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In this work we develop a microscopic physical model of early evolution where phenotype—organism life
expectancy—is directly related to genotype—the stability of its proteins in their native conformations—which can
be determined exactly in the model. Simulating the model on a computer, we consistently observe the ‘‘Big Bang’’
scenario whereby exponential population growth ensues as soon as favorable sequence–structure combinations
(precursors of stable proteins) are discovered. Upon that, random diversity of the structural space abruptly collapses
into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at
timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in
a population approximately follows a power law. The separation of evolutionary timescales between discovery of new
folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are
power-law distributed, closely matching the same distributions for real proteins. On the population level we observe
emergence of species—subpopulations that carry similar genomes. Further, we present a simple theory that relates
stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-
principles picture of how first-gene families developed in the course of early evolution.
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Introduction

Molecular biology has collected a wealth of quantitative
data on protein sequences and structures revealing complex
patterns of the protein universe, such as markedly uneven
usage of protein folds and near–scale-free character of
protein similarity networks [1�5].On a much higher level of
biological hierarchy, ecology, evolution theory, and popula-
tion genetics established a framework for studying speciation,
population dynamics, and other large-scale biological phe-
nomena [6�8]. While it is widely accepted that gene families
and the protein universe emerged during the course of
molecular evolution through selection [9�11], there is a
substantial gap in our conceptual and mechanistic under-
standing of how molecular evolution occurred or what the
determinants of selection are. Indeed, evolution, as we
understand it, proceeds at the level of organisms and
populations but not at the level of genomes. Evolutionary
selection at the molecular level occurs due to a relation
between genotype and phenotype, although a detailed
understanding of this relation and its consequences for
molecular evolution remains elusive.

A number of phenomenological models (e.g., Eigen’s
quasispecies model) were developed where fitness of an
organism was related to the sequence of its genome [12–14]. A
standard definition of fitness in phenomenological models is
the growth rate of a population that is higher for the more fit
species. However, the relationship between genotype and
phenotype in quasispecies (QS) and similar population
genetics (PG) models is purely phenomenological. For
example, in single-fitness peak models, one specific genotype

is postulated to be most fit, while deviations from it confer
selective disadvantage. Despite providing several important
insights, these types of approaches lack a fundamental
microscopic connection between fitness and quantities of
proteins that are both easily justifiable on biological grounds
and measureable (e.g., structure/stability, function, or regu-
lation). Therefore, such models cannot accurately describe
molecular evolution of proteins.
On the other hand, a number of models were proposed that

focus on emergence and evolution of sequences of model
proteins and RNA under direct pressure on their molecular
properties such as stability [11,15�18], folding kinetics [19,20],
and mutational robustness [21]. Schuster and Stadler [22] first
studied the evolution of biological macromolecules, RNA, in
the context of population dynamics. Later, in a series of
papers, Taverna and Goldstein [10] used an Eigen model of
reaction flow to grow populations of proteins modeled as 2-D
25 mers. These authors showed that when the requirement to
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exceed certain stability thresholds is imposed, the resulting
distribution of structures in the evolved population appears
highly skewed toward more designable structures [23] and
more robust (i.e., less susceptible to mutations) proteins [24].

One of the most surprising features of the protein universe
is an uneven and broad distribution of proteins over folds,
families, and superfamilies. While this fact had been noted by
many researchers long ago [1,4,25,26], the quantitative
descriptions of these distributions began to emerge only
recently. Huynen and van Nimwegen found that sizes of
paralogous gene families follow a power-law distribution [3].
Gerstein and coworkers [5] observed a power-law distribution
of frequencies of several other properties of gene families as
defined in the Structural Classification of Proteins (SCOP)
database [27]. Dokholyan et al. [2] studied a network of
structural similarities between protein domains (called the
protein domain universe graph, or the PDUG) and found that
distribution of connectivities within the PDUG follows a
power law (within a limited range of connectivity variance),
making it a finite size counterpart of a scale-free network.
This is in striking variance with an expectation from random
distribution of folds, which would result in an (approx-
imately) Gaussian distribution of connectivities of the PDUG.

The ubiquitous nature of power-law dependencies of many
characteristics of gene families and of the protein universe
may suggest their possible common origin from the funda-
mental evolutionary dynamics and/or physics of proteins.
Huynen and van Nimwegen [3], Gerstein and coworkers [5],
and Koonin and coworkers [9,28,29] proposed dynamical
models (the version proposed in [28] is called the birth, death,
and innovation model [BDIM]) on the basis of gene
duplication as a main mechanism of creation of novel types.
Such models, while providing power-law distribution of
family sizes in some asymptotic cases, are sometimes based
on assumptions that call into question their generality. In
particular, as pointed out by Koonin and coworkers, for gene

duplication dynamic models to provide nontrivial power-law
distributions of paralogous family sizes, one has to assume
that the probability of gene duplication per gene depends in
a certain regular way on the size of an already existing gene
family. Further, even under this assumption, the power-law
distribution in the birth, death, and innovation (BDIM) model
arises only asymptotically in a steady state of evolutionary
dynamics [29]. In contrast, the duplication and divergence
phenomenological model of Dokholyan et al. [2] did not use
such dramatic assumptions. However, this model is limited to
an explanation of the scale-free nature of the PDUG, and it
does not provide any insight as to the nature of the power-law
distribution of gene family sizes. In protein sequence space, a
similar approach has been employed by Qian et al. [5].
However, models like the ones proposed in [2,3,5,28] and
other works are purely phenomenological in nature, whereby
proteins are presented as abstract nodes and where
sequence–structure relationships are not considered.
Here, we present a microscopic physics-based model of

early biological evolution (Figure 1) with a realistic generic
population dynamics scenario where fitness (i.e., life expect-
ancy) of an organism is related to a simple necessary
requirement of functionality of its proteins—their ability to
be in native conformations. Since the latter can be estimated
exactly in our model from sequences of evolving genomes, the
proposed model provides a rigorous, microscopic connection
between molecular evolution and population dynamics. We
demonstrate that the model indeed bridges multiple evolu-
tionary timescales, thus providing an insight into how
selection of a best-fit phenotype results in molecular selection
of proteins and formation of stable long-lasting protein folds
and superfamilies. Furthermore, the coupling of molecular
and organismal/populational scales results in the emergence
of species—subpopulations of evolved organisms whose
genomes are similar within their groups and dissimilar

Figure 1. Schematic Representation of the Genome and Population

Dynamics in the Model

Individual genes undergo mutations and duplications. Organisms as a
whole can replicate, passing their genomes to the progeny, or die,
effectively discarding the genome.
doi:10.1371/journal.pcbi.0030139.g001
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Author Summary

Here, we address the question of how Darwinian evolution of
organisms determines molecular evolution of their proteins and
genomes. We developed a microscopic ab initio model of early
biological evolution where the fitness (essentially lifetime) of an
organism is explicitly related to the evolving sequences of its
proteins. The main assumption of the model is that the death rate of
an organism is determined by the stability of the least stable of their
proteins. A lattice model is used to calculate stability of all proteins
in a genome from their amino acid sequence. The simulation of the
model starts from 100 identical organisms, each carrying the same
random gene, and proceeds via random mutations, gene duplica-
tion, organism births via replication, and organism deaths. We find
that exponential population growth is possible only after the
discovery of a very small number of specific advantageous protein
structures. The number of genes in the evolving organisms depends
on the mutation rate, demonstrating the intricate relationship
between the genome sizes and protein stability requirements.
Further, the model explains the observed power-law distributions of
protein family and superfamily sizes, as well as the scale-free
character of protein structural similarity graphs. Together, these
results and their analysis suggest a plausible comprehensive
scenario of emergence of the protein universe in early biological
evolution.

