
simultaneous measurements since environmental electrical
signatures of biological relevance are often weak, even at
close range. However, these animals may also use the sensor
population to determine the location of electric sources. In
the case of the black ghost knifefish, Apteronotus albifrons, the
surface receptors simply report magnitudes of electric field,
and the contrast of signal magnitudes across the body
facilitate the location of nearby objects and the capture of
prey [4,5].

The elasmobranch fishes (sharks, skates, and rays) possess
an electrosensory system used to detect prey, possibly
navigate with respect to magnetic fields, and locate mates
[6-9]. The system includes hundreds or thousands of separate
electrosensor units known as the ampullae of Lorenzini. The
ampullae are often tightly clustered, but each is linked to an
individual pore on the surface of the body via a long, gel-filled
canal (see Figure 1), and the pores are widely distributed (on
the head and pectoral fins in skates and rays).

Each ampulla is able to code minute electrical fluctuations
into discharge patterns of primary afferent nerves [10]. The
sensing cells of an ampulla’s epithelium detect electric
potential differences between its apical side within the
ampulla, and its basal side outside the ampulla. A sudden
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drop in apical-side potential with respect to the basal
potential leads to an increased firing rate for the associated
nerves, while an increase in that potential difference leads to
an inhibited firing rate [11]. More recent measurements also
delineate organ-specific and frequency-specific gain func-
tions [12,13]. The amplification mechanism of the sensory
epithelium is not completely understood, but persuasive
models exist [11].

While previous studies have focused on the response
properties of single electroreceptors, few have explored the
simultaneous response of electroreceptor populations to
biological stimuli. This aspect is especially relevant since the
pores and canals associated with the electroreceptors display
great geometrical variation within a given organism and
among species [14]. In terms of higher processing, output
from principal cells in the dorsal octavolateralis nucleus
(DON) of the skate hindbrain showed systematic responses to
oscillating dipole stimulation that were twice as strong as
responses to uniform body-wide fields [15]. Hence, it is
important to understand the coincident responses of the
electrosensory periphery to electric stimuli to understand
how central processing mechanisms integrate peripheral
receptor responses and affect behavior.

Kalmijn has proposed an algorithm for elasmobranchs
approaching stationary prey via the electric sense [16]. In
this model, the hunting elasmobranch simply maintains its
orientation with respect to the dipole field of the prey.
Geometrically, this means that the elasmobranch will always
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arrive at the source, even if this sometimes means an

inefficient, spiraling path. In an initial simulation effort,
one of us showed that the Kalmijn algorithm would typically
mean that an elasmobranch moves in such a way to
reinforce the signal received by each electroreceptor [17].
However, recent behavioral analyses of sharks approaching
artificial electric dipoles show that the animals usually
exhibit sharp turns toward the electric field source [18].
Thus, it appears that information regarding the source’s
location and/or the decision to approach the source is
developed rather quickly by the predator. These observa-
tions are not necessarily at odds with the Kalmijn algorithm,
however. The algorithm could guide a creature for a brief
period of time until an overwhelming strength of signal
among the sensor population helps it establish the exact
location of the source.

From the electrosensors, primary afferents project to
principal cells of the DON in the medulla [19]. Ascending
efferent neurons in the skate have a strong ascending
projection from the medulla to the contralateral midbrain,
where they converge in the lateral mesencephalic nucleus
and the tectum, combining there with other sensory inputs
[20]. Self-generated electrical signal subtraction has been
convincingly documented in the elasmobranch DON [19,21].
While the afferent fibers show vigorous reactions to an
elasmobranch’s own ventilatory movements, the ascending
efferent neurons demonstrate so-called common-mode
suppression. In addition, electrical noise created by self-
generated movements may be cancelled by an adaptive filter
via anti-Hebbian learning of ascending efferent neurons in
the hindbrain [22]. (By anti-Hebbian we mean responses to
familiar, repetitive stimuli are suppressed in favor of novel
stimuli.) However, how the combined neural responses from
the periphery are processed by the DON, the midbrain, and
higher centers to determine prey headings is unexplored in
sharks and batoids.

Here, we model the system-wide signals and neural
responses of an elasmobranch fish. In contrast to a prior
modeling effort [17], we now use precise, biologically
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seawater

Figure 1. Simplified Schematic Depicting Two Ampullae within a Single
Cluster, with Their Associated Canals and Pores

Points A and C denote two pores, leading via gel-filled canals to their
respective ampullae. Points B and D denote the inner ampullae,
referencing electric potentials on the apical sides of the respective
sensory epithelia. Point E is a common reference for the basal sides of
ampullae within the cluster. The model used here emphasizes the
potential differences arising along the internal gel of the narrow canals
as driving the apical potentials, which lead to excitation or inhibition
based on their relation to the relatively constant basal potential at point
E (see text).

