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Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The
fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to
determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets
have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a
high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend
capture–recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid
screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false
positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have
lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50%
false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear
to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erdös-Rényi
network model in favor of the power law model for yeast and the truncated power law for worm and fly degree
distributions. Much as genome sequencing coverage estimates were essential for planning the human genome
sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All
software and datasets are available in Datasets S1 and S2, Figures S1–S5, and Tables S1�S6, and are also available
from our Web site, http://www.baderzone.org.
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Introduction

Maps of pairwise protein–protein interactions are being
generated in increasing numbers by the two-hybrid method
[1]. Genome-scale two-hybrid screens have now been con-
ducted for Saccharomyces cerevisiae (yeast) [2,3], Caenorhabditis
elegans (worm) [4], and Drosophila melanogaster (fly) [5]. More
recently, screens have been reported for herpesviruses and
human [6–8]. These datasets have stimulated large-scale
analysis of the topology of protein interaction networks.
Limitations in the data, both false positives (spurious
interactions reported from high-throughput screens) and
false negatives (true interactions missing from the screens),
continue to make it difficult to infer network properties [9–
11], including distinctions as basic as the difference between
Erdös-Rényi (ER), power law [12–14], and other network
degree distributions [15].

A recent review points out the challenges in estimating
false-positive rates, false-negative rates, and completion to
full coverage of protein interaction networks [16]. Virtually
every published method falls back to an estimate based on
intersections of datasets. For false-positive rates, these
methods have large variance when assays have little overlap,
and indeed could not be used to analyze the existing large-
scale maps for worm and fly. Estimates for false-negative rates
based on overlap of datasets may have even larger uncer-
tainty. Finally, global estimates of false-positive and false-
negative rates say little about protein-specific properties,

including whether certain classes of proteins behave well or
badly in two-hybrid screens.
The goal of this work is to develop and apply a statistical

model for two-hybrid pairwise interaction screens. Previous
methods typically summarize the presence or absence of an
interaction as a 1/0 binary variable, and possibly split off a
high-confidence core dataset. The method we describe
reaches back to the raw counts of observed bait–prey clones.
This frees the statistical method from the need for an
external gold standard of true-positive and true-negative
interactions, or even a second dataset. It permits protein-
specific predictions that for the first time permit tests of
hypotheses that some classes of proteins are more or less
likely to have nonspecific interactions. Finally, estimates of
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false-negative rates permit statistically grounded confidence
intervals for the total number of pairwise interactions
present in model organism proteomes.

A flowchart of a two-hybrid screen orients the discussion
by showing where true-positive interaction partners can be
lost and where false-positive, spurious interactions may arise
(Figure 1). In a two-hybrid assay, one protein is fused to the
binding domain (bait construct) of a yeast transcription
factor, and a second protein is fused to the activation domain
(prey construct). Physical interactions between bait and prey
proteins reconstitute transcription factor activity. Due to the
expense of the assay, not every protein may be selected to be
made into a bait or prey construct. Furthermore, some
constructs may not be functional at all due to improper
folding or incompatibility with the two-hybrid system. These
missing interactions are important to consider when estimat-
ing the total number of interactions in a proteome.

High-throughput two-hybrid screens have used multi-
plexed pairwise tests, either by testing a single bait versus a
pool of preys [4,5], or by pooling both baits and preys [3].

Unnormalized prey pools can be generated from mRNA
extracted from growing cells. With access to clone collections,
pools can be normalized by designing baits and preys
individually for each protein or protein domain, then mixing
preys in equal proportion. The yeast screen considered here
[3] tested 62 normalized bait pools versus 62 normalized prey
pools, each pool having approximately 96 genes. The fly
screen and worm screen each tested one bait in turn versus
both normalized and unnormalized pools.
The testing occurs by using mating or transformation to

express both the bait and prey construct in a single yeast cell.
True-positive interactions drive reporter genes that permit
the yeast cell to grow in selective media. Yeast cells whose
bait–prey constructs do not interact are expected to drop out
during the population expansion. True positives may also be
lost during the population expansion for at least two reasons.
First, the mating or transformation may lack enough cells to
ensure that every combination is tested. Second, a particular
construct may have domain-specific misfolding, making it
functional for some interactions but nonfunctional for
others.
True interactions that are not represented in the cells

following the population expansion are systematic false
negatives for a particular screen. False negatives due to
insufficient mating/transformation and due to nonfunctional
domains could in principle be discriminated by repeating the
mating or transformation step and the selective population
expansion. Without this additional step, however, losses
during the population expansion combine to yield a system-
atic false-negative rate termed 1� psyst, with psyst representing
the true-positive rate for an interacting pair to survive the
population expansion.
Some cells expressing noninteracting proteins may also

survive the population expansion, and the final population of
cells will be a mixture of true positives and false positives. In
Figure 1, the mass fraction of true-positive cells is 1� a, and
of false-positive cells is a. The ratio of false positives to the
total number of true negatives is the false-positive rate.
Usually, however, the ratio is with respect to the total number
of observed interactions (Equation 31), defined as the false-
discovery rate and synonymous with the parameter a.
An ongoing point of contention in two-hybrid screens is

the possibility that two proteins that never interact in vivo in
the host organism might have a strong, reproducible
interaction in vitro in the engineered two-hybrid system.