Model of Early Evolution



between groups. The resulting protein universe features
power-law distribution for gene family and superfamily sizes
closely matching real ones. The proposed model can be
viewed as a first step toward a microscopic first-principles
description of emergence and evolution of the protein
universe.

Results

Population Dynamics, Fold Discovery, and Punctuated
Evolution

Our evolution dynamics runs start from an initial popula-
tion of 100 organisms, each having the same one primordial
gene in their genomes. Initial gene sequence is random. Runs
proceed according to evolutionary dynamics rules as de-
scribed in the Methods section (see also Figure 1). The life
expectancy of an organism is directly related to the stability of
its proteins as explained in the Methods section; briefly, the
death rate d is inversely related to protein stability Pnat,

d ¼ d0ð1�min
i

PðiÞnatÞ: ð1Þ

This equation expresses a postulate that all genes of early
organisms were essential at the given time; no a priori
assumptions about the number of these genes are made.

We found that out of 50 simulation runs starting with
different starting sequences, 27 runs successfully resulted in a
steady exponential growth of the population, whereas in 23
runs the population has quickly gone extinct. A typical
behavior of the population growth and protein structure
dynamics in a successful evolution run is shown in Figure 2.
After a period of ‘‘hesitation’’ lasting for about 100 time
steps, a steady exponential growth of the population sets in
(Figure 2B). In Figure 2C, we present the mean native state
probability Pnat of all proteins present in the population at a
given time. Owing to mutations and selection, Pnat steadily
increases with time and dramatically exceeds the mean Pnat

for random sequences, Pnat
rand ¼ 0.23. In contrast to earlier

models [10], the selection pressure is applied to whole
organisms rather than to individual protein molecules. The
genotype–phenotype feedback, which we model by Equation
1 (see also Methods), transfers the pressure from organisms to
individual proteins to gene sequences. Figure 2B and 2C show
that our selection mechanism works and results in the
discovery of stable proteins due to evolutionary pressure.

Using our model, we can follow each structure in the
population. In Figure 2A, color hue encodes the number of
genes in the population corresponding to each of the 103,346
lattice structures (ordinate) as a function of time (abscissa).
Structures marked in green are the most abundant in
population at a given time, while black background corre-
sponds to structures not found in any of the evolving
organisms. The most important feature of this plot is the
appearance of specific structures that correspond to highly
abundant proteins comprising a significant fraction of the
gene repertoire of the population. In what follows we will call
them dominant protein structures (DPSs). Such proteins
visually appear as bright lines on Figure 2A. What is the
genesis of DPSs, and how is their appearance related to
population growth or decay?

To answer this question, let us track the development of the
population of structures in time by comparing the structure

repertoire, the population size, and Pnat plots. At t ¼ 0, the
proteome consists of a single sequence–structure combina-
tion (a single line on the structural repertoire plot), which
corresponds to all individuals in the initial population having
that structure in the genome. Over time, random mutations
diverge sequences in each organism such that the dominance
of a single structure is lost. This can be seen as a smeared line
on the structural repertoire plot, as shown in Figure 2A, t ,

100. However, at a certain point, very favorable sequence–
structure combinations are discovered. They represent DPSs
whose incorporation into the genome leads to an abrupt
increase of Pnat and explosive exponential growth of the
population through increase in fitness. Shortly after the
discovery of that DPS, the diversity of the structural space
abruptly collapsed, as most of the organisms converge toward
the newly discovered DPS. Such a dramatic event, discovery
of a limited number of dominant proteins and ensuing
exponential growth of the population, can be called the
‘‘Biological Big Bang,’’ following a loose analogy with
astrophysics. As seen on Figure 2A, the emerged dominant
folds are very persistent in time. Nevertheless, fold discovery
can occur at later stages of evolution. For example, in this
particular simulation, at t ’ 1,300, new folds were discovered
(white arrow in Figure 2A), they become new DPSs, and the
initial DPSs are completely replaced by the new folds by t ’

1,600. This switchover, accompanied by a marked increase of
Pnat, is a clear manifestation of punctuated discoveries of new
folds, coupled with selection at the organismal level.
Even though the number of organisms increases exponen-

tially, the number of genes in each genome increases very
slowly (and stabilizes after the discovery of DPSs) (Figure S1,
red curve). Indeed, large genomes are not very advantageous
in our model, as mutations occur in all of the genes, whereas
the death rate is controlled by the gene with the lowest Pnat.
Thus, it is only this gene that bears the brunt of selective
pressure. Therefore, the rest of the genome accumulates
mutations and is more prone to deleterious mutations. Unless
all of the genes are very carefully selected (or formation of
pseudogenes is allowed), a larger number of genes means that
there is a substantial probability that a point mutation will
result in a sequence–structure combination with a very low
Pnat, immediately killing the organism. The observed slow
increase of the size of the genome reflects the subtle balance
between the selection pressure and gene duplication and is
analyzed in more detail below. Remarkably, the average
number of genes in the surviving organisms decreases with
increasing mutation rates (Figure S7). Indeed, if every protein
is essential, then the probability of organism death due to a
deleterious mutation is lower in organisms with shorter
genomes. This result allows direct experimental verification
and clearly sets the current model apart from the previous
sequence evolution simulations [10], which focused on the
properties of individual proteins.
Figure S2 shows the structural repertoire and population

size of an unsuccessful simulation run, where the population
quickly became extinct. This simulation did not result in a
discovery of a stable fold, and the structural space was evenly
filled until the extinction of the population. We found
(unpublished data) that the choice of starting sequence does
not have any significance in determining whether a particular
simulation run will result in exponential growth or extinc-
tion. Furthermore, in the case of most unsuccessful evolution
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Figure 2. Time Progression of an Evolution Run

(A) Structural repertoire of an exponentially growing population as a function of time (abscissa) is shown. Ordinate represents the sequential number of
the structure out of the 103,346 possibles, and abundance of a structure at a given time is encoded by color. Bright green, abundant structures; black,
rare or nonexistent structures. Arrows point to the discoveries of DPSs (bright lines in the structure repertoire).
(B) Population as a function of time is presented. Exponential growth sets in as soon as stable DPSs have been found.
(C) Shown is mean native state probability Pnat, an equivalent of mean population fitness as a function of time.
doi:10.1371/journal.pcbi.0030139.g002
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runs, the genome size rapidly increases with time (Figure S1,
blue curve), decreasing the average evolutionary pressure per
gene and making the discovery of DPSs less likely.

