
Fast Pairwise Structural RNA Alignments by
Pruning of the Dynamical Programming Matrix
Jakob H. Havgaard

1
, Elfar Torarinsson

1,2
, Jan Gorodkin

1*

1 Division of Genetics and Bioinformatics, University of Copenhagen, Frederiksberg, Denmark, 2 Department of Natural Sciences, University of Copenhagen, Frederiksberg,

Denmark

It has become clear that noncoding RNAs (ncRNA) play important roles in cells, and emerging studies indicate that
there might be a large number of unknown ncRNAs in mammalian genomes. There exist computational methods
that can be used to search for ncRNAs by comparing sequences from different genomes. One main problem with
these methods is their computational complexity, and heuristics are therefore employed. Two heuristics are currently
very popular: pre-folding and pre-aligning. However, these heuristics are not ideal, as pre-aligning is dependent on
sequence similarity that may not be present and pre-folding ignores the comparative information. Here, pruning of
the dynamical programming matrix is presented as an alternative novel heuristic constraint. All subalignments that
do not exceed a length-dependent minimum score are discarded as the matrix is filled out, thus giving the
advantage of providing the constraints dynamically. This has been included in a new implementation of the FOLDALIGN

algorithm for pairwise local or global structural alignment of RNA sequences. It is shown that time and memory
requirements are dramatically lowered while overall performance is maintained. Furthermore, a new divide and
conquer method is introduced to limit the memory requirement during global alignment and backtrack of local
alignment. All branch points in the computed RNA structure are found and used to divide the structure into smaller
unbranched segments. Each segment is then realigned and backtracked in a normal fashion. Finally, the FOLDALIGN

algorithm has also been updated with a better memory implementation and an improved energy model. With these
improvements in the algorithm, the FOLDALIGN software package provides the molecular biologist with an efficient and
user-friendly tool for searching for new ncRNAs. The software package is available for download at http://foldalign.
ku.dk.

Citation: Havgaard JH, Torarinsson E, Gorodkin J (2007) Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput Biol 3(10):
e193. doi:10.1371/journal.pcbi.0030193

Introduction

Noncoding RNA (ncRNA) genes and regulatory structures
have been shown to be both highly abundant and highly
diverse parts of the genome [1,2]. One theory is that many of
these ncRNAs are part of RNA-based regulatory systems [3].
Recently, several papers about large-scale searches for
vertebrate RNA genes or motifs using comparative genomics
have been published [4–6]. These large-scale searches indicate
that there are potentially many unknown structures still
hidden in the genomes.

It has been shown that alignment of ncRNAs requires
information about secondary structure when the sequence
similarity is below 60% [7]. The reason for this is that
compensating mutations change the primary sequence with-
out changing the structure of the molecule. The Sankoff
algorithm for simultaneously folding and aligning of RNA
sequences can in principle be applied to cope with this [8].
However, the resource requirements of the algorithm are too
high even for a few short sequences. For two sequences of
length L, the time complexity is O(L6) and the memory
complexity is O(L4). Heuristics are therefore needed before
the algorithms for folding and aligning RNA sequences
become fast enough to be useful.

FOLDALIGN 1.0 was the first simplified implementation of the
Sankoff algorithm [9]. It contained a simple scoring scheme
with separate substitution matrices for base-paired and
single-stranded nucleotides. It had three constraints: (i) the
length of the final alignment could not be longer than k

nucleotides; (ii) the maximum length difference between two
subsequences being aligned was limited to d nucleotides, and
(iii) it could only align stem-loop structures. The second
version of the algorithm uses a combination of substitutions
(similar to the RIBOSUM matrices [10]) and a lightweight
energy model to align two sequences [11]. FOLDALIGN 2.0 also
uses the k and d constraints, but it can align branched
structures. This algorithm was used in one of the large-scale
searches for vertebrate ncRNAs [6].
Variants of two types of heuristics are currently very

popular, namely pre-aligning and pre-folding. The pre-
aligning methods use sequence similarity to limit the search
space by requiring that the final alignment must contain the
pre-aligned nucleotides. The length of the pre-aligned
subsequences varies from short stretches called anchors [12]
to full sequences [13–16]. Methods that require the sequences

Editor: David Mathews, Center for Human Genetics and Molecular Pediatric
Disease, United States of America

Received April 17, 2007; Accepted August 20, 2007; Published October 12, 2007

A previous version of this article appeared as an Early Online Release on August 20,
2007 (doi:10.1371/journal.pcbi.0030193.eor).

Copyright: � 2007 Havgaard et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: MCC, Matthews correlation coefficient; ncRNA, noncoding RNA

* To whom correspondence should be addressed. E-mail: gorodkin@genome.ku.dk

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931896

to be fully aligned before the structure is predicted are not
strictly Sankoff-based methods, as they separate the align-
ment and folding steps completely. Pre-folding uses single-
sequence folding to limit the structures that can be found by
the comparative algorithms. A popular method of pre-folding
is to use base-pairing probabilities found by the single-
sequence folding to limit which base pairs can be included in
the conserved structure [17,18]. As for align-then-fold
methods, methods using pre-folding can be taken to the
extreme where the folding and alignment steps are com-
pletely separated. One example of this is the combination of
the RNAcast and the RNAforester methods [19,20]. Some
methods can use both pre-aligning and pre-folding heuristics
[21–23].

The currently implemented Sankoff-based methods, for
pairwise alignment and secondary-structure prediction of
RNA sequences, can be split into two groups: the energy-
based methods and the probabilistic methods. The energy-
based methods, FOLDALIGN, Dynalign [24], locaRNA [17], and
SCARNA [23], are based on minimization of the free
energy [25]. Free-energy minimization is based on a
physical model of how the different elements of an RNA
structure contribute to the free energy. The parameters are
partly found experimentally and partly estimated from
multiple alignments. The probabilistic models are usually
based on Stochastic Context Free Grammars (SCFGs); see
[26] for an introduction. These methods include Consan
[12] and Stemloc [22]. The Stochastic Context Free
Grammars parameters are estimated from multiple align-
ments. Each of these methods uses different kinds of
heuristics. The previous version of FOLDALIGN [11] uses
banding (d, see below), limits the alignment length for local
alignments (k, see below), and limits the number of ways a
bifurcation can be calculated (described below). Dynalign
[24] uses banding based on pre-alignment using a hidden
Markov model. LocaRNA [17] limits the number of
potential base pairs by only using base pairs with a
single-sequence base-pair probability above a given cutoff.
SCARNA [23] uses a similar strategy, but further decouples
the left and right sides of the base pairs. Consan [12] uses

short stretches of normal sequence alignments to constrain
the folding. Stemloc [22] uses the N1 best single-sequence–
predicted structures and the N2 best normal-sequence
alignments to limit the final combined alignment and
structure prediction.
In this paper, dynamical pruning of the dynamic program-

ming matrix is introduced as a new heuristic in the FOLDALIGN

algorithm [11]. In all its simplicity, the dynamic pruning
discards any subalignment that does not have a score above a
length-dependent threshold. This is similar to one of the
heuristics used in BLAST [27]. The advantage of the pruning
method compared with the pre-aligning methods is that it
can be used when there is not enough sequence similarity to
make the necessary alignments. The advantage compared
with the pre-folding methods is that none of the comparative
information is lost in a single-sequence folding step. It is
shown empirically that the pruning leads to a huge speed
increase while the algorithm retains its good performance.
The speed increase makes studies like [6] much more feasible.
The method of dynamical pruning is simple and general. It
should therefore be possible to use it in many of the other
methods available for folding and aligning RNA sequences. As
pruning is a feature of the dynamic programming method, it
may be used in any algorithm using dynamic programming.
In addition to the dynamical pruning, the FOLDALIGN

software package has been significantly updated. The
constraint, which speeds up the algorithm by limiting the
calculation of branch points, is now also used to lower the
memory requirement during the local-alignment stage.
During the backtrack stage of the algorithm, more informa-
tion is needed. To try to limit the memory consumption
during this stage, an extra pre-backtrack step is used. The
pre-backtrack step locates all branch points in the conserved
structure, and these are then used to divide the structure into
unbranched segments. The unbranched structures are then
realigned and backtracked separately. As the unbranched
structures usually are shorter than the full branched
structure, the memory consumption is reduced. The use of
the divide and conquer method increases the run time of the
algorithm, but not by much since the realignments of the
segments are unbranched.
In addition to the algorithmic improvements, the energy

model has been improved as well. External single-strand
nucleotides are scored in a consistent way. Also, more insert
base pairs are allowed. These improvements lead to better
structure predictions.