Figure 1. Flowchart for Yeast Two-Hybrid Screens Indicates Systematic and Stochastic Sources of False Negatives and Stochastic Sources of False

Positives

doi:10.1371/journal.pcbi.0030214.g001
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Author Summary

The genome sequence of an organism provides a parts list of
proteins, but not an instruction manual for assembling the parts into
a cell. Assembly instructions now come from experiments such as
two-hybrid screens that detect physical interactions between pairs of
proteins. Defining the resources required for generating a full
interaction map requires accurate estimates of the false-negative and
false-positive rates of genome-scale screens. Two-hybrid screens
often select a query protein and sample its interaction partners. True
partners may be missed, and false partners may be spuriously
identified. This sampling process resembles a capture–recapture
experiment, except that classical capture–recapture theory assumes
no false positives. Novel extensions to capture–recapture theory
permit its application to proteomic screens. This new theory provides
statistically grounded answers to long-standing questions: false-
discovery rates of high-throughput screens (possibly over 50% per
unique interaction, but probably no more than 15% per clone); the
quality of different screening libraries; protein properties leading to
‘‘sticky’’ or ‘‘promiscuous’’ interactions; the global network topology;
and, most importantly, the coverage of existing two-hybrid maps.
Models estimate roughly 30,000 total pairwise interactions in yeast
and 500,000 to 1,000,000 in metazoans. The majority of these
interactions remain to be discovered.

Estimating Coverage



Conversely, proteins with a strong two-hybrid interaction
might nevertheless fail to interact in vivo. For the purposes of
this work, we assume that such cases are rare and we classify
any pair of proteins with a reproducible two-hybrid
interaction as a true positive. While the total false-positive
fraction a may be large, it represents a sum over many
different false-positive pairs. Most models, including ours,
assume that any particular false positive is rare, with
vanishing probability of observing a specific false-positive
interaction more than once.

Interactions detected in pooled screens often require
sequencing to identify the interacting partners, although
advanced pooling designs may improve deconvolution
efficiency [17]. Cost constraints limit the number of inter-
actions that can be sampled for sequencing. If the number of
clones selected for sequencing is smaller than the number of
true interaction partners of a bait, some true partners will
certainly be lost. Limited sampling depth also truncates the
observed degree distribution for baits. The false-negative rate
due to undersampling is termed 1 � psamp in Figure 1.

False-discovery rates have typically been estimated by
comparing datasets [18–20], suggesting up to 50% false
positives, but these analyses can confound false-positive and
false-negative error sources. Estimated error rates have large
uncertainty because few interactions are observed in multiple
datasets. For example, comparing the Uetz and Ito two-hybrid
datasets for yeast reveals only 9.1% of the total interactions in
common [3], and comparing the two-hybrid interactions with
mass spectrometry interactions reveals only 0.6% in common
[20]. Similarly, comparison of two fly screens reveals few
interactions in common [5,21]. Cross-species comparisons
have also revealed little overlap in the reported interactions
[4], although protein and network evolution are additional
confounding factors.

Efforts to estimate the true number of interaction partners
of a protein have used contingency tables for observing an
interaction in multiple screens. These methods require that
all the interactions be true positives, for example by
excluding singleton observations [22], which can reduce the
estimated interaction count. A notable exception is previous
work in the context of mass spectrometry of protein

complexes [23], which used a Bayesian model to infer global
parameters for screen-specific false-positive and false-neg-
ative rates. These parameters then provided posterior
estimates for the probability of a true interaction given
results of one or more screens. This work is important in
using the number of trials and successes, rather than a single
summary yes/no observation, in its probability model; it
serves as motivation for developing similar models for the
more complicated two-hybrid sampling process involving
strong protein-specific effects.
Quantitative predictions of the amount of work required

to identify some fraction of true interactions would be
analogous to formulas for genome sequencing [24] and would
be useful for planning new experiments [25]. The new work
presented here uses the raw screening data to estimate the
false-negative rate from undersampling, together with the
false-positive rate. A schematic illustrates the sampling
process (Figure 2). Interactions are sampled with replacement
from two sets, one representing true positives and the other
true negatives. The observations are the number of times that
each interaction is sampled, which we summarize with three
variables: n, the total number of samples drawn; w, the
number of unique interactions within the n samples; and s,
the number of interactions observed exactly once. From these
observations we are to estimate the unknown (hidden) values
of k, the total number of true interaction partners, and f, the
number of false positives within the sample n. We also
estimate the parameter a representing the fraction of false
positives in the mixture (the false-discovery rate), as well as
parameters representing the probability distribution for k.
For simplicity, the illustration suggests sampling interactions
in the entire network; in reality, this sampling process occurs
separately for each bait, and the estimation of k and f is
performed separately for each bait.
This estimation problem is akin to estimating population

sizes or species counts from capture–recapture experiments,
estimating vocabulary size from word counts, estimating the
number of distinct alleles at a particular locus, and estimating
the number of facts in the scientific literature [26–33]. Classic
capture–recapture theory permits heterogeneous capturabil-
ity rates, here analogous to different probabilities of