doi:10.1371/journal.pcbi.0030113.g001

relevant morphological measurements and move beyond
electrical signals within the ampullae to the population
codes of neural information available to the elasmobranch
central nervous system. The canals in sharks’ electrosensory
systems thoroughly map a 3-D space. While this is computa-
tionally straightforward, data representations and interpre-
tations are cumbersome. Therefore, we examine several
scenarios for the peripheral electrosense of the dorso-
ventrally flattened barndoor skate, Raja laevis, moving near
an electric dipole. Adults are typically found at significant
benthic depths along mud floor troughs, where they skim
along the dark sea floor to feed on large crustaceans,
mollusks, worms, and flatfish [23]. We model a barndoor
skate moving near an electric dipole to represent the
approach to a stationary prey, but these computations can
also represent a moving dipole source that approaches a
stationary skate. On average, the barndoor skate possesses a
greater number of electroreceptors than other skate species
[24]. The peripheral electrosensory geometry is precisely
mapped [14], and it presents an almost perfectly 2-D system.
Where prior efforts stopped at voltage calculations [17],
here we take two further steps: we assess afferent spike
trains of the peripheral system, and present a basic model
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Figure 2. Canal Projections from the Dorsal Hyoid Ampullae of Raja laevis

(A) Adapted from [14].
(B) As used in the present modeling work.

Here, ampullary clusters are treated as a single point for simplicity. (B) also presents the canal numbering used in plots in this study. The 132 dorsal
hyoid canals in the barndoor skate morphology are numbered consecutively, with canals 1 to 66 in the right cluster, and canals 67 to 132 in the left
cluster. As seen in the figure, the first canal in each cluster is the one pointing in the most forward direction, 4° off the longitudinal axis. The other canals
in each cluster are numbered consecutively, clockwise for the right cluster, and counterclockwise for the left cluster. Locations of pores and ampullae
used in modeling match those in the actual fish (A). In terms of potential differences between an ampulla and a pore for a given canal (which is what
our model emphasizes), the physics of electromagnetism tells us that the actual shape of the canals is immaterial. Thus, we simply represent them as

straight lines.
doi:10.1371/journal.pcbi.0030113.g002

that averages these afferent inputs to ascertain the location
of a bioelectric field’s source.

Materials and Methods

Computation of Signals

For the case of the skate moving with respect to a live
source, we first compute the realistic voltage signals that
develop in the ampullae of Lorenzini using the skate’s
measured canal geometry. In this work, we concentrate on
the bilateral canals of the hyoid clusters that project to the
dorsal surface of the animal (see Figure 2). Of approximately
1,400 total ampullary canals in this species, we choose to
focus on the dorsal hyoid cluster for two main reasons. First,
we narrow the focus for the sake of clarity and lucid data
management; we show results for the signals arising from just
132 ampullae. Second, we choose the dorsal hyoid clusters
because they exhibit both the greatest canal lengths (corre-
sponding to the lowest signal thresholds; [12]) and also the
greatest variation of canal orientations when compared with
other clusters. These clusters appear to be best suited for
long-range detection when compared with the short canals of

@ PLoS Computational Biology | www.ploscompbiol.org

the rostral surfaces and the mandibular cluster on the jaw
that presumably assists positioning for the final stages of
feeding.

Though some authors have treated each canal as an
equipotential or cable-like contact, linking the pore directly
to its associated ampulla [25-27], we agree with the viewpoint
that significant potential differences can and will develop
within the length of the canals [28]. Here, consistent with an
earlier simulation [17], we emphasize the potential difference
that develops between an electroreceptor and its associated
pore, due to the electric field originating in the physical
electric dipole P of small bioelectric source (see Figure 3).

The origin for our computations sits at the source electric
dipole. The potential at all other points, referenced by the
position vector 7, is computed for an ideal electric dipole

[29],

1 Peg
" 4me o2

(1)

r

Here, P is the source’s dipole moment vector, which
includes the orientation direction of the source; r is the
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Figure 3. Skate Moving in a Source’s Frame of Reference

A point in the skate (a pore or an ampulla) is labeled by the vector r in
the source’s reference frame.
doi:10.1371/journal.pcbi.0030113.9g003

v

distance from the source to the point of interest; ¢, is the unit
vector pointing from the source to the point of interest; and
¢ is the static permittivity of seawater (see Figure 3). Our
entire computation is 2-D, approximating the dorso-ven-
trally flattened skate skimming the ocean floor in search of
prey.

As originally noted by Murray, maximum excitatory or
inhibitory response occurs when an electric field vector is
parallel or antiparallel to a canal [10]. This geometrical
observation is fundamental to our model, as this alignment
maximizes the potential difference between a pore and its
associated ampulla.

We refer to the geometry of Figure 1 to describe our
assumptions and computations of relevant potential differ-
ences in the electrosensory periphery. There are five geo-
metric points of interest, labeled A through E. The two
ampulla and respective canals belong to the same cluster
here. We assume that the basal voltage will be shared for each
ampulla in a cluster (Figure 1, point E, within the sac that
surrounds the cluster). Far from a dipole or other electric
source, we assume all potentials at pores and ampullae to be
more or less equal, and the two organs will exhibit the same
resting firing rate. Fluctuations in the ampulla relative to the
electric potential at point E will determine excited or
inhibited firing rates for each organ.