Based on these observations, we conjecture that biological
evolution, exponential population growth, and existence of
stable genomes are possible only after the discovery of a
narrow set of specific protein structures.

Emergence of Families and Superfamilies
To quantify the persistence of the DPS during evolution,

we calculated the distribution of DPS lifetimes, defined as the
timespan during which a structure comprises more than 20%
of the genes present in the most populated structure, i.e., the
time between emergence of a DPS and its extinction in the
population (see Figure 3A). We consider only DPSs that
already completed their ‘‘lifecycle,’’ i.e., the DPSs that

emerged and went extinct over the time of an evolutionary
simulation. It is clear from Figure 3B that the lifetime of a
DPS is much greater than that of an organism or the average
time between successive mutations. Moreover, the distribu-
tion of DPS lifetimes clearly follows a power-law–like
distribution. The long nonexponential tail of the distribution
demonstrates that some protein folds are extremely resistant
to mutations and may persist over thousands of generations.
Over such a long time, diverse protein (super)families are
formed around the DPS folds. This is illustrated on Figure 4A,
which shows the distribution of sizes of evolved families and
superfamilies of proteins. To avoid confusion, we note that
families and superfamilies here are defined not necessarily as
sets of paralogous sequences but in the same way as they are
defined in SCOP (Structural Classification of Proteins) [27]:
protein families are defined as sets of all (not necessarily

Figure 3. Distribution of Life Times of DPSs

(A) Lifetimes are defined as a span between the emergence of a DPS when it takes over at least 20% of the gene population (bright line) until its
extinction as a DPS when it no longer dominates the population.
(B) The lifetime distribution of DPSs approximately follows a power law with exponent 1.87. DPS folds persist over many generations and eventually
give rise to protein superfamilies. Blue line, mean lifetime of an organism.
doi:10.1371/journal.pcbi.0030139.g003
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belonging to the same organism) homologous sequences that
fold into a given domain structure, and superfamilies are
defined as all monophyletic sets of sequences whose homol-
ogy may not be detectable by sequence comparison methods,
but which nevertheless fold into structurally similar domains.
The statistics of protein families is dominated by orthologous
genes in contrast to paralogous families studied in [5,9]. As
shown in Figure 4A, both family and superfamily size
distributions of evolved proteins follow almost perfect power
laws with power-law exponent being greater for superfamilies
(�2.92) than that for families (�1.77).

To compare this result with real proteins, we plotted the
distribution of family and superfamily sizes of real proteins.
As a measure of family sizes, here we estimated the number of
homologous sequences that fold into a given domain (see
Methods), and as a proxy for superfamily size we estimated
the number of functions performed by each domain. Clearly

the distributions in Figure 4B follow power-law statistics, and
as in the model, the exponent for the superfamily distribu-
tion (�2.2) is greater than that for families (�1.6). Quantita-
tively, the slopes of the model and real distributions are
similar.

Genome Sizes of Model Organisms
As mentioned above, the genomes of model organisms

from exponentially growing populations are rather short
(about three genes) in contrast to the extinct populations,
where uncontrolled gene duplication is observed (Figure S1).
To better understand this phenomenon, one should consider
the distribution of protein stabilities Pnat before and after a
round of mutations. Suppose each genome has N genes, and
the fitness (inversely related to the probability of death of an
organism) of the genome is defined by f ¼ minfPð1Þnat ; :::;P

ðNÞ
nat g.

At each time step, each gene in the genome has an equal
probability of mutation. For simplicity, we assume that the
distribution of stability Pnat of a lattice protein after a point
mutation (i) does not depend on the stability before the
mutation and (ii) is uniformly distributed between 0 and 1.
Such a crude approximation works surprisingly well for
lattice proteins (see Figure S3) and allows for an analytic
calculation of the average genome fitness f 9 after a round of
point mutations (see Methods). The average fitness after a
point mutation depends on the number of genes N and
original fitness f, and since larger genomes accumulate more
mutations, they are more prone to a decrease in fitness after
the mutation. In particular, if the fitness of an original
genome was f, then after one round of point mutations the
average new fitness f 9 will be no less than f only if the genome
is sufficiently short, namely if

N ,
3f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17f 2 � 16f þ 8

p
2f

: ð2Þ

In other words, on average, organisms with more than N
genes will decrease their fitness after a point mutation and
will be eventually washed out from the population. Thus,
Equation 2 establishes an upper boundary on the number of
genes per organism at a given level of stability f ¼ minfPðiÞnatg
in the weakest link model of evolution with lattice proteins.
In Figure 5, we plotted the predicted boundary from
Equation 2 and the results of 50 simulation runs, where we
show the scatter between the average number of genes per
organism N in a population and average stability Pnat of
proteins in a population at every time step during each of the
runs. As predicted by Equation 2, only organisms with
sufficiently short genomes survive at a given level of protein
stability; the higher the stability, the lower the maximum
possible number of genes per organism. Indeed, in a genome
consisting of very stable proteins, most of the mutations are
deleterious and confer a lethal phenotype in our evolutionary
model. In this particular model, no more than three genes can
be present in a genome at very high values of Pnat. It should
be noted that this consideration applies only to the
equilibrium size of the genome at large evolutionary times
and does not describe the entire course of its evolution in
time (Figure S1).
A more realistic distribution of changes of Pnat upon

mutation and a more detailed consideration of the effect of
mutations on the fate of organisms result in realistic

Figure 4. Distributions of Protein Family and Superfamily Sizes in Model

Evolution and in Reality

Distribution of family and superfamily sizes (A) model evolution. Blue
triangles represent the number of sequences folding into the same
structure (gene family); the blue solid line approximates a power law
with exponent �1.77. Red circles, distribution of the number of
nonhomologous (Hamming distance .56%) sequences folding into
the same structure (superfamilies); red solid line, a power law with
exponent�2.92.
(B) Orthologous gene family and superfamily sizes in real proteins are
shown. Red circles, the number of different functions performed by each
domain as defined by InterPro (Bin size ¼ 2 and Pearson R ¼ 0.97 of fit
with slope ¼ �2.2); blue triangles, the number of nonredundant
sequences folding into each domain. (Bin size ¼ 10 and Pearson R ¼
0.92 of fit with slope¼�1.5.)
doi:10.1371/journal.pcbi.0030139.g004
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estimates of genome sizes for real organisms (K. B. Zeldovich,
P. Chen, and E. I. Shakhnovich, unpublished data).