Results

FOLDALIGN is a tool for making local or global structural
alignments of RNAs [9,11,28–31]. It uses a combination of
sequence similarity and structure to make the alignment. The
present article shows how the two main inconveniences, the
time and memory requirements, can be drastically lowered
without losing the ability to make good alignments.
The main improvement of the algorithm is the dynamical

pruning. The pruning eliminates subalignments that are so
poor that they can be assumed to never be a part of a
biologically relevant alignment [27]. The pruning works by
eliminating all subalignments with a score below a length-
dependent threshold. This not only removes the subalign-
ment itself but also all the longer alignments that the

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931897

Author Summary

FOLDALIGN is an algorithm for making pairwise structural alignments
of RNA sequences. It uses a lightweight energy model and sequence
similarity to simultaneously fold and align the sequences. The
algorithm can make local and global alignments. The power of
structural alignment methods is that they can align sequences
where the primary sequences have diverged too much for normal
alignment methods to be useful. The structures predicted by
structural alignment methods are usually better than the structures
predicted by single-sequence folding methods since they can take
comparative information into account. The main problem for most
structural alignment methods is that they are too computationally
expensive. In this paper we introduce the dynamical pruning
heuristic that makes the FOLDALIGN method significantly faster without
lowering the predictive performance. The memory requirements are
also significantly lowered, allowing for the analysis of longer
sequences. A user-friendly (still command-line based, though)
implementation of the algorithm is available at the Web site:
http://foldalign.ku.dk

Fast Structural RNA Alignments

subalignment would have become a part of. Elimination of
subalignments also improves the memory performance since
it is not necessary to store the eliminated alignments. The
dynamical pruning method is general to the dynamic
programming method, and it should therefore be trivial to
use it in other applications where dynamic programming is
used. Note however, that when pruning is used there is no
guarantee that the solution is the optimal solution, and in
some cases a solution is not found at all. In these rare cases
pruning is not feasible, but FOLDALIGN can provide an
alignment by realigning without pruning.

The memory requirement of the algorithm is further
lowered by exploiting the branch point constraint. In [11] the
calculation of branch points was limited to one calculation
for equivalent alignments/structures. This speeds up the
algorithm significantly. Here, it is also used to lower the
memory requirement; see below and the Memory implemen-
tation section of Protocol S1.

Much effort has been put into trying, during backtrack, to
keep the memory requirement below what is needed during
the initial local-alignment scan. This is done by using a divide
and conquer scheme that first locates all branch points in the
structure, and then uses them to divide the structure into
hopefully shorter unbranched segments. These segments are
then backtracked normally. While this strategy usually works,
there is no guarantee that it will always keep the memory
usage low during backtrack. One clear example where it does
not work is in the case of an unbranched alignment. A cubic
space model similar to the linear space models [32,33] used in
sequence alignment could be used to keep the memory
requirement below a given cutoff. A method similar to the
Treeterbi method [34], of locating and removing memory
cells that are not part of final alignment during the alignment
step, could also be used to limit the memory consumption
during the realignment of stem segments.

Algorithms and Heuristics
The algorithm uses a lightweight energy model based on

energy minimization [11,25] and sequence similarity to
simultaneously fold and align two sequences. The energy
model has five different contexts: stem, hairpin-loop, bulge-
loop, internal-loop, and external/bifurcated-loop. In the stem
context, two pairs of nucleotides are allowed to base-pair if
both pairs can form an A, U, C, G, or G, U base pair. A
stem must always start with such a conserved base pair, but if
the stem is already at least one base-pair long, then a base
pair in one of the sequences can be aligned to two gaps in the
other sequence. A stem must contain at least two conserved
base pairs. The four other contexts are used to align unpaired
nucleotides; see Protocol S1 and [11] for details. The
parameters of the energy model have all been multiplied by
�10 mol/kcal to allow the maximization of the alignment
score [11]. Different sequence similarity substitution scores
are used for base-paired nucleotides and single-stranded
nucleotides [10,11]. Affine gap penalties are also used.

The alignment of two sequences I and K is initiated by
aligning one nucleotide from each sequence to another.
These are then expanded into longer alignments using
dynamic programming. The central part of the recursion
can be seen below. A more complete recursion can be seen in
the recursion section of Protocol S1.

Di;j;k;l ¼max

Diþ1;j�1;kþ1;l�1þSbpðni; nj; nk; nl;riþ1;j�1;kþ1;l�1Þ ðAÞ
Diþ1;j�1;k;l þ SbpiI ðni; nj;�;�;riþ1;j�1;k;lÞ ðBÞ
Di;j;kþ1;l�1 þ SbpiKð�;�; nk; nl;ri;j;kþ1;l�1Þ ðCÞ
Diþ1;j;kþ1;l þ Salðni; nk;riþ1;j;kþ1;lÞ ðDÞ
Di;j�1;k;l�1 þ Sarðnj; nl;ri;j�1;k;l�1Þ ðEÞ
Diþ1;j;k;l þ SglIðni;�;riþ1;j;k;lÞ ðFÞ
Di;j�1;k;l þ SgrIðnj;�;ri;j�1;k;lÞ ðGÞ
Di;j;kþ1;l þ SglKð�; nk;ri;j;kþ1;lÞ ðHÞ
Di;j;k;l�1 þ SgrKð�; nl;ri;j;k;l�1Þ ðIÞ
max
i,m, j
k, n, l

fD i9;m;k;n þ Dm9 þ1;j;nþ1;l þ Cmblhelixg ð JÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

Di,j,k,l is the score of an alignment of subsequence (i,j) from
sequence I to subsequence (k,l) from sequence K. Sbp through
SgrK are the costs of adding one or more nucleotides to the
alignment. r is the structure context. i & j, k & l, are the start
and end coordinates of a subalignment in sequence I and K,
respectively. ni is the nucleotide at position i (in sequence I).
Likewise for nj, nk, and nl. Here, unpaired nucleotides in
branched loops are scored like unpaired nucleotides in
external loops. Therefore, the alignment score D must be
corrected if the context is not the external loop context. The
score including this correction is called D9, and it is not
necessary to store it in memory since it is easily calculated
from D; see Protocol S1. Cmblhelix is a cost for adding extra
stems.
Equation 1A adds a base pair in both structures. Equations

1B–1C add base-pair inserts in either of the structures.
Equations 1D–1E add aligned unpaired nucleotides in either
end of the alignment. Equations 1F–1I add an unpaired
nucleotide aligned to a gap to the alignment. Equation 1J is
the bifurcation case which joins two substructures into one in
each of the structures. Figure 1 gives an overview of the
different Equation 1 cases.
In addition to the new pruning constraint (see below), the

algorithm employs three old constraints. 1) The maximum
motif length constraint k limits the maximum length of the
subsequences in the resulting alignment (the final alignment
can only be longer than k due to gaps). The use of k allows the
program to split the shortest of the sequences into smaller
chunks and scan a k nucleotide–long window along the other.
For details see [11]. 2) The maximum length difference
between any two subsequences is constrained to d nucleo-
tides. These two constraints reduce the time complexity to a
maximum of O(LILKk2d2) and the memory complexity to a
maximum of O(k3d). LI and LK are the lengths of the
sequences. 3) The bifurcation constraint limits the types of
substructures that can be joined together in the case of
Equation 1J. The constraint requires that the first nucleotide
of each of the two (one from each sequence) upstream
substructures, Di,m,k,n, are base-paired. Furthermore, the end
nucleotides of the downstream structures, Dmþ1,j,nþ1,l, must
form a base pair with each other, see Figure 2. In [11], the
bifurcation constraint was used to save time, but here it is
also used to save memory. Inspection of Equation 1 shows
that the cases A–I only depend on the scores of alignments
with either coordinate i or coordinate iþ1. Case J depends on
subalignments with start coordinates i and coordinates
i , m þ 1 , j. Due to the bifurcation constraint, all

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931898

Fast Structural RNA Alignments

alignments with start coordinate m þ 1 must have the stem
context. It is therefore not necessary to keep information
about alignments in any other context for coordinates i þ
2,...,i þ k. This saves a large amount of memory, but leads to
trouble during backtrack, see below. Further details can be
found in the Memory implementation section of Protocol S1.