Since we treat the potential at Figure 1, point E, Vg, as a
constant for all organs within a given cluster, the crucial
quantities become the apical electric potentials within the
ampullae (at points B and D in Figure 1). In what manner
would these electric potentials vary? Will they communicate
electric potentials from their pores (Figure 1, points A and
C)? Recent electrical measurements of the gel demonstrate
that the gel-filled canals do not provide good electrical
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contact between pores and ampullae [30]. The gel exhibits
much stronger capacitive properties (charge storage) than
seawater or generic collagen gels, suggesting a canal is better
suited to sustaining electric potential differences than it is to
bringing its two ends to quick electric equilibrium [30]. In
fact, the relative electric resistance along either canal (e.g.,
from points A to B, or from points C to D; Figure 1) is more
than 100 times greater than the electrical resistance between
the pores A and C (in the semi-infinite seawater medium) [30].
Based on these measurements, and based on the observations
of Murray regarding the crucial nature of geometric align-
ment between the canal and applied electric fields [10], we
believe that the potential differences evolving along canals
will provide crucial voltages in the system, with a driving
influence for the apical surface of the sensory epithelium.
The electric potentials between nearby pores would approach
the same electric potential before the electric potentials at
either ends of a canal would equilibrate.

Hence, as a skate draws close to an electric source, the
sharply inhomogeneous source field will set up significant
differences along the canals, depending on their length,
angular orientation, and relative distance from the source
[17]. Clustered ampullae will thereby be allowed to develop
distinct firing responses, as each develops distinct apical
potentials. By treating the basal electric potential (Vg, using
the geometry of Figure 1) as a constant for all ampullae in a
given cluster, the model’s chief simplification is a focus on
the voltages that arise along the interior length of the
canals. These lead to variations at the apical surface of the
sensory epithelium, and with the basal potential treated as a
constant, the apical variations drive the resulting firing
responses.

Our model treats the sensory epithelium as a “black box”
that translates transepithelial electrical fluctuations into
firing rate alterations (see Analysis below). We do not imply
that it plays a minor role or that its electrical characteristics
are trivial. The epithelium’s behavior is best described by
multiple circuit elements acting in concert, with some
functioning as a strong impediment to current flow; as a
distinct electrical entity, its measured impedance exhibits
great variation, presumably resulting from the behavior and
condition of epithelial ion channels [11]. These details are not
germane to our model, and we rely on the epithelium’s
measured and predictable response to electrical stimuli.

At successive moments in time, as the skate moves with
respect to the source dipole in close range (within 1 m of
distance), we assign an electrical signal Vg to each
electrosensor by computing the electric potential at the
various pores and associated ampullae, and then using the
expression

Vsignal = Vam{zulla - V[mrﬂ (2)

in which V,,,, is the potential at the pore and Vi, is the
potential in the internal ampulla chamber (apical side of the
sensing cells). For instance, using Figure 1, the electric signals
are computed as the relative potential differences respectively
from points B to A and from points D to C. Here, both Vi
and V,,,, are computed using the classical expression for the
dipole electric potential. This is exactly equivalent to the path
integral treatment used in a previous effort [17]. Given the
simplifications described above, we do not pretend that our
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data will be the precise signals leading to firing alterations in
the skate—however, we believe our computations capture the
dominant component of firing alterations that arise when the
skate moves with respect to an electric field source.

For the source dipole we use a magnitude that is consistent
with bioelectric fields measured for small prey, with dipole
values in the 107°-107'° Cm range [28]. While actual
bioelectric fields do not conform exactly to an ideal dipole
field, using such fields makes for an excellent approximation
for distances greater than the physical extent of the source
itself. When comparing the ideal dipole field magnitude to
the slightly more realistic physical dipole (separating the
positive and negative charge centers), we find that the ideal
case gives values nearly identical to the physical dipole as long
as the skate-to-source separation is more than two to three
times the size of the source. For instance, if the source were a
bivalve with 3 cm separating its relatively positive and
negative charge centers, the ideal dipole approximation
would be quite accurate as long as a skate was more than 6-
9 cm away. This approximation will be valid for the cases
explored here.

In early simulations, one of us used a dipole moment
strength of 5.6 X 107'% Cm [17]. This produced values for
Viignal in the range of tens to hundreds of nanovolts for the
skate-source distances of interest. These low values con-
gregate at the very center of the empirical gain function for
computing afferent firing rates (see Analysis). In this region,
the empirical fitting is most speculative. Therefore, we
increased the dipole moment strength for the current
simulations, using a value of 3 X 107° Cm (i.e., around five
times the original choice). This is not far off from measured
values for small prey sources [28], and renders values for
Viignar i the low microvolt range, where the translation to
firing rate alterations is well mapped.

Analysis

We translate ampullary signals from Equation 2 into firing
rate alterations of the primary afferent neurons associated
with the ampullae.

Again, treating the sensory epithelium as a “black box,” the
firing process is modeled with an ad hoc firing rate gain
function based on the known electrophysiology literature.
The model consists of a firing rate function r;(¢) generated in a
given ampulla by the corresponding Vg The index i refers
to a specific ampulla—canal system, and ¢ represents time.

Firing rate functions () are obtained by multiplying the
indexed Vg, values by a universal empirical gain function.
To build this gain function, we note that the resting tonic rate
in the absence of electric fields is known to be in the range of
30 to 40 Hz [11]. Data from the thornback ray suggest 100%
change in rate for each 5 pV of apical voltage fluctuation [19],
where negative drops are excitatory and positive fluctuations
are inhibitory, with a somewhat sigmoidal overall shape.