Emergence of Clonal Lines or Species
The exact nature of the model gives us direct access to the

genomes of all evolved organisms, and an interesting question
is whether all evolved genomes are similar (monoclonal or
single-species population), and, if not, can they be clustered
into distinct clonal lines or species. It turns out that the
number of DPSs in the evolved population is a very good
indicator of species formation. In many cases, there is only
one DPS in the evolved population. Then, the genomes of all
organisms are similar, and the population is monoclonal. A
more interesting case is presented in Figure 6A, where two
different DPSs corresponding to structures 10,107 (‘‘A’’) and
15,550 (‘‘B’’) (in our arbitrary numbering) have evolved. Are
these structures randomly distributed between organisms, or
are there groups of organisms preferentially using structure
A, but not B, and vice versa? In the latter case, one could
argue that two clonal lines or species have evolved, as each of
the groups will have its own and distinct set of protein
structures, and correspondingly, sequences. It turns out that
in 1,536 organisms in the population, at least one gene
encodes for the structure A, in 2,767 organisms, at least one
gene encodes for B, but there are no organisms that include
both A and B in their genomes. A total of 697 organisms have
neither A nor B in their genomes. Therefore, organisms
having the DPS of fold A in their genomes are very distinct
from the organisms with the fold B. This difference is further
illustrated in Figure 6B, where we plotted the histograms of
pairwise Hamming distances between the sequences encoding
for structures A and B. The black curve represents the
distribution of all pairwise Hamming distances between the
sequences encoding for structure A; the red curve corre-

sponds to structure B. Both curves are shifted toward lower
values of the Hamming distance, illustrating a certain degree
of similarity of multiple sequences encoding for the same
structure. However, the Hamming distance between the
sequences encoding for A and sequences encoding for B
(green curve) is much larger and is very close to that of purely
random sequences. Therefore, in sequence space, we can
identify two groups of sequences that are similar within each
group and dissimilar across the groups. Thus, the genomes of
our model organisms can be classified according to their
membership in the two well-defined groups of sequences,
which is our model analogue of genome-based taxonomy. It is
interesting to note that since our model is purely divergent
and lateral gene transfer is not allowed, the evolving lines (or
species) of organisms remain isolated, each evolving around
its own DPS.

Structural Similarity Network of Evolved Proteins
In the discussion of structures of evolved proteins, an

important global characteristic of the set of evolved proteins
is the PDUG [2]. In this graph, nonhomologous proteins are
linked by an edge if their structural similarity score exceeds a
certain threshold. It is known that in natural proteins [2], the
size of the largest cluster (giant component) of the PDUG
abruptly shrinks at some value of the threshold, similar to the
percolation transition. The degree distribution of the graph,
(i.e., the probability p(k) that a protein has k structurally
similar neighbors), is a power law at the transition point. The
scale-free character of this graph is believed to be a
consequence of divergent evolution [2,30,31] as suggested by
simple phenomenological ‘‘duplication and divergence’’
models [2]. Therefore, it is important to test whether our
model can reproduce the global features of the natural

Figure 5. Analytic Prediction for the Maximum Number of Genes in an Organism as Function of the Mean Protein Stability Pnat (f in Equation 2) in the

Analytical Model and the Results of Simulations

The data from 50 simulation runs, both exponentially growing and extinct, have been combined. Red curve, analytical model; black dots, results of the
simulations.
doi:10.1371/journal.pcbi.0030139.g005
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protein universe that are manifest in the unusual properties
of the PDUG.

Here we plot the PDUG of evolved proteins using Q score,
the number of common contacts between a pair of proteins,
as a structural similarity measure [31]. The degree distribu-
tion of the evolved PDUG at similarity threshold Q¼ 17 (the
midtransition in giant component of the evolved graph, see
Figure S4) is shown in Figure 7. The degree distribution plot
clearly shows that the graph consists of two components, a
scale-free–like component at lower k and a small but very

highly connected component at high k. As a control, we
computed p(k) for a divergent model without the genotype–
phenotype feedback, with the fixed death rate of organisms
equal to the death rate in the exponential growth regime of
the evolution model. The degree distribution of the PDUG
obtained in this control simulation where death rate is
constant and independent of the stability of evolving proteins
is shown in Figure S5. The control graph is weakly connected,
indicating randomness of the discovered structures. The
degree distribution of the control graph is well approximated

Figure 6. Emergence of Species

(A) Structural repertoire of an evolution run developing two DPSs is shown. The height of the bars represents the number of sequences folding into a
given structure; the structure numbers are arbitrary.
(B) Histograms of pairwise Hamming distances between sequences corresponding to the two DPSs (black and red curves) demonstrate sequence
similarity within the structure’s superfamily. The histogram of Hamming distances between the sequences folding into one DPS and the sequences
folding into another DPS (green) shows a lack of sequence similarity. As each organism bears only one of the two DPSs, one can say that this evolution
run resulted in the formation of two different strains or species of organisms.
doi:10.1371/journal.pcbi.0030139.g006
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by a Gaussian distribution, in contrast to the one obtained
from evolution simulation or the real PDUG [2].

Therefore, evolutionary selection has a profound effect on
the global structure of the evolved protein universe. In the
model, the structural similarity graph (PDUG) splits into a
scale-free–like part and a highly connected part, correspond-
ing to the DPS, populated by many dissimilar sequences.

Our simulations predict that new folds emerge as offspring
of DPSs, and in this picture the DPSs serve as prototypes of
the first ancient folds. Following this logic, one should expect
that ancient protein folds, being closer to prototypical DPSs,
should be highly clustered and more connected than later
diverged folds. To test this prediction, we analyzed the
subgraph of the PDUG corresponding to the last universal
common ancestor (LUCA) domains [32]. There are 915 LUCA
domains. We compared the connectivity and clustering
coefficient in the PDUG subgraph corresponding to LUCA
domains with distributions for the same characteristics for
915 randomly selected domains as a control. The null
hypothesis is that a random subset of protein domains has
connectivity and clustering coefficients similar to that of the
LUCA domains. In Figure S6 we present the histograms of
mean connectivity k (average degree of the node) and
clustering coefficient C found in 20,000 subsets of n ¼ 915
randomly chosen protein domains (out of a total of 3,300
distance matrix alignment [DALI] domains constituting the
PDUG, see [2]). For random subsets of 915 domains from the
PDUG, k¼ 2.91 and C¼ 0.197, while the average values of the
same parameters for the 915 LUCA protein domains are: k¼
4.61 and C ¼ 0.267. The values of k and C for the LUCA
domains are statistically much greater than corresponding
values for the random subsets (see Figure S6), yielding
extremely low p-values (p , 10�10). LUCA domains are
connected and clustered just as a random subset of the
PDUG (assuming Gaussian distributions of mean connectiv-
ities and clustering coefficients for random subsets of the
PDUG in Figure S6). This proves that LUCA domains are

statistically more connected and clustered than an equivalent
set of random protein domains as predicted from our
simulations.
In Figure 8, we summarize the divergent evolution scenario