The new implementation of the FOLDALIGN algorithm has a
lower time and memory complexity than the old implemen-
tation during global alignment. Since a global alignment must
include both ends of both sequences, the d parameter can be
used to also limit the start coordinate of a subalignment in
the second sequence. In this way the d parameter becomes
similar to the M parameter as used in [35]. The new time
complexity is OðL3

mind
3Þ and the memory complexity is

OðL2
mind

2Þ, where Lmin¼minfLI, LKg. The old implementation
has a time complexity of OðL3

I LKd2Þ and a memory complexity
of OðL2

I LKdÞ since it used the local-alignment algorithm with
k equal to the sequence lengths.

Changes in the energy model. There are three changes in
the energy model compared with [11]. Single-stranded
nucleotides, external to all base pairs, are now always scored
in the same way, namely as single-stranded nucleotides in
multibranched loops; see for example the ‘‘Development and
References’’ document at the mfold Web site http://frontend.
bioinfo.rpi.edu/zukerm/rna/energy/node2.html#SECTION20
[25,36]. This includes the affine energy cost which is usually
not used in the calculation of the energy of external
nucleotides. The inclusion of this cost helps keep multi-
branched and external loops from growing unchecked. See
also the release file of the software package. Inserted base

pairs are now allowed at all positions in a stem except for the
first base pair. The stem must still have at least two conserved
base pairs. Single-strand nucleotides in multibranched loops
that are next to base-paired nucleotides are no longer
stacked, i.e., dangling ends are no longer used. The perform-
ance gained by using dangling ends does not justify the
complexity that they add to the algorithm.
Pruning. The dynamical programming matrix, D, is pruned

as it is being filled out by comparing the FOLDALIGN score Di,j,k,l

of a subalignment to a threshold, Hlocal. Thus, for local
alignments, if

Di;j;k;l , HlocalðlIÞ or Di;j;k;l , HlocalðlKÞ; ð2Þ

Di,j,k,l is not stored in the memory. An alignment that has been
pruned away cannot be part of any longer alignments, and it
is therefore not necessary to take it into account when the
longer alignments are calculated. This saves a lot of time.
Note that the alignment score is maximized not minimized.
For additional details, see the Memory implementation
section in Protocol S1. Note that Hlocal depends on the
lengths lI and lK of the subsequences being aligned. To find
the exact length dependency, several schemes were tested,
and we found that a simple linear form with Hlocal ¼ a *
minflI,lKgþ b worked well. The parameters a and b were found
using the dataset containing 99 sequence pairs described in
the data section of Materials and Methods. The default values
can be seen in Table 1. The linear dependency is not
surprising as the alignment score is expected to grow linearly
with the alignment length [37].
Since a global alignment extends over the entire sequence

length, it is necessary to insert a minimum number of gaps,
equal to the length difference between the sequences. The
simple pruning scheme used during local alignment was
found to be too strict, pruning away all subalignments in
many cases. The following pruning scheme is therefore used

Figure 1. The Cases of Equation 1

(A) Adds a conserved basepair. In the structure, a conserved basepair is
indicated using (and).
(B) Adds aligned unpaired nucleotides. An insert basepair is indicated
using , and ..
(D) Adds aligned unpaired nucleotides. An unpaired nucleotide is
indicated with a ‘‘.’’.
(F) Adds unpaired insert nucleotides.
(J) Equation 1J (shown) joins substructures into one structure. Due to the
bifurcation constraint, the nucleotide at position i must be basepaired to
a nucleotide in the subsequence from Iþ 1,...,m, and the nucleotides at
position mþ 1 and j must also basepair. The same constraints are placed
on the corresponding nucleotides in the other sequence. See Figure 2 for
extra details.
doi:10.1371/journal.pcbi.0030193.g001

Figure 2. The Bifurcation Constraint

(A) The allowed case. The first nucleotides of the left substructures in
both sequence 1 and sequence 2 are basepaired, and the first and last
nucleotides in the right substructures are basepaired to each other.
(B) A disallowed case. The score of the joined alignment will not be
calculated using the bifurcation-loop calculation (the resulting alignment
will, however, be calculated by expanding the alignment result from (A).
There are two reasons: the first nucleotide of the left substructure in
sequence 2 is not basepaired, and the first and the last nucleotides of the
right substructures are not basepaired in both sequences.
doi:10.1371/journal.pcbi.0030193.g002

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931899

Fast Structural RNA Alignments

during global alignment:

Di;j;k;l , Hglobal ¼ HlocalðlI ; lKÞ þ GE

3min fabsðlI � lKÞ; absðLI � LKÞg
ð3Þ

Hglobal is the pruning score used during global alignment.
Hlocal is the local-alignment pruning score (Equation 2). GE is
the gap-elongation cost. It should be noted that a new set of a
and b is used. These were found using the tRNA and 5S rRNA
datasets described in Materials and Methods. The default
values can be seen in Table 1. See further discussion in the
Global-Alignment Results section.

Backtrack. When the coordinates of the best-scoring local
alignment have been found, the dynamic programming
matrix may no longer cover the sequence region of the best
hit. The subsequences must therefore be realigned. This
realignment is a global alignment of the two subsequences,
and the time and memory complexities are therefore the
same as for global alignment. While the theoretical memory
complexity is lower during backtrack than during local
alignment, the actual memory requirement is usually larger.
This is because during backtrack it is necessary to trace back
through all the cells in the four-dimensional matrix that were
passed during the alignment. It is therefore necessary to store
information for all subalignments regardless of the base-
pairing, i.e., the bifurcation constraint cannot be used to save
memory. Subalignments that have been pruned can still be
pruned since the backtrack cannot pass through a pruned
subalignment.

A strategy somewhat similar to the divide and conquer
strategy in [38] is used to try to circumvent this problem. The
strategy is shown in Figure 3. After the region of interest has
been found using a local alignment, the next step is to realign
the subsequences. During this realignment, a list of all
bifurcation points is saved. For each subalignment, a
reference to the last bifurcation point in that given align-
ment is kept. In addition to all the subalignments with stem
context, subalignments with bifurcation context are also
stored for i þ 2,...i þ k. This is used to do a pre-backtrack
which locates all bifurcation points in the alignment. With all
the bifurcation points located, the alignment is divided into a
series of hopefully shorter unbranched subalignments. These
are then realigned, saving all subalignments for all i’s, and
backtracked in a normal fashion. The realignment of the
unbranched subalignments is fast since it is not necessary to
evaluate the bifurcation part of the algorithm. The time
complexity of each of these realignments is therefore

Oðk2
ud

2Þ, where ku is the length of the unbranched subalign-
ment.