While those points provide anchors for the ampullary gain
function, the shape was derived by digitizing the experimen-
tal points found in electrophysiology experiments with skates
[11], to which we applied the standard Levenberg-Marquardt
algorithm for nonlinear fitting. The resulting canal gain
function can be seen in Figure 4.

In this treatment, we factor neither the natural relaxation
of voltage signals within the ampullary system nor the natural
relaxation of firing rate alteration in the primary afferents.
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These relaxations will be dominated by the rapidly develop-
ing electric potential changes over the short time scales of the
skate-dipole interaction (the most dramatic activity in the
results that follow include 1-2 s of closest approach). As
noted for weakly electric fish, electric perception is limited to
such short range that instantaneous data are presumably of
fundamental importance [31].

In addition to raw firing rate data, and to further explore
the potential fates of firing rates entering the DON, we use
the concept of firing-rate population vector, [32] which was
used successfully in the prey location analysis for the sand
scorpion and the clawed frog [2,3].

We use a basic form of a population vector, where its
heading (or yaw) in the horizontal plane of the skate is
determined by a weighted average of the headings of the
various canals. The weighting of each canal orientation is
simply based on its electrosensor’s firing rate. We thus
consider a canal with heading 0 to correspond to a unit
vector (cos 0, sin 0) on the canal plane. We do this for both the
right and left canal clusters. The population vector (py, py) is
then given by the weighted sum of individual unit vectors:

(o)™ = | S0 7(0.0c0s(0), 3 #(0,)5in(0) | (3)
RL RorL RorL
canals canals

We take this vector to be a kind of compass heading that
can bias the animal’s orientation. In other words:

(P, py) = P(c08Oyqy, 5iN0y4y);  Bygw = tan~! (%), @

b= \/pi+ 15 ’“

While we cannot confirm that the DON actually computes
such a population vector, it shows, at the very least, what
information is available to the skate from its peripheral
electrosense.

Results

To illustrate the first step of the calculations, we present an
example “snapshot” of signal voltages for the skate near a
source. Figure 5 displays potential differences developing
along the canals in Figure 2 for a skate approaching a source
that is 30 cm to its left and 10 cm in front of it (as in Figure 3).
Naturally, canals in the left hyoid ampullary cluster show the
stronger signals.

We now present two example “swim-by” scenarios, with a
skate swimming in a straight path past a nearby source
(Figure 6). The responses presented here do not assess
orientation behaviors; instead, they monitor the sensory
information available to the skate as it moves past a
bioelectric signal.

In the first scenario, a skate swims at 0.5 m/s past a source
dipole with a closest approach distance of 0.15 m, in a
direction parallel to the orientation of the source’s dipole. In
the second scenario, a skate swims again at 0.5 m/s, but with a
direction no longer parallel to the source’s dipole (45°). For
comparative purposes, the closest approach distance is again
set to 0.15 m.

As the skate moves in relation to the source in each of the
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Figure 4. Firing Rate Gain Function Used for Computing Neural Activity in the Primary Afferent Fibers Associated with the Ampullae
Available experimental data [11] was fitted to the sigmoid function 1.6 + 62 / (1 + 0.9 X exp(Vigna/11.5)).

doi:10.1371/journal.pcbi.0030113.g004

two swim-by scenarios, the electric signal Vg, associated
with each electrosensory canal will change. Consequently, the
associated firing rates also become functions of time (i.e., a
function of environmental variables such as skate-source
distance and relative orientation). Figures 7 and 8 present
firing rate snapshots taken at different moments in each
scenario.

As seen in Figure 6, canals in the right cluster for scenario 1
are closer to the source during the entire swim trajectory, and
their associated firing rates show the largest variations, as
depicted in Figure 7. Note that at skate-source distances
greater than 0.30 m, each firing rate is essentially at the
baseline value of around 34 spikesls.

As the separation distance decreases, the canals’ electric
signals change in a nonuniform way. This leads to nonuni-
form firing rate profiles associated with each canal, as

dictated by the firing rate gain function of Figure 4, with
the maximum change from the baseline firing occurring
around the closest skate-source approach.

Analogous to the previous case, canals in the left cluster for
scenario 2 are closer to the source during the entire swim-by,
and their associated firing rates show the largest variations, as
depicted in Figure 8. We again note that at skate-source
distances larger than 0.30 m, each firing rate is essentially at
the baseline value.

To further explore how much neural information is
available to the skate, we compute a firing rate population
vector for each dorsal hyoid ampullary cluster (Equation 3).
Figures 9 and 10 depict the resulting population vector
magnitudes versus time for each scenario, charting the 4 to 5
s surrounding the point of closest approach. We depict the
global or net population vector (i.e., summing for all hyoid
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Figure 5. Relative Ampullary Electric Signal Snapshot for a Skate Approaching a Source that Is 30 cm to Its Left and 10 cm in Front of It

Canal numbers correspond to those shown in Figure 1.
doi:10.1371/journal.pcbi.0030113.g005
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closest
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:

Figure 6. Two “Swim-By” Scenarios Used in the Simulations
doi:10.1371/journal.pcbi.0030113.g006

canals) as well as the bilateral left and right clusters
individually. Inputs from left and right are not combined in
the neural architecture until they reach the skate’s midbrain,
so the left and right vectors may be relevant to the DON (e.g,,
processing common mode rejection). Also, note that the most
significant variations occur within a total time of approx-
imately 1 s.