as observed in our model. Divergence and selection lead to
the infrequent discovery of new protein folds (dashed circles).
Within these folds, mutations result in the formation of
protein (super)families. The size of protein families steadily
increases with time, so older families are generally larger.
However, fold formation can occur at any time, branching off
any family, so the newly formed families will be necessarily
small. At the same time, the structures corresponding to
superfamilies are all pairwise similar to each other, and for
that reason they are highly clustered in the PDUG. Therefore,
at any moment, the snapshot of the evolving protein universe
will comprise tightly clustered families of all sizes. This
picture of protein families that are ‘‘tightly knit’’ within each
fold leads to a prediction of a peculiar property of the PDUG:
that each node, (i.e., protein domain), with connectivity k, is
primarily connected with nodes of similar connectivity, i.e.,
members of its own fold family.
To test this prediction, we follow the approach proposed

by Maslov and Sneppen [33]. Connectivity correlation in the
PDUG is defined as the probability P(k1,k2), that two evolved
proteins that have k1 and k2 structural neighbors are
structurally similar to each other, i.e., are themselves
connected in the PDUG. To normalize P(k1,k2), we created
1,000 realizations of the rewired graph where each node has
exactly the same connectivity as in the original graph of
evolved structures, but with randomly reshuffled links to
other nodes. The rewired graphs allow us to calculate the
average value Pr(k1,k2) and the standard deviation rr(k1,k2) of
the probability that nodes with connectivities k1 and k2 are
connected in a particular network. In Figure 9A, we present
the Z score for connectivity correlations Z(k1,k2) ¼ (P(k1,k2) �
Pr(k1,k2))/rr(k1,k2) for the natural PDUG. It follows from this
plot that in PDUG, nodes of similar degree tend to be
connected to each other: high values of Z(k1,k2) (red) are
grouped along the diagonal k1 ¼ k2.While at low k, this
property is simply a consequence of the transitivity of the
measure of structural similarity (if structure A is similar to B,
and B is similar to C, then C must be similar to A), it is highly
nontrivial to observe this property for highly connected
nodes. The pattern of connectivity correlations where
similarly connected nodes tend to be connected to each
other is very different from the one found in protein–protein
interaction, communication, and social networks, where low-
connected nodes tend to be connected with highly connected
hubs, but not to each other [33]. As seen from Figure 9B, our
simple evolution model perfectly reproduces this unusual
pattern of connectivity correlations. The reason for such
unusual property of connectivity correlation is in the
punctuated character of fold discovery and evolution both
in the model and in real PDUG.

Discussion

Here, we introduced a microscopic physics-based model of
early biological evolution, which directly relates evolving
protein sequences and structures to the life expectancy of the
organism. We used a simple physical model of protein
thermodynamics and a simple Malthusian model of the

Figure 7. Degree Distribution of Structure Similarity Graph (PDUG) of the

Surviving Populations in the Evolution Model

The similarity threshold was set to Q ¼ 17, corresponding to the
transition point in the largest cluster size (the giant component) of the
graph. The slope of the linear approximation is�1.4 for log k , 1.75.
doi:10.1371/journal.pcbi.0030139.g007
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population dynamics. The main assumption of our minimal-
istic model is that the necessary condition of survival of a
living organism is that its proteins adopt their native
conformations. Therefore, the death rate of the organisms
decreases when their proteins become more stable against
thermal denaturation or unfolding. In other words, we
assume that all genes of our model organism are essential.
Biological function is not explicitly present in the model, but
protein stability is the necessary condition for its evolution.
Genes in our model have high mutation rates, conducive to
rapid innovation. As such, our model can be directly
applicable to (and can be experimentally tested on) the
evolution of RNA viruses, which often encode for a handful of
proteins, all of which are essential for the virus. The absence
of an error correction mechanism results in very high
mutation rates and heterogeneous, quasispecies-like popula-
tions of RNA viruses [34,35] similar to what is found in this
model. Rapid evolution makes RNA viruses an ideal system
for experimental studies along the lines of our model, where
the simulation algorithm propagates model organisms almost
like an infected host cell produces new viral particles. The low
number of genes (three to ten proteins per genome depend-
ing on simulations conditions, see Figure 5) observed in our
model is in part related to the extremely high mutation rates,
about six mutations per genome per replication. In modern
life, such a high rate is observed only in populations of RNA
viruses that lack the error correction mechanism. Remark-
ably, the genomes of RNA viruses are rather short and
normally encode for fewer than ten proteins. More complex
DNA-based viruses and all cellular organisms invariably
possess much lower mutation rates due to error correction
and, correspondingly, longer genomes [36], in qualitative
agreement with our model. Thus, our model suggests that
protein stability requirements, together with mutation rates,
play a crucial role in determining the size of the genomes of
surviving organisms.

There is a common belief that the experimentally observed

moderate stability of natural proteins is a result of positive
selection for function. However, no experimental proof for
this conjecture is available. Rather, a circular argument that
natural proteins are not extremely stable is offered to
support this claim [37]. On the contrary, a recent study
demonstrated that the higher the stability of a protein, the
more likely that it confers selective advantage to the protein
by making it more evolvable, by enhancing its ability to
tolerate more mutations and as a result evolve a new function
[38]. A more plausible explanation of moderate stability of
natural proteins is that it is a direct result of a tradeoff
between stability in the native conformation and entropy in
sequence space, which opposes an evolutionary optimization
beyond necessary levels [39]. We observe exactly this
phenomenon in our model: while organisms with more stable
proteins have selective advantage, the opposing factor—
enormity of search in sequence/structure space—results in a
compromise level of stability that corresponds to stable but
not overstabilized proteins (see Figure 2C). By not ‘‘over-
stabilized’’ we mean here that for the same structure,
standard sequence design methods [40,41] can provide
sequences with Pnat values that are much closer to 1 than
observed in evolved model proteins (unpublished data).
Unlike in many previous attempts, our model explicitly

describes the interplay of the evolution of individual genes
and that of genomes (organisms) as a whole, since the death of
an organism leads to a complete loss of its genome. The
model gives important insights into the interplay between
molecular evolution, protein fold evolution, and population
dynamics. In combination with selection pressure, random
diffusion in sequence and structure spaces eventually leads to
the discovery of specific structures, DPSs, that are resistant to
mutations and form very evolvable proteins. This, in turn,
immediately leads to the ‘‘Big Bang’’ event whereby discovery
of viable proteins is coupled to exponential population
growth, as mutations are no longer a big threat to viability.
The DPSs persist over many generations and may be

Figure 8. Schematic Representation of the Formation of Protein Folds and Superfamilies by Punctuated Jumps in the Divergent Model

Invention of new folds and their spread in population is a rare event of which the timescale exceeds the lifetime of organisms and the mutation
timescale. On a shorter timescale, mutations that do not change protein structure significantly occur and fix in the population, which gives rise to
protein families (on the shortest timescales) or superfamilies (on timescales longer than mutational but shorter than fold innovation). Evolutionary time
increases from left to right.
doi:10.1371/journal.pcbi.0030139.g008
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infrequently replaced or augmented by other even more
favorable structures, in a process similar to punctuated
evolution. The remarkable separation of timescales between
frequent mutations and rare DPS formation allows for the
formation of the protein families and superfamilies. Our
model suggests that the DPSs may be superseded by more
advantageous folds during evolution. A similar domain-loss
phenomenon has been discussed in [42] in the context of
structure-based prokaryotic phylogenies.