Local-Alignment Results
Figures 4 and 5 show the average time and memory needed

to locally align two 1,000 nucleotides–long sequences with
different values of k using different versions of FOLDALIGN. The
‘‘real data’’ curves are for sequence pairs that contain a ;300
nucleotides–long SRP gene in its genomic context. The
‘‘shuffled data’’ curve is for the same sequence pairs shuffled
while conserving the dinucleotide distribution [39]; for details
about the dataset see [11]. The curve marked ‘‘2.0’’ is for the
previous version of FOLDALIGN. The ‘‘No pruning’’ curve is for
the current version using the option -no_pruning which
turns off the pruning. The ‘‘Pruning’’ curves are for the
current version using the default pruning.
Figure 4 shows that the dynamical pruning has a dramatical

impact on the run time of the algorithm. Especially in the
case of shuffled sequences where there are no conserved
motifs. This is very important during large-scale searches for
ncRNAs where a large amount of sequences, many of which
do not contain a motif, are aligned [6]. When there is a
conserved motif, the speedup is slightly less pronounced, but
it is still very drastic. Comparing the ‘‘2.0’’ and the ‘‘No
pruning’’ curves, it is also clear that the new implementation
is a lot faster even without pruning. The time needed to run
the 99 sequence pair dataset used for finding the parameters
(pairs of 500 nucleotide–long sequences, see Materials and
Methods; k¼ 200, d¼ 15) dropped from ;397 CPU hours to
;9 CPU hours.
Figure 5 shows that pruning also has a significant impact on

the required memory. It also shows that it is now possible to
align sequences using much larger k. It is clear from Figure 5
that more memory is required for aligning sequences that
contain a conserved structure than for aligning sequences
without conserved structures.
The parameters of the algorithm can be split into three

groups: Energy, Substitution, and Free. The energy parame-
ters are taken from energy minimization (multiplied by �10
mol/kcal, since we are maximizing a score) [25]; see also the
release notes of the software package. The substitution scores
are the Ribosum-like log odds scores with one set of scores for
single-stranded nucleotides and one for base-paired nucleo-
tides. There are four free parameters: the Ribosum clustering
percentage, the gap open, the gap-elongation penalties, and
the energy-substitution weight. To simplify the search for the
best set of parameters, the gap-elongation parameter was
fixed at half the value of the gap-open parameter. The best

Table 1. The Parameters of the Default Score Matrices for Local and Global Alignment

Alignment Cluster Weight Gap Open Elongation (GE) Pruning Start (b) Coefficient (a)

Local None 0.1 �110 �55 �400 1

Global None 0.05 �50 �25 �200 1

The Cluster is the Ribosum clustering value. In both cases, each sequence was put into its own cluster.
Weight is applied to the values of the substitution matrices.
Gap open values are the cost of opening new gaps.
Elongation value is the cost of elongating an already opened gap.
Pruning start is the pruning threshold for alignments with subsequences of length one. The pruning threshold grows linearly with the length of the aligned subsequences.
Coefficient is the linear growth coefficient.
doi:10.1371/journal.pcbi.0030193.t001

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931900

Fast Structural RNA Alignments

values for the parameters were found by aligning the 99
sequence dataset using a range of values for each of the free
parameters and choosing the values yielding the best
performance. The parameters can be seen in Table 1. See
Materials and Methods and [11] for details about the data.

To get the background distribution, each sequence was
shuffled 20 times conserving the dinucleotide distribution
[39] (see Materials and Methods). The extreme value
distribution parameters were averaged independently for
each of the sequences. The parameters found from the
alignment of shuffled sequences were then used to estimate
the significance of the alignments from the real sequences
pairs. A p-value (see Materials and Methods) cutoff of 0.2 was
found to be optimal for selecting the significant alignments.
The performances (see Materials and Methods) on the 99

sequence dataset can be seen in Table 2. While this method
for determining the parameters of the extreme value
distribution is biased in several ways, most notably by the
use of short sequences compared with the expected length of
a random alignment and the finite length effects, the method
does seem to yield reasonable results. Fewer than 20
shufflings can be used with little effect on the performance
(unpublished data).
The SRP dataset was used as an independent test set. The

extreme value distribution parameters were estimated from
the alignment of 20 shufflings of each sequence pair and a p-
value cutoff of 0.2 was used. This yielded eight out of eight
SRP genes, and three false positive alignments. The estimated
p-value of the eight true hits is ,0.0005. The p-values of the
three false positives are ,0.0005, 0.069, and 0.134. The

Figure 3. The Divide and Conquer Algorithm

(1) In the first step, the region of interest is found using the local-alignment algorithm. During the local alignment, the bifurcation constraint is used to
save a lot of memory.
(2) In the second step (first step of a global alignment), the region of interest is realigned. The bifurcation constraint is still used, but an additional list of
branch points is made. The list stores the six coordinates of the branch point and pointers to the next branch points (one for each of the two
substructures). For each subalignment, a pointer to the last branch point is kept.
(3) Using the branch point pointers and coordinates, the alignment is split into shorter unbranched segments. Here A is an initial unbranched segment.
MBP 1 (Multi Branch Point) splits the alignment into two segments: EDC and B. C is a new initial unbranched segment. MBP 2 splits the ED segment into
the E and D segments.
(4) The five segments are realigned and backtrack without using the bifurcation constraint to save memory. These realignments are fast, as it is not
necessary to evaluate the bifurcation part of the algorithm. Finally, the segments are joined together into the final alignment.
doi:10.1371/journal.pcbi.0030193.g003

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931901

Fast Structural RNA Alignments

positive predictive value, PPV, is 0.73, and the sensitivity is
1.00. This shows that the algorithm can be used as a general
tool for finding new RNA structures.

Global-Alignment Results
Initial tests of FOLDALIGN’s global-alignment performance

while using pruning showed that the simple pruning used
during local alignment removes too much during global
alignment. Many sequence pairs simply did not produce an
alignment. The ‘‘problem’’ is that the global alignment must

insert a minimum number of gaps equal to the length
difference between the two sequences. When the length
difference is large, the cost of inserting the minimum number
of gaps is enough to make the algorithm prune away all
alignments. To circumvent this problem, a special global-
alignment pruning scheme is used; see the previous section
called Pruning.
Using the global pruning scheme, most global alignments

between related sequences produce an alignment. Unfortu-

Figure 4. The Average Run Time

(A) Time requirements as a function of k. The ‘‘real data’’ curves were made using a SRP dataset. It contains eight pairs of 1,000 nucleotide-long
sequences. Each sequence contains one SRP gene with a length of approximately 300 nucleotides. The ‘‘shuffled data’’ curve was made using shuffled
versions of the same dataset. The ‘‘2.0’’ curves were made using the previous version of the program. ‘‘No pruning’’ curves were made using the
current version, but without pruning (option -no_pruning). ‘‘Pruning’’ curves were made using the current version and default values of pruning. It is
clear that the time needed to make the alignments explodes when pruning is not used, whereas the run time remains much lower when pruning is
used.
(B) The pruning curves with a smaller time scale. The curve for the sequences containing a motif grows much faster than the curves for the shuffled
sequences until the point where k is as long as the motif. After this, the curves appear to grow at the same rate.
doi:10.1371/journal.pcbi.0030193.g004

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931902

Fast Structural RNA Alignments

nately, this also lowers the efficiency of the pruning
significantly. Figure 6 shows the time needed to do an
alignment without pruning divided by the time needed to do
the same alignment using pruning as a function of the length
difference between the two sequences. When the length
difference is small, it is significantly faster to use pruning.
When the length difference is large, there is only a small
speed advantage. At a length difference of 25, the use of
pruning is only ;20% faster than not using pruning.