Like any vector, the population response includes angular
(or heading) information, which we relate to the actual
heading of the source (defined here as the angle between the
skate’s direction of motion and the vector pointing to the
source position). Relevant angles are depicted in Figure 11. It
is important to note that the dipole angle and the direction of

P /
s
-
>—>//
closest ,
approach

the skate’s motion remained fixed in each of the swim-by
scenarios, while the heading of the source would naturally
vary given the skate’s motion.

Figures 12 and 13 depict heading information from the
global or net population vector. We plot the vector headings
and the actual heading of the source dipole relative to the
skate over time during each encounter. Of note are the
abrupt discontinuities when the skate reaches the point of
closest approach to the source, and the near perfect match
(up to a constant phase) to the actual heading. In all of our
simulations, population vector headings were defined with
respect to the skate’s longitudinal axis, following the usual
counterclockwise mathematical convention. We note that
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Figure 7. Firing Rate Snapshots, Representing the Instantaneous System Activity for Swim-By Scenario 1

Snapshots when skate-source distance was 0.50 m (A), 0.35 m (B), 0.25 m (C), the closest approach of 0.15 m (D), and 0.20 m after the closest approach
(E). The abscissa refers to the canal numbers described in Figure 2. The ordinate refers to the firing rates associated with each ampulla. Dashed line

indicates resting discharge rate.
doi:10.1371/journal.pcbi.0030113.g007
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Figure 8. Firing Rate Snapshots, Representing the Instantaneous System Activity for Swim-By Scenario 2
Snapshots when skate-source distance was 0.50 m (A), 0.35 m (B), 0.25 m (C), the closest approach of 0.15 m (D), and 0.20 m after the closest approach

(E).

The abscissa refers to the canal numbers described in Figure 2. The ordinate refers to the firing rates associated with each ampulla. Dashed line

indicates resting discharge rate.
doi:10.1371/journal.pcbi.0030113.9g008

such a human-centric system of angle definition need not
bear any relation to the skate’s neural processing of its
electrical landscape. Hence, we believe constant offset phases
(e.g., 90° alternately added to Figure 12 and subtracted from
Figure 13), can be considered without decreasing the
predictive nature of the modeling data. In other words, we
do not assert that the net population vector should act like an
orientation compass toward the dipole source. Rather, we
point to relevant angular information encoded by the
neuronal population’s spiking activity.

Finally, we suggest experimental tests of the model and its
assumptions. The following analysis can be tested directly by
benchtop electrophysiology measurements in which investi-
gators use dipoles in various positions to map receptive fields
in anesthetized skates (e.g., [15]). We note that existing data
do not track dipole orientation.

In this simulation, a dipole is placed near a stationary skate,
and the dipole is simply rotated in the horizontal plane of the
skate without changing its position (Figure 14). This experi-
ment has not been conducted, to the best of our knowledge.
By monitoring the resulting firing rate activity and computed
population vectors, we can predict “sweet spots” or regions
in which the electrosensory system of the skate should show
specific and varied reactions to relatively small changes in
dipole orientation.

Given the sharp dependence of our modeling system on the
interplay of the canal geometry with the dipole field, a
significant variation in neural response results. The firing rate
snapshots of Figure 15 show differences that arise in the
ampullae simply by changing the relative angle between the
dipole and the skate. Such sharp contrast would not follow
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from a model where pore potentials were communicated
directly to the apical side of sensing cells [25-27]. Slight
rotations do not change pore magnitudes of electric potential
as appreciably as they change the canal potential differences
considered in our model.

Another way to exhibit the spiking activity dependence on
geometry is to plot the magnitude of the population vector
for each canal cluster versus the external dipole angle (Figure
16). Here, as in Figures 9 and 10, the population vectors for
both canal clusters have a magnitude of around 13.7 Hz when
the source is far away or absent (i.e., Viigna for each canal is
essentially zero). The maximum firing rate variation corre-
sponds to an external dipole angle around 60° for the right
cluster and 120° for the left cluster. The opposing nature of
the geometric relationship between the skate and the dipole
creates a predominance of positive electric potential signals,
which have an inhibitory effect on firing rates (see Figure 4).
A similar but excitatory result would be obtained if the
external dipole were behind the skate, rather than in front of
1t.

Discussion

Though bilaterally symmetric, the canal arrays are asym-
metric on either side as one moves from the anterior to
posterior regions of the skate. This has a dramatic effect on
the encoding of neural data (e.g., Figure 5), and we wish to
emphasize two features in particular. First, the suppressed
and fairly uniform signals exhibited by ampullae in the right
cluster (farther from the dipole) are dramatically different
from those of the left cluster (closer to the dipole). This type
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of uniformity in the contralateral signals would not emerge if
the ampullae responded directly to pore potentials, and it
does not emerge in data from a homogeneous array (see
Figures 17 and 18 below). Second, there is an abrupt reversal

of signal polarity for the short groups of canals on each side
that project medial on the body (canals 55-66 and 121-132 in
Figure 2). These subgroups effectively mimic the opposite
cluster; such a feature could presumably be of great use to the
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Figure 11. Angular Measures in the Skate-Source Geometry

To prevent multivaluedness issues, we define all angles in the usual
mathematical convention (i.e, 0°-360° range, counterclockwise with
respect to the skate’s longitudinal axis).
doi:10.1371/journal.pcbi.0030113.g011

skate in common mode suppression or signal amplification at
higher levels of neurosensory processing.