The model and simulations presented here provide a
quantitative first-principles description of evolution of the
universe of protein families. Despite the simplicity of the
structural model of proteins and the phenotype–genotype
relation invoked, it is able to quantitatively reproduce the
power-law distributions that are observed in the natural

protein universe. Earlier phenomenological models repro-
duced some aspects of power-law behavior, always at the
expense of invoking dramatic assumptions about the depend-
ence of the rates of gene duplication on the sizes of already
existing gene families. Here no such assumptions are made, as
the model is fully microscopic in nature. Furthermore, our
simulations are capable of reproducing not only ‘‘power-
law’’–like behavior but also marked deviation from it. Indeed,
as seen on Figure 4B, there is an inflection point in the
distribution of family sizes (blue curve) where the apparent
slope changes. A similar inflection point was found in a
recent clustering analysis of more than 7 million global ocean
sampling sequences [43]. Strikingly, the distribution of family
sizes of evolved proteins (Figure 4A) features a noticeable
inflection as well. It is not clear whether phenomenological
duplication-growth models are capable of reproducing such
fine details of the family size distribution.
The most intriguing (and relevant) question is the origin of

the universally observed power-law distributions in our
model. Clearly an explanation proposed in many phenom-
enological models [3,28] is not applicable here because the
rates of all processes, including gene duplication, are
constant in the model and do not depend on sizes of already
existing gene families. Therefore there are no ad hoc
assumptions about the gene birth/death dynamics in the
model that could result in power-law distributions. The only
plausible reason may be that the underlying dynamics in
sequence and structure spaces, coupled with selective
pressure, is responsible for the emerging power-law distri-
butions. Indeed, our key finding concerns dynamics of fold
discovery and death; that the lifetimes of DPSs are power-law
distributed (Figure 3B). The size of a protein family (and
superfamily on longer timescales) is proportional to DPS
lifetime. Indeed, power-law exponents for family size distri-
bution and DPS lifetimes are very similar. While these
observations are suggestive, a more detailed future analysis
of our model will make it possible to find a definite answer as
to the origin of ubiquitous power-law distributions in
sequence and fold statistics.
Several earlier studies modeled the evolution of proteins by

applying pressure directly on the proteins, assuming that the
probability of replication of a protein in a population of
proteins depends on its molecular properties such as stability
[10,11,22,39], folding kinetics [19,44], or both [16]. In contrast,
in the present model, biological (or as will be argued below
‘‘physiological’’) constraints are applied to organisms as a
whole, not to individual proteins. Evolutionary simulations
and simple theory presented here highlight the importance of
this distinction; the genome sizes are closely connected with
maximum and average stability of evolved proteins. There-
fore, biological pressure is ‘‘distributed’’ in the genome, and
all genes act in concert in response to it. Furthermore, no
DPSs were found in earlier simulations [10], despite the fact
that the overall population of evolved lattice proteins was
somewhat skewed toward more designable structures. In
contrast, our key finding is that evolution of population is
strongly coupled with protein evolution, as population
growth is contingent upon discovery of a very limited set of
protein structures. The difference here may be due to the fact
that simpler, 2-D lattice models were used in previous
simulations, or due to the differences in how biological

Figure 9. Node Degree Correlations in Evolved and Natural PDUG

(A) Shown is the Z score for the probability P(k1,k2) of the two nodes with
degree k1,k2 being connected to each other in the natural PDUG. Unlike
in other networks, nodes of similar degree tend to be connected.
(B) The Z score plot of P(k1,k2) for the structure similarity graph obtained
in the evolution model is remarkably similar to the actual one.
doi:10.1371/journal.pcbi.0030139.g009
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pressure is applied—on whole organisms here and on
individual proteins in earlier works [10,45].

The presented model is markedly different from standard
models of PG such as Fisher-Wright and QS [46,47]. PG and
QS models are phenomenological descriptions of evolution,
attributing certain values of fitness for the genomes with
predetermined combinations of alleles. These models con-
veniently sidestep the important question of the molecular
origins of the change of fitness upon recombination or
mutation. The genotype–phenotype relationship in our
model is not phenomenological but physiological: when a
gene product loses stability (and by implication function-
ality), the whole organism is likely to die. This assumption is
justified by recent high-throughput experiments that use
RNAi to determine the impact of gene knockout on
phenotype [48,49]. As in an experiment where knockout of
essential genes results in death of an organism, in our model
the deterioration of stability of any gene of an organism
confers the lethal phenotype. In the present implementation,
our model assumes that all genes are essential. However, this
assumption can be relaxed (unpublished data), making it
possible to study differentially the impact of biological
constraints on the evolution of genes [50].

Another critical distinction between our approach and
traditional phenomenological models is that in PG and QS
approaches a single genotype is assumed to be advantageous
[46,51]. While the outcome may be that genomes of the
populations are peaked around the most fit one (as in the
standard QS model [47]) or that a broader distribution among
genotypes may emerge (as in the ‘‘survival of the flattest’’
scenario [52]), it is always an implication of the key
assumption that a certain genotype confers the highest
fitness. In contrast, the present model makes no a priori
assumptions about the fitness advantage of a certain
genotype. Strikingly, sets of organisms distributed around
dominant genomes and proteomes—species—emerge here as
a result of evolution at longer evolutionary times. A key
factor determining the emergence of species in this model is
that productive evolution occurs only when the structural
diversity of proteins collapses into a small set of DPSs.

Our model of natural selection is minimalistic and is
limited in its scope. It does not take into account such
important biological processes as horizontal gene transfer,
gene recombination, sexual reproduction, ‘‘death of a gene’’
(via pseudogenisation), and Darwinian selection due to
competition of populations for limited resources. Also, to
make the minimum possible number of assumptions, the
modern amino acid alphabet is used in the model, although it
has been suggested that the amino acid alphabet itself had
evolved over time [53–55]. However, we believe that our
model is an important step toward the unification of
microscopic physics-based models of protein structure and
function and the macroscopic (so far, phenomenological)
description of the evolutionary pressure. Its extensions are
straightforward and may include a more explicit consider-
ation of protein function, protein–protein interactions, and
fitness function that rewards functional (and therefore,
structural) innovations. Furthermore, since habitat temper-
ature enters the model explicitly, it can be used to study
thermal adaptation of organisms as well as adaptation to
variable mutation rates. This work is in progress.

Methods

Population dynamics and genotype–phenotype relationships. In
our model, an organism is completely described by the set of its
genes. The genetic code then defines amino acid sequences, and the
exact nature of the lattice protein-folding model makes it possible to
find the native structures of the encoded proteins. We assume that for
an organism to function properly, it is imperative that its proteins
spend a significant part of the time in their native conformations at a
given environmental temperature. Let Pnat

(i) be the thermodynamic
probability that protein i is in its native conformation (see protein
model below). As the simplest approximation, we assume that the
probability that an organism is alive is proportional to the lowest
Pnat

(i) across all of its proteins:

Palive}min
i

PðiÞnat ð3Þ

i.e., the longevity of an organism is determined by the least stable
protein in the genome (‘‘weakest link’’ model).