The global 5S rRNA and tRNA datasets (see Material and
Methods) were used to select the parameters of the global
score matrix, see Table 1 (gap penalties, substitution versus
energy weight, and Ribosum clustering percentage). The

global SRP and RNaseP datasets were used as validation
datasets. As a performance measure, the Matthews correla-
tion coefficient (MCC) of the base-pair prediction was used
[40]. Correctly predicted base pairs are counted as true
positives, predicted base pairs that are not found in the
annotation are counted as false positives. Annotated base
pairs not found in the prediction are counted as a false
negative. Positions not predicted to base-pair that are not
annotated to base-pair, are counted as true negatives. The
average MMCs are: 5S rRNA 0.81, tRNA 0.86, RNaseP 0.50,
and SRP 0.49. The results for the RNaseP and SRP datasets
indicate that the good performance reported for 5S rRNA
and tRNA may be due to overfitting. If this were the case,
then it should also be possible to overfit on the RNaseP and
SRP datasets. These datasets were therefore used to find
alternative sets of parameters. The best MCCs found for both
datasets were 0.56. The poor performance therefore does not
seem to be due to overfitting. Some of the performance
difference is likely to be due to structural inserts in the
structures. Some of the sequence pairs in both the RNaseP
and the SRP datasets contain stem inserts which FOLDALIGN

currently cannot handle. The 5S rRNA and tRNA datasets
contain fewer large stem inserts.
Recently Dowell and Eddy published results [12] which

showed that while FOLDALIGN makes good alignments, its base-
pair prediction sensitivity is slightly lower than that of other
methods for folding and aligning RNA sequences. Since the
dataset used in [12] also contains more sequence pairs than
the Bralibase dataset [7], the dataset [12] is used to test the
global-structure prediction performance of the algorithm.
Figure 7 shows the performance of the old and new versions
of FOLDALIGN and some of the other methods which can make
pairwise structural alignments of RNA using the dataset from
[12]; see Table 3 for details about the methods. In addition to
the methods shown in Figure 7 and Table 3, the combination
of RNAcast and RNAforester as described in the main page of

Figure 5. The Average Memory Requirements

Memory requirements as a function of k. See Figure 4 for details.
doi:10.1371/journal.pcbi.0030193.g005

Table 2. The Localization Performance

Family No Pruning Pruning

Pt Pf Nf PPV Sens Pt Pf Nf PPV Sens

5S rRNA 2 0 0 1.00 1.00 2 0 0 1.00 1.00

Purine 3 2 2 0.60 0.60 3 2 2 0.60 0.60

THI 12 11 9 0.52 0.57 13 11 8 0.54 0.62

U1 6 1 0 0.86 1.00 6 1 0 0.86 1.00

tRNA 171 75 72 0.70 0.70 165 72 78 0.70 0.68

Unknown 12 13

Average 0.74 0.77 0.74 0.78

The localization performance for the datasets used to select the local-alignment
parameters.
No Pruning shows the performance when pruning is not used.
Pruning shows the performance when pruning is used.
Pt is the number of true positive genes or UTR elements predicted.
Pf is the number of false positive genes predicted. Most of these can be assigned a Type,
but those that cannot are counted as Unknown.
Nf is the number of missed genes or UTR elements.
PPV ¼ Pt / (Pt þ Pf) is the positive predictive value.
Sens¼ Pf / (Ptþ Nf) is the sensitivity.
doi:10.1371/journal.pcbi.0030193.t002

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931903

Fast Structural RNA Alignments

the RNAshapes package was also tested. The combined
method only produced an alignment for less than 60% of
the sequence pairs and the results are therefore not reported.
In cases where the combined method did produce an
alignment, the alignment usually looked good. The data used
is the dataset from Figure 7 in [12]. The performance measure
is the MCC (see Materials and Methods). Figure 7 shows that
the performance has improved from the old to the new
version of FOLDALIGN. It also shows that the pruning constraint
does not affect the performance in most ranges of sequence
identity. Only in the identity range from 0.1 to 0.2 is there a
significant difference. This is due to three sequence pairs (less
than 1% of the dataset) for which no alignments are found. In

these cases, pruning is not feasible; however, an alignment
can still be obtained by running FOLDALIGN without pruning.
Table 3 shows how long a time it takes to align the full dataset
[12]. The memory requirements are also shown in Table 3.
Two types of memory consumption are shown. The first (Max)
is the maximum amount of memory (Resident Set Size, RSS)
used during the alignment of the entire dataset. The second
(Ave) is the average amount of memory needed to align each
of the pairs. For ‘‘FOLDALIGN 2.1’’ and ‘‘FOLDALIGN 2.1 -no
pruning’’, the Max number (68 Mb and 323 Mb, respectively)
are due to a pair of tRNAs which are predicted to a have a
stemloop structure. The divide and conquer algorithm can
therefore not be used to split the backtrack into smaller

Figure 6. The Time Gained by Using Pruning

The global-alignment time without pruning divided by the alignment time with pruning as a function of the length difference between the input
sequences. The SRP dataset and d ¼ 25 was used. The curve shows the average gain. The points are the individual measurements.
doi:10.1371/journal.pcbi.0030193.g006

Table 3. Pairwise Methods for Predicting Structures and Alignments of RNAs

Method Options Time (s) Max (Mb) Ave (Mb) Reference

Foldalign 2.1 -global 1,752 68 7 This paper

Foldalign 2.1 -no_pruning -global -no_pruning 8,663 323 21 This paper

Foldalign 2.0 -global -max_diff 25 18,482 316 167 [11]

-score_matrix global.fmat

Dynalign maxtrace ¼ 1, 7,080 17 9 [24]

optimal_only ¼ 1

Locarna.pl 170 2 2 [17]

Consan -m mixed80.mod 208,146 1581 199 [12]

Stemloc -na 100 -nf 1000 150,608a 2641 333 [22]

These are the methods and options used to make Figure 7.
Time is the total run time for the entire dataset.
Max (Mb) is the maximum amount of memory (RSS) used at any time while aligning the dataset.
Ave (Mb) is the average amount of memory needed to align a sequence pair from the dataset.
Note that for FOLDALIGN 2.1, the score matrix optimal for global alignment is used by default when the option -global is used. The local-alignment default matrix can be selected by the use
of the -score_matrix option. For FOLDALIGN 2.1 and FOLDALIGN 2.1 -no_pruning, the Max values are due to one extreme case. If this sequence pair is ignored, the numbers are 21 and 77,
respectively.
aStemloc could not align two sequence pairs.
doi:10.1371/journal.pcbi.0030193.t003

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931904

Fast Structural RNA Alignments

sections, and the memory requirement becomes high.
Solutions to the stemloop problem can be to use a cubic
space models [32,33] or a method similar to the Treeterbi
algorithm [34]. If this one alignment is ignored, the Max
memory consumptions are 21 Mb and 77 Mb, respectively.
Locarna [17] is the fastest and requires the least amount of
memory, but it is also the least accurate. FOLDALIGN is slower
and uses more memory, but it is also one of the most
accurate. Dynalign [24] also makes accurate alignments but is
slower than FOLDALIGN. Consan [12] and Stemloc [22] are slow
and use large amounts of memory without being more
accurate than Dynalign and FOLDALIGN. The computer used to
make these tests runs Linux (kernel 2.6) on two 2.4-GHz 32-
bit Intel Xeon CPUs, and it has 4 Gb of memory.

Discussion

FOLDALIGN is a fast and efficient tool for making pairwise
local or global alignments of RNA sequences. Whereas there
exist a number of methods able to make global alignments,
FOLDALIGN seems still to be one of the very few tools that can
do pairwise local structural alignment of RNA sequences.
Thus the main motivation was in particular to improve on
this aspect of FOLDALIGN. In accordance, this paper described a
new way of improving the run time and memory efficiency of
dynamical programming methods. Furthermore, there are
several improvements to the software package. The main
changes are: pruning of the dynamical programming matrix,
a better implementation of memory usage, and a better
energy model.