For the firing rates computed, it is important to note that
the variations revealed by our simulations are of significant
magnitudes for even a simple neuronal system to respond
accordingly. In a strict mathematical sense, this nonuniform
firing rate profile encodes enough information for a precise
location of the source, although empirical neurophysiological
evidence is required to determine the processing of this
information by the skate central nervous system.

The two main swim-by scenarios present fundamentally

Neural Information in the Electric Sense

different cases. In the first, the source and the skate are
aligned, and the source sits to the right of the skate’s path; in
the second, the source and the skate are not aligned, and the
source sits to the left of the skate’s path. While the skate
clearly receives different information in these two scenarios,
the global qualitative similarities of the firing rate snapshots
for scenarios 1 and 2 overwhelm their differences.

First we note that firing from ampullae on the side
opposite of the source are nearly unaffected, even when the
skate passes within 15 cm of the source. This corresponds to
the left cluster in Figure 7 and right cluster in Figure 8, and is
consistent with the relative potential data shown for the right
cluster in Figure 5. Presumably, such consistent lack of
excitation or inhibition would be very beneficial to the skate’s
source location because it will provide a reference for
contralateral excitation and inhibition by the source bio-
electric field. Again, this is not the case for an artificial array
of homogeneous canals.

Next, we note the dramatic changes for steps D and E for
each trial. A sharp pattern of excitation and inhibition arises
for the cluster nearest the source during the approach
(Figures 7D and 8D). While some of the more anterior organs
(e.g., canals 1-15 in Figure 7) show firing excitations,
ampullae corresponding to the more posterior canals exhibit
nearly complete inhibition (e.g., canals 35-45 in Figure 7).

As the skate passes and moves away from the source,
consistent excitation emerges across the ipsilateral side. In
particular, note that the organs experiencing inhibition on
approach shift abruptly to excitation. In Figure 7D and 7E,
for instance, organs 35-45 shift from near total inhibition to
near 100% excitation over a travel distance of only a few
centimeters by the skate. Not only would sharp changes

-
1

o
»n
L

Skate-Prey Separation (m)

360
330 -

300

Heading (deg)
N
3
1

210 7 Actual Heading \\
——— Population Vector Data \
180 N
1 1 1 1
0 1 2 4
Time (s)

Figure 12. Net Population Vector Heading Data and Actual Source Heading versus Time for Scenario 1
The top graph depicts the separation distance over time. For this plot, a constant phase of 90° was added to the population vector data (see text).

doi:10.1371/journal.pcbi.0030113.g012
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Figure 14. Geometric Arrangement for the Simulated Skate-Dipole
Benchtop Experiment
doi:10.1371/journal.pcbi.0030113.g014
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provide for simple interpretations, the rate of change
demonstrated in these simple trials fits the response
characteristics of the ampullae. Given the skate’s speed of
0.5 m/s, the organs in question experience this dramatic
change over about 0.1 s, or at a frequency of 10 Hz. The time
signature of this signal is within the ideal ampullary
bandwidth of these organs [11,19]. And when considering
the natural relaxation of firing rate alterations—afferent
rates typically accommodate to a constant stimulus in less
than 5 s [10]—the relatively quick changes shown in our trials
again are within these neurophysiological constraints of the
skate primary afferents. Both trials demonstrate asymmetry
between approach and retreat situations, thus providing clear
information concerning the anterior versus posterior source
location.

We note with interest that the largest excitations were
observed for sources in anterior locations to the body and
after the skate passed the dipole source. This observation is
consistent with the functional subunit hypothesis [17], and
indicates that the dorsal hyoid clusters may best detect and
encode information concerning anterior bioelectric sources.
As skates are not just predators but are also potential prey,
our results suggest that these clusters may be used to detect
the approach of a large predator or conspecific. The dorsal
location adds weight to this speculation.

In terms of electric source localization, the net population
vector headings appear in Figures 12 and 13. Despite very
different geometric scenarios in scenarios 1 and 2 (e.g,
opposite relative source-to-skate position and orientation),
the data relative to the actual source headings are virtually
identical. The population vector headings follow the change of
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the actual source headings with precision, with two notable
deviations. First, the population vector headings do not
match the exact values of the source headings; second, an
abrupt shift of direction occurs at the point of nearest
approach. The fact that the precise angle values of the
computed vectors do not match the apparent source headings
is of very little concern, since we have imposed a human-
centric system of angle definition (e.g., Figure 11). Moreover,
a skate could presumably compensate for such regular offsets,
much as visual processing inverts the actual image on the
retina.

