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Getting Started in Tiling Microarray Analysis
X. Shirley Liu

Introduction

The availability of sequenced
eukaryotic genomes and commercial
oligonucleotide tiling microarrays has
enabled many genomics applications.
Different from expression microarrays,
tiling microarrays have probes that
cover the entire genome or contigs of
the genome in an unbiased fashion.
Currently three commercial sources
provide tiling microarrays with
different probe lengths and spacing,
and array design characteristics.
Affymetrix tiles 6 million 25-mer
probes per array, which offers the
lowest price per probe and the highest
resolution (chromosomal distance
between neighboring probe centers).
Its arrays use one-color assays, so
individual samples are hybridized to
different arrays. NimbleGen can tile
385,000 50- to 75-mer probes, and
Agilent can tile 244,000 60-mer probes
per array. The latter two platforms,
with longer oligonucleotide probes and
two-color assays for which treatment
and control samples are differentially
labeled and put on the same array for
competitive hybridization, have slightly
better sensitivity. They are also flexible
for custom array design, especially
Agilent’s multiplex arrays, which allow
multiple samples to hybridize on
different subareas of the same array.
These tiling arrays offer diverse
genomic applications, each with its own
data analysis challenges.

ChIP-Chip

The most popular application for the
tiling array platform is ChIP-chip,
which maps the genome-wide binding
locations of transcription factors and
other DNA-binding proteins. In a
ChIP-chip experiment, chromatin is
crosslinked and fragmented to

approximately 500 bp. An antibody to
the protein of interest is used to
precipitate the protein together with
its interacting DNA (chromatin
immunoprecipitation, or ‘‘ChIP’’). The
coprecipitated DNA is detected on a
DNA microarray (the ‘‘chip’’) and
mapped back to the genome [1,2]. In
complex genomes, DNA-binding
proteins often have thousands of
binding sites throughout the genome,
so genome tiling microarrays from
Affymetrix [3], NimbleGen [4], and
Agilent [5] can be used for unbiased
binding site mapping.

For ChIP-chip on Affymetrix tiling
microarrays, MAT (model-based
analysis of tiling arrays) [6] is a very
effective peak-finding algorithm. MAT
standardizes probe behavior by its 25-
mer probe sequence and genome copy
number, and can work even without
replicate ChIP or control samples.
Occasionally Affymetrix genome tiling
microarrays have blob-like image
defects, which are visible when the
array image is converted to a data .cel
file. If users encounter array images
with blob defects, they are advised to
use a ‘‘microarray blob remover’’ [7] to
detect and remove affected probes
before running MAT. For NimbleGen
tiling microarrays, TAMAL [8] is the
best algorithm for locating binding
sites, while MA2C [9] and TileScope
[10] offer alternatives that are more
user-friendly and flexible. For Agilent
tiling arrays, the joint binding
deconvolution [11] algorithm can
detect ChIP-chip peaks, in addition
providing finer peak spatial resolution
than Agilent array tiling resolution.

After the ChIP-chip peaks are
detected, biologists often want to find
the sequence-specific binding motifs of
their protein of interests. MEME [12]
and Gibbs Motif Sampler [13] are the
most popular tools for de novo motif
discovery. As an alternative, biologists
could use the cis-regulatory element
annotation system [14] to annotate
large-scale ChIP-chip data in human
and mouse, such as retrieving ChIP-
chip sequences, mapping nearby genes,
plotting sequence conservation figures,

and finding enriched known
transcription factor motifs. For a more
generalized genomics annotation
pipeline, Galaxy (http://main.g2.bx.psu.
edu/) offers more customized and
interactive features to analyze
additional sequenced genomes.

MeDIP-Chip and DNase-Chip

DNA methylation status often
controls gene transcription status, and
genome-wide DNA methylation sites
can be mapped using methyl–DNA
immunoprecipitation followed by
microarray (MeDIP-chip). MeDIP-chip
is similar to ChIP-chip in protocol,
except that an antibody against 5-
methyl-cytosine is used to directly
precipitate methylated DNA [15,16].
Peak identification and annotation of
MeDIP-chip experiments can be
conducted with methods similar to
ChIP-chip. The methylation level
measured by MeDIP-chip should be
calibrated by the GC content of the
region, since poorly methylated CG-
rich regions might still have a higher
number of methyl-Cs to MeDIP than
fully methylated CG-poor regions.

DNase-hypersensitive regions in the
genome are often open chromatin
harboring transcriptionally active or
regulatory regions, which can be
located using DNase-chip. Relying on
the assumption that open chromatin is
cleaved more often by DNase over a
short distance, this experiment involves
digesting chromatin with DNase I,
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isolating DNA fragments created by
two DNase cleavages less than 1,200 bp
apart, and hybridizing the DNA to
tiling microarrays [17]. The resulting
tiling array data can be analyzed with a
regular ChIP-chip peak-finding
algorithm, although window size needs
to be adjusted based on the DNA
fragment length distribution resulting
from the level of DNase digestion.