The pruning of the dynamical pruning matrix works by
requiring that a subalignment must have a score above a
length-dependent cutoff. Otherwise, the subalignment is

removed from the dynamical programming matrix and
cannot be part of any longer subalignment. Pruning
efficiently slashes run time and memory requirements with-
out degrading the predictive performance. Using pruning to
speed up other dynamical programming applications should
be straightforward.
The memory usage of the implementation is further

improved in two ways: in the branch point calculation and
during backtrack. In the calculation of branch points, two
substructures are only added together if the nucleotides at
the start and end positions of the downstream substructure
are base-paired. Therefore, no downstream subalignment is
saved unless its start and end positions base-pair. A similar
method was used to speed up the algorithm in [11], but now it
is used to both speed up the calculation and to lower the
memory consumption. During backtrack, information is
needed for every cell in the dynamic programming matrix
that will be passed by the traceback algorithm (pruned
alignments will not be passed and pruned cells will therefore
not be needed). A divide and conquer approach has been
implemented which first locates the branch points in the
common structure, and then uses them to divide the structure
into hopefully smaller unbranched segments. These can then
be backtracked separately. While the improvement to the
branch point calculation and the divide and conquer
approach are more specialized than the pruning heuristic,
they are likely to be of use for other RNA alignment methods.
The improvements in speed and memory requirements are

important as they make studies like [6] more feasible, and
thereby help to elucidate ncRNA genes’ and structures’ role
in molecular biology.
The energy model has been improved in two ways. The first

is that insert basepairs are now allowed at any position in a

Figure 7. Structure Correlation Coefficient

The structure correlation coefficient as a function of sequence identity. The dataset consists of tRNAs and 5S rRNAs; for details see [12]. The difference in
correlation coefficient for ‘‘FOLDALIGN’’ and ‘‘FOLDALIGN without pruning’’ at identities 0.1 and 0.15 is due to three sequence pairs for which no alignment
and structure are produced. Rerunning FOLDALIGN for those three pairs without pruning should be trivial. ‘‘Stemloc’’ did not produce an alignment for
two pairs. For both FOLDALIGN and Stemloc, the pairs which did not produce an alignment are counted as zero.
doi:10.1371/journal.pcbi.0030193.g007

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931905

Fast Structural RNA Alignments

stem except for the first one. The second improvement is that
external single-stranded nucleotides are now always scored in
a consistent way—namely, as single-stranded nucleotides in a
multibranched loop.

Even though the main focus for the FOLDALIGN algorithm is
local alignment, the global-alignment test shows that the
algorithm is the most accurate method for making global
alignments of low-similarity sequences. There are several
directions where the resource requirements can be improved
upon. Firstly, one could introduce an align-then-fold step, to
the aid of finding a lower bound for the pruning threshold.
Secondly, a pre-scan for all dinucleotides could be made to
initiate all stems. Thirdly, restricting the fold envelope (as
introduced by Holmes [22]) by compiling a list of different
shapes [19,20] might be used as a further constraint. Finally,
adding a Markov model, as in Harmanci et al. [24], for initial
restriction of the align envelope might aid in further resource
improvements.

The FOLDALIGN software package is released under the GNU
public license. It has been tested on Linux operating systems,
but should run on any system that can compile standard ANSI
Cþþ. Invoking the FOLDALIGN program with the option -help
will print a short description of all available options. The
package can be downloaded from http://foldalign.ku.dk.

In conclusion, FOLDALIGN constitutes an efficient tool for
pairwise local and global structural alignment of RNA
sequences. With the introduction of pruning, the time of
the genomic screen (ten chromosomes between human and
mouse) in [6] was reduced from five months (on 70 CPUs) to
only one week.

Materials and Methods

Data. Two datasets are used to optimize the local-alignment
parameters and evaluate the performance. Each sequence pair in the
datasets contains at least one conserved RNA structure and the
surrounding context. The sequences of the region with this conserved
structure are at most 40% identical. The single-strand minimum
folding energy of the conserved structure is indistinguishable from
the folding energy of the surrounding sequence. The genomic
contexts were found in GenBank [41]. The first dataset (used for
optimizing the parameters) consists of 99 sequence pairs. The
sequence plus context sequence is 500 nucleotides long. The
conserved structures are 5S rRNA (two pairs) [42], Purine ribos-
witches (five pairs) [43–45], THI riboswitches (21 pairs) [45–50], tRNA
(65 pairs) [51], or U1 (six pairs) [52]. For some of the sequences, there
are other RNAs annotated within the context region (mainly tRNAs).
These extra RNAs are annotated in the dataset if the entire RNA
sequence is part of the context. Partial RNAs are annotated as
intergenic sequence. The total number of the tRNA pairs in the
dataset is therefore 277. The second dataset (used to evaluate the
performance) consists of eight SRP pairs [53]. For details about the
datasets, see [11].

To train and test FOLDALIGN’s global-alignment performance, a new
dataset has been made. The sequence pairs of the dataset were
selected from the 5S rRNA, RNaseP, SRP, and tRNA databases [42,53–
55]. Any sequences containing nucleotides other than A, C, G, or U
were removed from the databases. A few sequences which obviously
did not fit into the databases were removed. Then the sequences in
each database were redundancy-reduced to 90% similarity using the
Hobohm 2 algorithm [56]. Sequence pairs were selected from the
remaining sequences by sorting the pairs by their identity and
selecting the pairs with the lowest identity. Each sequence can only be
part of one sequence pair. The structures were cleaned by annotating
any non A - U, G - C, or G - U base pair as single-stranded. Nucleotides
annotated to base pairs with gaps were also reannotated to be single-
stranded.

The 5S rRNA database has three separate sections (Eubacteria,
Eukaryota, and Archaea). Each section was treated separately before
the final datasets were joined. This part of the data contains 215

sequence pairs. From the RNaseP database, only the sequences in the
bacterial type A alignment [57] were used, as this alignment seems to
have the most sequences and the best annotation. This dataset has
101 sequence pairs. The SRP dataset contains 121 sequence pairs. The
pseudo-knot base pairs were removed from the structures. The tRNA
dataset contains 1,810 sequence pairs.

The global-alignment dataset made by [12] contains 324 sequence
pairs from the tRNA (184 pairs) and 5S rRNA (140 pairs) families of
RFAM [45].

Significance of local alignments. By default, FOLDALIGN returns the
structure, alignment, and positions of the best-scoring local align-
ment of a pair of sequences. However, it can also output the score
and coordinates of the alignment with the highest score compared
with the log of its length for each pair of positions (i,k) in the two
sequences [58]. The list of scores and coordinates are turned into a
ranked list of non-overlapping alignments. As described in [11], this is
done by the following. 1) Find the alignment with the highest score
compared with the logarithm of the sequence lengths. 2) Remove all
alignments that overlap the alignment found in step 1. 3. If more
alignments are available and desired, go back to step 1.

Ideally, the significance of an alignment is found by comparing its
score to a large number of scores from shuffled alignments using the
extreme value distribution [59,60]. With a method like FOLDALIGN,
alignment of thousands of random sequences is not feasible. In
[61,62], it is suggested that from each alignment it is possible to use
more than just the score of best alignment to find the parameters of
the extreme value distribution.

The parameters j and K (K is called k in other texts) of the
distribution are found using the method described in [37]:

K ¼ log 1þ 1
A� C

� �
; j ¼ nA.CexpðKCÞ

LILK
ð4Þ

where A is the mean of all alignments scoring above a cutoff C, and
nA.C is the number of alignments scoring above the cutoff. In [11],
several values of C were tested, and one assumed to be optimal was
chosen. This sometimes led to problems with the distribution being
estimated from only one alignment score. We have therefore changed
the script to use a fixed value of C ¼ 0, which usually yields good
results. The probability of getting a random alignment with a score
larger than or equal to the score D is [37]:

ProbðScore � DÞ’ 1� expð�jLILK expð�KDÞÞ ð5Þ

The extreme value distribution parameters are estimated for each
sequence pair using alignments of 20 shufflings of that pair. The
dinucleotide distribution is conserved during the shuffling [39].