Population Vector Magnitudes (Hz)

—QO— Right Cluster
—{— Left Cluster
k-

Baseline

T T T T T T T T T T
o 20 40 80 80 100 120 140 160 180

Dipole Angle (deg)

Figure 16. Population Vector Magnitude as a Function of the External
Dipole Angle, as Defined in Figure 14

The “baseline” curve represents the magnitude of the population vector
in the absence of an electric dipole field.
doi:10.1371/journal.pcbi.0030113.g016
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The abrupt shift at the point of closest approach (at the 2-s
mark) coincides with the magnitude of the net vector falling
briefly to zero. (See solid lines for net vector magnitudes in
Figures 9 and 10.) We have confirmed that these shifts are
absolutely independent of our choice of reference frame—
the shifts are not an artifact of our angle definitions. As the
skate moves from one side of the source dipole to the next,
such a shift could be of significant biological benefit. The
abrupt changes of vector magnitude and direction presum-
ably give the skate a very clear signal as it comes very close to
a prey, predator, or mate, and transitions from approach to
moving away.

In summary, the skate electrosensory array can provide a
wealth of information on the heading of a nearby bioelectric
source by using a simple population vector scheme. The
morphology is well suited to tracking the source location,
including information concerning whether the skate is
moving toward or retreating from a source. In addition,
population vector magnitudes vary sharply at the position of
closest approach. This presumably supplies clear neural
information that the source is within critical, minimum
distance associated with the given swimming trajectory.
Moreover, the changes in firing activity happen over a time
scale that is ideally suited to the frequency response of the
electrosensors.

It is not unreasonable to suggest that the overall shape of R.
laevis evolved at least in part for the tuning of electrosensory
tasks, especially as the dorsal hyoid canal pores extend to the
periphery of the skate’s wings (Figure 2). The location of the
hyoid pores follows this pattern for the canal systems of most
skates [24].

Does the skate morphology confer an obvious advantage
over, for instance, a simple homogeneous array of canals? We
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ran the same simulations for an artificial set of dorsal hyoid
electrosensors with associated canals of uniform 10-cm
lengths and equal angular spacing covering 360° of horizontal
arc.

Figure 17 depicts a homogeneous array of 132 canals, with
66 per cluster, as in the skate (compare with Figure 2). The
two clusters have the same lateral spacing as those in the
skate. The canal lengths of the artificial array are set to 10 cm,
the average length of those for the skate’s dorsal hyoid
cluster; the angular distribution is similarly uniform, with
canals placed every 2.78° as opposed to the skate’s actual
canals, which have some densely spaced canals in terms of
orientation, while some others are spaced more broadly.

We compute a snapshot of V., according to Equation 2,
for each of the canals, exactly as we did for the skate array.
The results are shown in Figure 18 (compare with Figure 5).
The significant differences for the skate versus the homoge-
neous, artificial array are as follows. The skate signals are,

Neural Information in the Electric Sense

naturally, of much greater range, reflecting the range of canal
lengths—the signals of the skate’s system are three times that
of what a homogeneous array would offer. Even if one adjusts
the canal lengths of this artificial array to the maximum skate
canal length, however, a more fundamental difference
remains. The canal-to-canal signal differences vary in a
moderate fashion for the artificial array, while those in the
skate vary dramatically, even for some nearly adjacent canals.
Figure 5 exhibits signals that change by approximately 50 %
over as few as three canal spacings, while Figure 18 shows that
a similarly dramatic difference can only be obtained over 15-
20 canal spacings.

Further computations of firing profiles and population
vector magnitudes exhibit the same fundamental differences
shown in Figure 18. The size of signals are typically smaller
for the artificial canal array, and in all cases the signals
change more gradually, as shown both over the array of
canals, and also over time, in the case of the population
vector magnitudes.

These trials confirm that a homogeneous array can also
track the source dipole, but at least two distinct advantages
for the skate’s varied canal morphology emerge. First, the
“snapshot” canal voltages (see Figure 5 and Figure 18) are
much less dramatic for the artificial array; the contralateral
cluster does not exhibit a homogenous set of voltages, and the
variation of signals within the near-side cluster exhibits a
much less pronounced change. In essence, the homogeneous,
artificial array would not provide the same sharp contrast of
signals between organs. Second, though firing rates and
population vectors change for the artificial array, they change
more slowly over time. As noted previously, referencing
Figure 7, a subset of canals can change their firing rate from
near 0 to 50 Hz over about 0.1 s as the skate moves past the
dipole. Similarly, the skate’s morphology provides population
vector magnitudes that nearly double in less than 0.25 s, while
a similar change in the artificial array takes a second or more.
This is crucial when one considers that the electrosensory
system of the skate is finely tuned to changes in a narrow
bandwidth peaked between 2 and 10 Hz [10-12,19]. Hence, an
abrupt change evolving in a fraction of a second would be
much more useful than a change that takes a second or more.

To correctly model the function of the electrosensory
periphery, it is critical to understand the excitation of canal
arrays by bioelectric fields. We have proposed a simple,
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Figure 18. Relative Ampullary Electric Signal Snapshot for the Artificial Array Approaching a Source that is 30 cm to Its Left and 10 cm in Front of It

doi:10.1371/journal.pcbi.0030113.g018
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specific test for the modeling scheme advocated here. We
identify an area of specific opposite predictions from our
model and that of cable-like, equipotential canal function. As
the dipole of Figure 14 turns between 0°-90° the anterior
pore potentials (e.g., for canals 0-50 in the left cluster)
become increasingly positive, via the dot product of Equation
1. Hence, a cable-like canal function, conveying the pore
potential to the ampullae, would predict inhibited firing rates
for increasing apical potentials. However, our model predicts
the opposite, as can be seen in Figure 15A-15C. The turn
between 0° and 90° yields negative Vg, values and excited
firing rates. Furthermore, according to the data shown in
Figures 15 and 16, a quick dipole rotation from just 0° to 45°
would appreciably alter not only the firing rates associated
with the anterior canals but also the population vector
magnitudes. These changes could be exhibited in primary
afferent rates, ventilatory activity, heart rate, or even DON
activity. A traditional theory by which canals simply convey
pore voltage signals to the ampullae would not be as sensitive
to the canal’s overall alignment with the dipole field vectors.