Our model of population and genome dynamics includes four
elementary events: (i) random mutation of a nucleotide in a randomly
selected gene with constant rate m per unit time per DNA length;
mutations leading to the stop codon are rejected to ensure the
constant length of protein sequences; (ii) duplication of a randomly
selected gene within an organism’s genome with constant rate u; (iii)
birth of an organism via duplication of an already existing organism
with constant rate b (the genome is copied exactly); and (iv) death of an
organism with the rate d per unit time (Figure 1). For simplicity, we do
not allow for the formation of pseudogenes or any othermechanism of
removal of the genes from a genome; in every organism the number of
genes increases (or remains constant) with time. However, the average
number of genes per organism in the population can either decrease or
increase due to enhanced survival of organisms with shorter (longer)
genomes.

Condition (Equation 3) translates into the dependence of organism
death rate d on the stability of its proteins:

d ¼ d0ð1�min
i

PðiÞnatÞ; ð4Þ

where d0 is the reference death rate. This relation gives rise to an
effective selection pressure on proteins since organisms that have at
least one unstable protein live shorter and thus produce less progeny.
This simple, direct, and physically plausible relationship between the
genotype (thermodynamic properties of the proteins) and the
phenotype (life expectancy) is the key novel feature of our model.
Another implication of this relationship is in the ‘‘collective punish-
ment’’ effect that genes do not evolve independently; a very
unfavorable mutation in a gene will likely lead to a quick death of
an organism, so its complete genome will not be able to proliferate.
Such cooperativity creates an important selection pressure toward
mutation-resistant genes encoding stable and evolvable (see below)
proteins. Interestingly, purely physical factors ensure that resistance
to mutations, evolvability of a new function, and thermostability are
well correlated [24,38], so little or no tradeoff may be needed to
satisfy both requirements. To ensure that a sufficient selection
pressure is applied, we set d0¼ b/(1�Pnat

(0)), where Pnat
(0) is the native

state probability of a protein encoded by the primordial gene, which
is the single gene in all organisms from which evolution runs start.
Therefore, the Malthus parameter b� d of population growth is zero
for neutral mutations (not changing Pnat with respect to the
primordial sequence), positive for favorable mutations that increase
Pnat, and negative for deleterious mutations. In principle, the
relationship between growth rate and protein stability can be
experimentally verified by analyzing the growth rate of bacteria at
elevated temperatures. While the exact biochemical mechanisms
leading to slower replication and eventual death are complicated,
they all originate in the loss of protein function or enzymatic activity
due to thermal denaturation [56]. A sequence evolution model, also
using the protein stability Pnat as fitness parameter has been recently
proposed by Goldstein and coworkers [54].

Simulation algorithm. In our model, each organism is represented
by a list of its genes, 81 nucleotide sequences that are translated into
amino acid sequences according to the genetic code. There can be up
to 100 genes per organism; the gene duplication rate is chosen so that
this limit is never reached in a simulation; typically, organisms have
fewer than ten genes each at the end of a simulation. Initially, 100
organisms are seeded with one and the same primordial gene; Pnat

(0)

is the native state probability of the protein encoded by the
primordial gene.

At each time step of the evolution, each organism can undergo one
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of the five events: no event at all or the four events described in the
main text (duplication of an organism with probability b¼0.15, death
with rate d, gene duplication with probability u ¼ 0.03, and point
mutation of a randomly chosen gene with probability m ¼ 0.3 per
gene). The organism death rate is calculated according to Equation 4,
d ¼ d0ð1�mini P

ðiÞ
natÞ, with d0 ¼ b/(1� Pnat

(0)).
Every 25 time steps, an entire set of genes of all currently living

organisms is recorded for analysis. The simulation stops after 3,000
time steps. Whenever the population size N exceeds 5,000, we
randomly remove N� 5,000 organisms to ensure constant population
size, simulating a turbidostat; despite the artificially constrained
population size, the growth regime remains exponential.

Protein model. To simulate the thermodynamic behavior of
evolving proteins, we use the standard lattice model of proteins,
which are compact 27-unit polymers on a 3 3 3 3 3 lattice [57]. The
residues interact with each other via the Miyazawa-Jernigan pairwise
contact potential [58]. It is possible to calculate the energy of a
sequence in each of the 103,346 compact conformations allowed by
the 3 3 3 3 3 lattice and the Boltzmann probability of being in the
lowest energy native conformation,

PnatðTÞ ¼
e�E0=T

X103345
i¼0

e�Ei=T

; ð5Þ

where E0 is the lowest energy among the 103,346 conformations, Ei
are the energies of the sequence in the remaining 103,345
conformations, and T is the environmental temperature (in the
simulation, we assumed T ¼ 0.5 in Miyazawa-Jernigan dimensionless
energy units).

Analytic calculation of genome sizes of model organisms. Suppose
each genome has N genes, and the fitness of the entire genome is then
defined by f ¼ minfPð1Þnat ; . . . ;PðNÞnat g. Based on the sequence design
simulation, we find that it is a reasonably good approximation to
assume that in our lattice model the distribution of stability Pnat of a
lattice protein after a point mutation (i) does not depend on the
stability before the mutation and (ii) is uniformly distributed between
0 and 1. Performing a point mutation, we can either mutate the gene
with the lowest fitness value, with probability 1

N (case A), or select any
one of the other more stable genes and mutate it with probability
ð1� 1

NÞ, case B.
In case A, because the mutated gene was the original least-stable

gene, there are two possible outcomes after the mutation: (i) if the
new gene fitness value is less than f, then this new gene fitness value
would be the new minimum among all gene fitnesses in the genome,
therefore this new fitness will become the fitness of the new genome.
This occurs with a probability f, and since the new fitness follows a
uniform distribution in the region [0, 1], the expectation value in this
case is f /2. So this part’s contribution to the expectation value of the
new genome fitness is A1 ¼ 1

N f f
2. (ii) If the new gene stability is greater

than f, which happens with a probability of (1 � f ), we can calculate
the probability distribution for the new genome fitness being x is

pðxÞ ¼ 1� x
1� f

� �N�1
for f , x, 1: ð6Þ

The significance of this equation is that when one gene has fitness f ,
x , 1 and is the new minimum, also under the condition that all
fitnesses are within the region of [f, 1], the probability for all the other
(N � 1) genes has to have fitness greater than x is 1�x

1�f

� �N�1
. The

multiplicity of this condition is MN ;f ¼ N
1�f . This is because we can

pick any one of the N genes to be the new least-fit gene, and the
fitness value is within the region [f, 1] with uniform probability
distribution. The contribution for the new genome fitness in this
situation is therefore the total product of the probability of this
situation 1

N ð1� f Þ, the multiplicity MN,f, and the expectation value
R
f
1

xp(x)dx,

A2 ¼
1
N
ð1� f Þ �MN ;f

Z1

f

xpðxÞdx: ð7Þ

In case B, we also have two possible situations, situation B1 states
when the mutated gene has a fitness less than f, and situation B2 states
when the mutated gene has a fitness greater than f. In situation B1,
similar to the derivation in case A1, the probability for the new
stability to be smaller than f is f, and the expectation value of the new
genome fitness in this case is f /2. So we have B1 ¼ 1� 1

N

� �
f f
2.