Local-alignment performance evaluation. The localization per-
formance is measured by counting the number of structure pairs
found (Pt), structure pairs missed (Nf), and the number of false
positive predictions (Pf) made by the method.

The annotated structure pairs overlapped by a prediction are
counted as found (Pt) if at least half the nucleotides covered by the
prediction in both separate sequences are annotated as RNA
structures. If there is more than one Pt prediction which covers the
same pair of structures, then the structure pair is only counted once.
Predictions in which at least half of the nucleotides are not annotated
as RNA in both sequences are counted as false positives (Pf). If a false
positive prediction overlaps a structure from one RNA family and
only one family in a sequence, then the prediction gets this family,
otherwise it gets the ‘‘Unknown’’ family. If a false positive prediction
gets an RNA family for one of the sequences and the ‘‘Unknown’’
family for the other, then the false positive is counted as belonging to
the known RNA family. A missed structure pair (Nf) is a pair of
annotated structures which is not overlapped by any significant
positive predictions. Mixed RNA families, like a tRNA versus a 5S
rRNA, are ignored. From the Pt, Pf, and Nf numbers, the positive
predictive value PPV¼ Pt / (Ptþ Pf) and the sensitivity Sens¼ Pt / (Ptþ
Nf) are calculated.

Global structure prediction-performance evaluation. To compare
the predicted structures and the annotated structures, the MCC [40]
for structures are used:

CC ¼
PtNt � Pf Nfffi

ðPt þ Pf ÞðPt þ Nf ÞðNt þ Pf ÞðNt þ Nf Þ
p ð6Þ

Pt is the number of predicted base pairs which are also annotated.
Pf is the number of predicted basepairs which are not annotated. Nf is
the number of base pairs that are annotated but not predicted. Nt is
the number of positions that are both predicted and annotated not to

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931906

Fast Structural RNA Alignments

base pair. As Nf is always very large, the approximation described in
[30] could have been used. No correction for sliding base pairs is used
[35].

Supporting Information

Figure S1. State Chart

A simplified state chart of the FOLDALIGN energy model. The alignment
always starts in the ‘‘Start’’ state which is a hairpin-loop state. The
alignment ends in the ‘‘End’’ state. The ‘‘External’’ state recalculates
the scores of the ‘‘Hairpin-’’, ‘‘Bulge-’’, and ‘‘Internal-’’ loop states to
an ‘‘External’’ state score when needed. Unpaired nucleotides in the
bifurcation states are scored in the same way as external states. The
‘‘Hairpin-loop’’ state aligns unpaired nucleotides in the hairpin
context. The ‘‘Stem’’ state aligns basepairs in both sequences. The
‘‘Stem insert’’ state aligns a basepair in one of the sequences with two
gaps in the other. ‘‘Bulge right’’ aligns bulges on the right side of a
stem. ‘‘Bulge left’’ aligns bulges on the left side of a stem. The
‘‘Internal-loop’’ state aligns two internal-loops nucleotides. The
‘‘Bifurcation’’ state joins two substructures. The right structure must
be in the ‘‘Stem’’ or ‘‘Stem insert’’ state. The state of the left structure
must be: ‘‘Stem’’, ‘‘Stem insert’’, ‘‘Bifurcation’’, ‘‘Bulge right’’, or
Bifurcation unpaired right (‘‘Bf. right’’). Bifurcation unpaired right
aligns unpaired nucleotides on the right side of a branch point.
Bifurcation unpaired left & both (‘‘Bf. left & both’’) aligns unpaired
nucleotides on the left, right, and both sides of a branch point.

Found at doi:10.1371/journal.pcbi.0030193.sg001 (11 KB PDF).

Figure S2. l

l is the number of unpaired nucleotides external to the last basepair.
l1 is the number of unpaired nucleotides upstream of the last
basepair in the first sequence. l2 counts the unpaired nucleotides
downstream of the last basepair in the first sequence. l3 and l4 are
defined in the same way but for sequence 2. In this example l1¼ 1, l2
¼ 2, l3 ¼ 3, and l4 ¼ 4.
Found at doi:10.1371/journal.pcbi.0030193.sg002 (7 KB PDF).

Figure S3. Normal versus Expanding Dynamic Programming

A 2-D folding example of standard versus expanding dynamical
programming matrices. i . j are the sequence coordinates.

(A) Is the standard case. The blue cell is filled using the green cells
(adding a basepair, or a single stranded nucleotide), and by joining
two of the red cells (a bifurcation). Arrows have only been drawn for
one of the bifurcations. The grey cells are those which have already
been filled.
(B) Is the expanding case. The blue cell is used to partially calculate
the score of the green cells (adding a basepair or a single-stranded
nucleotide). The yellow cells are the results of joining the blue cell
and the red cells in bifurcations. The dark grey cells are those which
have already been completely filled. The light grey cells are those
where the calculation is not completely finished.

Found at doi:10.1371/journal.pcbi.0030193.sg003 (13 KB PDF).

File Collection S1. FOLDALIGN Software Package

Found at doi:10.1371/journal.pcbi.0030193.sd001 (808 KB TAR).

Table S1. Notation

Found at doi:10.1371/journal.pcbi.0030193.st001 (26 KB PDF).

Protocol S1. Supplementary Material

Found at doi:10.1371/journal.pcbi.0030193.sd002 (97 KB PDF).

Acknowledgments

We would like to thank Robin Dowell for sequence data, data points,
and assistance with the making of Figure 7. We would also like to
thank Rune Lyngsø for useful comments. We would also like to thank
the anonymous reviewers who contributed with useful ideas. JG
would like to thank Elena Rivas and Eric Westhof for organising the
Banasque meetings, which have had an impact on the development of
FOLDALIGN.

Author contributions. JHH and JG conceived and designed the
experiments and wrote the paper. JHH and ET performed the
experiments. All authors analyzed the data. JHH contributed
reagents/materials/analysis tools.

Funding. This work was supported by Danish Research Councils
(FTP) and the Danish Center for Scientific Computation.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Numata K, Kanai A, Saito R, Kondo S, Adachi J, et al. (2003) Identification

of putative noncoding RNAs among the RIKEN mouse full-length cDNA
collection. Genome Res 13: 1301–1306.

2. Huttenhofer A, Brosius J, Bachellerie J (2002) RNomics: Identification and
function of small, non-messenger RNAs. Curr Opin Chem Biol 6: 835–843.

3. Mattick J (2004) RNA regulation: A new genetics? Nat Rev Genet 5: 316–323.
4. Washietl S, Hofacker I, Lukasser M, Huttenhofer A, Stadler P (2005)

Mapping of conserved RNA secondary structures predicts thousands of
functional noncoding RNAs in the human genome. Nat Biotechnol 23:
1383–1390.

5. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, et al.
(2006) Identification and classification of conserved RNA secondary
structures in the human genome. PLOS Comput Biol 2: e33. doi:10.1371/
journal.pcbi.0020033

6. Torarinsson E, Sawera M, Havgaard J, Fredholm M, Gorodkin J (2006)
Thousands of corresponding human and mouse genomic regions unalign-
able in primary sequence contain common RNA structure. Genome Res 16:
885–889.

7. Gardner P, Wilm A, Washietl S (2005) A benchmark of multiple sequence
alignment programs upon structural RNAs. Nucleic Acids Res 33: 2433–
2439.

8. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM J Appl Math 45: 810–825.

9. Gorodkin J, Heyer L, Stormo G (1997) Finding common sequence and
structure motifs in a set of RNA sequences. Proc Int Conf Intell Syst Mol
Biol 5: 120–123.

10. Klein R, Eddy S (2003) RSEARCH: Finding homologs of single structured
RNA sequences. BMC Bioinformatics 4: 44.

11. Havgaard J, Lyngsø R, Stormo G, Gorodkin J (2005) Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%.
Bioinformatics 21: 1815–1824.