We have modeled the neural responses of only a small
subset of the approximately 1,400 ampullary canals in the
barndoor skate. While we chose the approximately 132 hyoid
canals that project to the dorsal surface of the skate’s body for
their apparent sensitivity and to present clear and finite data,
future efforts incorporating all clusters are required to
understand central processing and integration of receptor
population data. Even more dramatic and discontinuous
rostral and caudal projections are found in the dorsal canals
of the skate superficial ophthalmic cluster [14]. In addition,
there are approximately 700 total hyoid canals that project to
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the ventral surface. These canals are more continuous in
distribution, and have prominent contralateral projections
that cover a wider angular field. Even more dramatic
differences in canal projection vectors exist among the dorsal
and ventral buccal clusters. Application of the electro-
dynamic model that integrates responses of these ampullary
groups would provide a more comprehensive model of
electrosensory processing of environmental fields in feeding,
social behavior, and navigation. In addition, it would permit
development of models for testing the functional subunit
hypothesis [14], in which information from subgroups of

canals in different clusters that have similar directional

projections may be integrated to maximize direction compu-
tations.

Future comparative work that assesses electrosensory-
processing mechanisms across taxa will also provide impor-
tant clues on the evolution and diversity of ampullary arrays
seen in elasmobranch fishes.

Acknowledgments

The authors thank Ariel Rivera and Leo van Hemmen for discussions
of the model. We are also grateful to the anonymous reviewers for
insightful comments and suggestions.

Author contributions. BRB and TCT conceived the experiments,
and MC and BRB designed the experiments. MC performed the
experiments. BRB, MC, and TCT analyzed the data. MC and TCT
contributed reagents/materials/analysis tools. BRB, MC, and TCT
wrote the paper.

Funding. The authors received no specific funding for this study.

Competing interests. The authors have declared that no competing
interests exist.

16. Kalmijn A (1997) Electric and near-field acoustic detection, a comparative

study. Acta Phys Scand 161 (Supplement 638): 25-38.

. Brown BR (2002) Modelling an electrosensory landscape: Behavioral and
morphological optimization in elasmobranch prey capture. ] Exp Biol 205:
999-1007.

. Kajiura SM, Holland KN (2002) Electroreception in junvenile scalloped
hammerhead and sandbar sharks. J Exp Biol 205: 3609-3621.

. Montgomery J (1984) Frequency response characteristics of primary and

secondary neurons in the electrosensory system of the thornback ray.

Comp Biochem Physiol 79: 189-195.

Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the

midbrain of the clearnose skate, Raja eglanteria. ] Comp Neurol 207: 274-

282.

New JG, Bodznick D (1990) Medullary electrosensory processing in the little

skate II. Suppression of self-generated electrosensory interference during

respiration. ] Comp Physiol A 167: 295-307.

Montgomery ], Bodznick D (1994) An adaptive filter that cancels self-

induced noise in the electrosensory and lateral line mechanosensory

systems of fish. Neurosci Lett 174: 145-148.

. Bigelow H, Schroeder W (1954) Fishes of the western North Atlantic. New
Haven (Connecticut): Yale University Press.

. Raschi W (1986) A morphological analysis of the ampullae of Lorenzini in
selected skates (Pisces, Rajoidei). ] Morph 189: 225-247.

. Waltman B (1966) Electrical properties and fine structure of the ampullary

canals of Lorenzini. Acta Physiol Scand Suppl 264: 1-60.

Obara S, Bennett MVL (1972) Mode of operation of ampullae of Lorenzini

of the skate, Raja. ] Gen Physiol. 60: 534-557.

Bullock TH (1973) Seeing the world through a new sense: Electroreception

in fish. Am Sci 61: 316-325.

Kalmijn A (1973) Electro-orientation in sharks and rays: Theoretical and

experimental evidence. Scripps Institution of Oceanography Reference

Series, contribution no. 73-39. pp. 1-22.

Jackson JD (1975) Classical electrodynamics. New York: Wiley. 848 p.

Brown BR, Hughes ME, Russo C (2005) Infrastructure in the electric sense:

Admittance data from shark hydrogels. ] Comp Phys A 191: 115-123.

von der Emde G (2004) Distance and shape: Perception of the 3-

dimensional world by weakly electric fish. ] Physiol Paris 98: 67-80.

Georgopoulos AP, Schwartz A, Kettner RE (1986) Neuronal population

coding of movement direction. Science 233: 1416-1419.

20.

21.

22.

[

26.
27.
28.
29.
30.
31.

32.

June 2007 | Volume 3 | Issue 6 | 113