Nucleosome Localization

A nucleosome, which consists of
;146 bp of DNA wrapped around eight
histone proteins, forms the
fundamental structural unit of
eukaryotic chromatin. Since
nucleosomes limit DNA accessibility to
regulatory factors, it is important to
map positioned nucleosomes or
nucleosome-free regions in the
genome. Nucleosome mapping
experiments involve digesting the
chromatin with micrococcal nuclease
to remove the linker DNA between
neighboring nucleosomes, and isolating
the remaining nucleosomal DNA to be
labeled and hybridized to a tiling
microarray. The controls for such
experiments are often naked genomic
DNA (without chromatin structure)
cleaved with hydroxyl radicals or
micrococcal nuclease to the same size
distribution. Unlike ChIP-chip, the
occupancy difference between
positioned nucleosomes and linker
regions is often less than 10-fold, and
positioned nucleosomes occupy only
about 100–200 bp of DNA. This
requires the tiling microarray to have
both high sensitivity and high
resolution. Long oligonucleotide
microarrays tiled at 5–20 bp resolution
are often custom-made to cover
selected genomic regions (e.g.,
promoters or a few megabases on a
chromosome) for this application.

In a nucleosome mapping study
conducted in yeast Chromosome III
[18], a hidden Markov model was
applied. The model defines a stretch of
probes with low signals as linkers, six to
eight probes that span approximately
146 bp with high signals as well-
positioned nucleosomes, and more
than eight probes with intermediately
high signals as delocalized
nucleosomes. A Viterbi algorithm is
used to infer the most likely partition
of probes along the chromosome into
the different nucleosomal states. In a

similar study conducted in human
promoters [19], wavelet transformation
was first used to remove noise from the
probe signal, which eliminated the high
frequency and low coefficient signals.
Laplacian Gaussian edge detection was
applied to the smoothed probe signal
curve to detect peaks and troughs (zero
first derivatives) with a reasonable
width as positioned nucleosomes and
linker regions, respectively.

ArrayCGH and Copy Number
Variation

In an array-based comparative
genome hybridization (arrayCGH)
experiment, DNA from normal and
diseased individuals are differentially
hybridized to microarrays to identify
copy number variations in the genome
that are potential biomarkers or causal
genes of disease [20]. Early microarrays
used in arrayCGH studies have long
(e.g., BAC clones) and/or sparse probes
to cover the genome. Recently, tiling
microarrays have been used to improve
the copy number variation detection
sensitivity and resolution [21]. One
method proposes a structural change
model to use dynamic programming to
segment the genome into a number of
regions with different copy numbers;
within each region the probe signals
(thus genome copy number) are similar
[22]. However, selecting the number of
regions could be difficult for big
genomes with complex copy number
variations. Hidden Markov model is
also a plausible approach to infer the
hidden copy number based on
observed probe values. One
complication that all arrayCGH
applications need to reconcile with is
that sample impurities (e.g., patient
DNA degradation or heterogeneous
tumor DNA) sometimes give rise to
noisy signals or non-integer copy
numbers.

Transcriptome Mapping

Hybridizing RNA samples to tiling
microarrays is gaining popularity for
detecting novel transcripts in
sequenced genomes. Early studies often
called positive probes based on a probe
signal cutoff [23], then defined
stretches of genomic regions with a
significant number of positive probes
as transfrags (transcribed fragments).
One study on yeast 4-bp resolution
tiling arrays adopted a structural

change model similar to that used in
arrayCGH [24]. In a more recent study
profiling multiple Drosophila
embryogenesis stages on genome tiling
microarrays, a Kruskal-Wallis test (a
nonparametric analog of one-way
ANOVA) was used to detect a stretch of
probes giving differential expression
among conditions [25]. In addition, the
study checked neighboring transfrags
with correlated expression in different
conditions to find novel 59, 39, or
internal exons of previously annotated
genes. With more transcriptome
conditions profiled at better tiling
resolution, more advanced algorithms
can be developed to refine transfrag
borders and detect differential
expression, alternative splicing, and
antisense transcripts.

Prospective

All commercial tiling microarray
companies strive to put more probes
on the array at reduced cost. This trend
seems to follow the Moore’s Law
observed in the semiconductor
industry, which dictates that chips
double their density at half the cost
every 18 months. A few years from now
might see tiling microarrays covering
the whole mammalian genome at
single-base resolution that cost only a
few thousand dollars. Tiling arrays will
have much wider applications, and
researchers might use them for
different experiments and
informatically select a subset of the
probes for analysis. At the same time,
high-throughput sequencing
technologies such as 454, Illumina
Solexa, and ABI SOLiD are making fast
progress as well. If enough coverage
can be achieved at a cost similar to
tiling microarrays, they might give
more sensitive and unbiased results.
These technologies each entail
different challenges and opportunities
for computational biologists to develop
efficient analysis algorithms. The
competition between the different
technology companies will inevitably
benefit researchers regardless of the
winner. Therefore, we look forward to
a very exciting decade of genomics
advances ahead. &
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