12. Dowell R, Eddy S (2006) Efficient pairwise RNA structure prediction and
alignment using sequence alignment constraints. BMCBioinformatics 7: 400.

13. Rivas E, Eddy S (2001) Noncoding RNA gene detection using comparative
sequence analysis. BMC Bioinformatics 2: 8.

14. Hofacker I, Fekete M, Stadler P (2002) Secondary structure prediction for
aligned RNA sequences. J Mol Biol 319: 1059–1066.

15. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Res 31: 3423–3428.

16. di Bernardo D, Down T, Hubbard T (2003) ddbRNA: Detection of
conserved secondary structures in multiple alignments. Bioinformatics
19: 1606–1611.

17. Will S, Reiche K, Hofacker I, Stadler P, Backofen R (2007) Inferring
noncoding RNA families and classes by means of genome-scale structure-
based clustering. PLoS Comput Biol 3: e65. doi:10.1371/journal.pcbi.
0030065

18. Hofacker I, Bernhart S, Stadler P (2004) Alignment of RNA base pairing
probability matrices. Bioinformatics 20: 2222–2227.

19. Reeder J, Giegerich R (2005) Consensus shapes: An alternative to the
Sankoff algorithm for RNA consensus structure prediction. Bioinformatics
21: 3516–3523.

20. Höchsmann M, Voss B, Giegerich R (2004) Pure multiple RNA secondary
structure alignments: A progressive profile approach. IEEE/ACM Trans
Comput Biol Bioinform 1: 53–62.

21. Touzet H, Perriquet O (2004) CARNAC: Folding families of related RNAs.
Nucleic Acids Res 32: W142–W145.

22. Holmes I (2005) Accelerated probabilistic inference of RNA structure
evolution. BMC Bioinformatics 6: 73.

23. Tabei Y, Tsuda K, Kin T, Asai K (2006) SCARNA: Fast and accurate
structural alignment of RNA sequences by matching fixed-length stem
fragments. Bioinformatics 22: 1723–1729.

24. Harmanci A, Sharma G, Mathews D (2007) Efficient pairwise RNA structure
prediction using probabilistic alignment constraints in Dynalign. BMC
Bioinformatics 8: 130.

25. Mathews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol 288: 911–940.

26. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence
analysis. Cambridge (United Kingdom): Cambridge University Press.

27. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, et al. (1997) Gapped
BLAST and PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res 25: 3389–3402.

28. Gorodkin J, Heyer L, Stormo G (1997) Finding the most significant
common sequence and structure motifs in a set of RNA sequences. Nucleic
Acids Res 25: 3724–3732.

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931907

Fast Structural RNA Alignments

29. Havgaard J, Lyngsø R, Gorodkin J (2005) The FOLDALIGN web server for
pairwise structural RNA alignment and mutual motif search. Nucleic Acids
Res 33: W650–W653.

30. Gorodkin J, Stricklin S, Stormo G (2001) Discovering common stem-loop
motifs in unaligned RNA sequences. Nucleic Acids Res 29: 2135–2144.

31. Gorodkin J, Lyngsø R, Stormo G (2001) A mini-greedy algorithm for faster
structural RNA stem-loop search. Genome Inform Ser Workshop Genome
Inform 12: 184–193.

32. Myers E, Miller W (1988) Optimal alignments in linear space. Comput Appl
Biosci 4: 11–17.

33. Hirschberg D (1975) A linear space algorithm for computing maximal
common subsequences. Communications ACM 18: 341–343.

34. Keibler E, Arumugam M, Brent M (2007) The Treeterbi and Parallel
Treeterbi algorithms: Efficient, optimal decoding for ordinary, generalized
and pair HMMs. Bioinformatics 23: 545–554.

35. Mathews D, Turner D (2002) Dynalign: An algorithm for finding the
secondary structure common to two RNA sequences. J Mol Biol 317: 191–
203.

36. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 31: 3406–3415.

37. Altschul S, Bundschuh R, Olsen R, Hwa T (2001) The estimation of
statistical parameters for local alignment score distributions. Nucleic Acids
Res 29: 351–361.

38. Eddy S (2002) A memory-efficient dynamic programming algorithm for
optimal alignment of a sequence to an RNA secondary structure. BMC
Bioinformatics 3: 18.

39. Workman C, Krogh A (1999) No evidence that mRNAs have lower folding
free energies than random sequences with the same dinucleotide
distribution. Nucleic Acids Res 27: 4816–4822.

40. Matthews B (1975) Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim Biophys Acta 405: 442–451.

41. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007)
GenBank. Nucleic Acids Res 35: D21–D25.

42. Szymanski M, Barciszewska M, Erdmann V, Barciszewski J (2002) 5S
Ribosomal RNA Database. Nucleic Acids Res 30: 176–178.

43. Mandal M, Boese B, Barrick J, Winkler W, Breaker R (2003) Riboswitches
control fundamental biochemical pathways in Bacillus subtilis and other
bacteria. Cell 113: 577–586.

44. Mandal M, Breaker R (2004) Adenine riboswitches and gene activation by
disruption of a transcription terminator. Nat Struct Mol Biol 11: 29–35.

45. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy S, et al. (2005)
Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids
Res 33: D121–D124.

46. Rodionov D, Vitreschak A, Mironov A, Gelfand M (2002) Comparative
genomics of thiamin biosynthesis in procaryotes. New genes and regulatory
mechanisms. J Biol Chem 277: 48949–48959.

47. Miranda Rios J, Navarro M, Soberon M (2001) A conserved RNA structure
(thi box) is involved in regulation of thiamin biosynthetic gene expression
in bacteria. Proc Natl Acad Sci U S A 98: 9736–9741.

48. Sudarsan N, Wickiser J, Nakamura S, Ebert M, Breaker R (2003) An mRNA
structure in bacteria that controls gene expression by binding lysine. Genes
Dev 17: 2688–26897.

49. Winkler W, Cohen Chalamish S, Breaker R (2002) An mRNA structure that
controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99:
15908–15913.

50. Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, et al.
(2003) Thiamine-regulated gene expression of Aspergillus oryzae thiA
requires splicing of the intron containing a riboswitch-like domain in the
59-UTR. FEBS Lett 555: 516–520.

51. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation
of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:
148–153.

52. Zwieb C (1996) The uRNA database. Nucleic Acids Res 24: 76–79.
53. Rosenblad M, Gorodkin J, Knudsen B, Zwieb C, Samuelsson T (2003)

SRPDB: Signal Recognition Particle Database. Nucleic Acids Res 31: 363–
364.

54. Brown J (1999) The Ribonuclease P Database. Nucleic Acids Res 27: 314.
55. Sprinzl M, Vassilenko K (2005) Compilation of tRNA sequences and

sequences of tRNA genes. Nucleic Acids Res 33: D139–D140.
56. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of

representative protein data sets. Protein Sci 1: 409–417.
57. Harris J, Haas E, Williams D, Frank D, Brown J (2001) New insight into

RNase P RNA structure from comparative analysis of the archaeal RNA.
RNA 7: 220–232.

58. Chvátal V, Sankoff D (1975) Longest common subsequences of two random
sequences. J Applied Probabillity 12: 306–315.

59. Karlin S, Altschul S (1990) Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proc Natl
Acad Sci U S A 87: 2264–2268.

60. Heyer LJ (2000) A generalized Erdös-rényi law for sequence analysis
problems. Methodol Comput Appl Proby 2: 309–329.

61. Waterman MS, Vingron M (1994) Sequence comparison significance and
Poisson approximation. Stat Sci 9: 367–381.

62. Olsen R, Bundschuh R, Hwa T (1999) Rapid assessment of extremal
statistics for gapped local alignment. Proc Int Conf Intell Syst Mol Biol
1999: 211–222.

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1931908

Fast Structural RNA Alignments