In situation B2, if the stability of the mutated gene is greater than f,

then the original gene with stability f would remain the least stable in
the genome. Therefore, the genome fitness in this situation is still f, so
the value of B2 reads B2 ¼ 1� 1

N

� �
ð1� f Þf , where 1� 1

N

� �
is the

probability to choose one of the (N � 1) genes with stability greater
than f, (1� f) is the probability to mutate this gene with fitness greater
than f, and f is the expectation of the final fitness under this
condition.

Finally, summing up A1, A2, B1, and B2, we obtain the expectation
value of the genome fitness after one point mutation:

f 9¼ 2� 4 f þ f 2ð2þ 3N � N2Þ
2NðN þ 1Þ þ f ð8Þ:

Now, if the average genome fitness after a single point mutation
must be greater than the original fitness, the condition f 9� f . 0 must
be satisfied. Solving this inequality, we find an upper limit on the
number of genes in a genome (Equation 2).

Family and superfamily size estimate for real proteins. We took
sequences of all structurally characterized domains from HSSP [59].
We used BLAST [60] with threshold 10�10 to identify all sequences
with significant homology to each HSSP domain in a nonredundant
sequence database NRDB90 [61]. We combined each set of sequences
with homology into a single gene family. The number of non-
redundant sequences matching the domain is the number considered
in that family. We then used cross-indexing between NRDB90 [61],
Swiss-Prot [62], and InterPro [63] to define the set of different
functions each gene family performs. The number of different
functions as defined by InterPro becomes the number of super-
families folding into the same domain.

Family and superfamily size estimate for model proteins. In the
model, the superfamily size is defined as the number of non-
homologous sequences with all mutual pairwise Hamming distance of
16 or more (i.e., 40% sequence identity or less) having the same native
conformation. The family size is defined as the number of all
sequences folding into a given structure, without removing the
homologous sequences.

Protein Domain Universe Graph. To construct the PDUG from the
simulation data, we considered only the nonhomologous amino acid
sequences. The selection is based on the Hamming distance between
the sequences, which should exceed 18 (i.e., less than 33% sequence
identity).

To calculate the structure similarity in the PDUG, we used the Q
score similarity measure. The Q score measure between the two
structures i and j is the number of all pairs of monomers (k,m) that are
in contact both in structure i and structure j. As there are always 28
contacts in compact 27 mers, Q score varies from 0 for completely
dissimilar structures to 28 for two identical structures. The Q score is
analogous to the distance matrix alignment (DALI) Z score, used as a
structural similarity measure for real proteins.

Definition of LUCA domains. The simplest construction of the
LUCA that still yields useful information is the delineation of the very
old domains. Any domain shared by the three kingdoms of life can be
placed in the LUCA [64]. If any such domain were not placed in the
LUCA, multiple independent discovery (or horizontal transfer) events
would be required to explain the occurrence of this domain in all
kingdoms. The ‘‘extra’’ evolution involved in this case would result in
a less parsimonious scenario. Inclusion of other domains is more
probabilistic and depends on the exact form and method of
parsimony construction used [64]. We thus define the structural
content of the LUCA to be all domains that have homologs in at least
one archaeal, at least one prokaryotic, and at least one eukaryotic
species. This yields approximately one-third of the PDUG members.

Supporting Information

Figure S1.Mean Genome Size (Number of Genes per Organism) in an
Exponentially Growing Population Is almost Constant Owing to the
Balance between Gene Duplication and Selection Pressure

In a simulation run where population becomes extinct, the genome
size grows linearly with time (blue curve). Red curve, exponentially
growing population.

Found at doi:10.1371/journal.pcbi.0030139.sg001 (26 KB EPS).

Figure S2. Time Progression of an Evolution Run Where Population
Becomes Extinct

(A) Abundance of different structures in the proteomes in an
unsuccessful evolution run as a function of time. Red corresponds to
abundant structures, and cyan to rare or nonexistent ones.

PLoS Computational Biology | www.ploscompbiol.org July 2007 | Volume 3 | Issue 7 | e1391236

Model of Early Evolution



(B) Size of population as a function of time is shown.
(C) Mean native state probability Pnat as a function of time is shown.
DPSs are never found in this run, resulting in extinction of the
population due to random diffusion in sequence space.

Found at doi:10.1371/journal.pcbi.0030139.sg002 (1.0 MB JPG).

Figure S3. Probability Distributions of Lattice Protein Stability Pnat
after a Point Mutation in Sets of Sequences with a Given Stability
P0nat
The peak at Pnat ¼ P0nat corresponds to mutations that do not alter
the stability; at high P0

nat, the long constant-level tail of the
distribution makes it possible to approximate the distribution by a
uniform one. For each plot, we performed all possible 19 3 27¼ 513
mutations in 100 different sequences with P0

nat � P0
nat , 0.03.

Found at doi:10.1371/journal.pcbi.0030139.sg003 (83 KB EPS).

Figure S4. Fraction of the Giant Component of the PDUG as a
Function of Similarity Cutoff Q for Evolution Simulations

Found at doi:10.1371/journal.pcbi.0030139.sg004 (15 KB EPS).

Figure S5. Degree Distribution of Structure Similarity Graph (PDUG)
in a Control Simulation Where Genotype–Phenotype Relationship
Does Not Exist

The similarity threshold was set to Q ¼ 17 corresponding to the
transition point in the largest cluster size (the giant component) of
the graph.

Found at doi:10.1371/journal.pcbi.0030139.sg005 (12 KB EPS).

Figure S6. Probability Distribution of the Average Connectivity and

Clustering Coefficient for Random Subsets of 915 Protein Domains
from the PDUG and the Value of These Parameters k¼ 4.61 and C¼
0.267 for the LUCA Domains

The distribution is drawn over 20,000 random selections of 915
subsets out of a total of 3,300 PDUG domains. (A) Average
connectivity. (B) Clustering coefficient. Red line, LUCA domains.

Found at doi:10.1371/journal.pcbi.0030139.sg006 (79 KB JPG).

Figure S7. Average Number of Genes per Organism for Two
Evolution Runs Proceeding at Different Mutation Rates

Organisms evolving at a higher mutation rate possess shorter
genomes. The temperature is T¼ 0.8. Red and black curves, different
mutation rates.

Found at doi:10.1371/journal.pcbi.0030139.sg007 (57 KB EPS).
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