Figure 2. Simplified Schematic Shows the Two-Hybrid Sampling Process

In this picture, true-positive interactions (black edges) are sampled uniformly with total probability 1� a, and false-positive interactions (red edges) are
sampled stochastically with total probability 1 � a. Sampling is with replacement, and multiple edges between a pair of vertices represent multiple
observations of the same interaction. The example shows n¼ 12 edges sampled in the entire network, with w¼ 11 unique edges and s¼ 10 edges that
are singletons observed once. The total number of true-positive edges, k, and the number of false-positive edges within the sample, f, are hidden. The
actual experimental data is more complicated, with individual values reported for n, w, and s for each protein used as a bait. The statistical method
presented here provides estimates for k and f together with parameter estimates for a and the distribution Pr(k).
doi:10.1371/journal.pcbi.0030214.g002
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observing each true interaction partner of a bait. The
canonical estimator has a simple form: k̂ ¼ w þ s2/2k2 [34–
36], where k2 is the number of partners observed exactly
twice.

The classic estimator fails in the two-hybrid setting because
it does not account for false positives. To our knowledge, false
positives have never been discussed in the capture–recapture
setting. False positives will vastly inflate the interaction count
by adding to the number of singleton observations, s, and to
the total observed count, w. The standard estimator has high
variance when the number of observations is small, yielding a
small value for the denominator k2. The estimator fails to

converge when each partner is observed only once, yielding n
¼ w ¼ s, k2 ¼ 0, and k̂ ! ‘.

We present a front-to-back statistical model for both false-
positive and false-negative error rates in two-hybrid screens.
A glossary of model terms is provided (Table 1). The overall
approach is to start by estimating the parameters of a mixture
model for true positives and false positives following the
population expansion. This permits us to estimate bait-
specific false-discovery rates and false-negative rates due to
undersampling. We can then back-calculate the false-negative
rate due to systematic effects. Putting the results together
yields an overall estimate for the false-negative rate of a

Table 1. Definitions of Symbols

Symbol Definition Refer to

Observed variables N Number of baits Above Equation 1

nj Number of preys collected for bait j Equation 5

wj Number of unique preys identified for bait j Equation 4

sj Number of preys identified once for bait j, equivalent to kjð1Þ Equation 3

kjðiÞ Number of preys identified i times for bait j Equation 3

nji Number of times prey i is identified by bait j Equation 29

Hidden variables jj True number of interaction partners of bait j Equation 1

kj True number of interaction partners of bait j excluding those that fail systemati-

cally

Equation 1

fj Number of false-positive preys identified for bait j Equation 7

aj False-positive rate, per-prey, for bait j Equation 2

zj Subpopulation for false-positive rate mixture model Equation 2

C Number of functional preys in the pool Above Equation 2

Parameters k Population-level parameter for degree distribution, Erdös-Rényi model Equation 11

e Population-level parameter for degree distribution, PL, and TPL models Equation 11

c Additional population-level parameters for degree distribution, TPL model Equation 11

a Population-level parameter for scaled false-positive rate model Equation 2

a Population-level parameter for single false-positive rate model Equation 2

a(z), p(z) Population-level parameter for mixture false-positive rate model Equation 2

psamp Population-level true-positive rate from sampling, derived from (w � f) / k Equation 25

psyst Population-level true-positive rate from biological and systematic factors Equation 1

Estimators f̂j Posterior mean estimate for fj Equation 13

ẑj Posterior mean estimate for zj Equation 13

k̂j Estimate for kj as the exponential of the posterior mean of log kj Equation 19

doi:10.1371/journal.pcbi.0030214.t001

Figure 3. Number of Unique Interactions (w) and Singleton Interactions (s) Calculated as a Function of the Number of Preys Examined for the

Experimental Data (Points)

Extrapolations based on half the data are provided for yeast, worm, and fly based on the TPL-MIXTURE model obtained for each.
doi:10.1371/journal.pcbi.0030214.g003
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screen and a basis for comparing interaction lists produced
by different efforts. Along the way we examine issues that our
model is able to address quantitatively: selecting the best
model for the protein degree distribution; correlating false-
discovery rates with bait properties such as ‘‘sticky’’ or
‘‘promiscuous’’ domains or hydrophobic regions; and deter-
mining the relative performance of prey libraries generated
from cDNA libraries or ORFeome collections.

Results

Data Sources
We applied our methods to experimental data from two-

hybrid screens conducted in the model organisms yeast,
worm, and fly. The key parts of the datasets are the numbers
of times that a specific bait identifies each prey, from which
all other required values may be calculated. Yeast data was
taken from ITO FULL, with clone counts from the IST HIT
column [3]. Worm data was from WI5 with clone counts in the
NumHitADcDNA and NumHitADORF columns [4]. The
worm interactions were from the CORE_1, CORE_2, and
NON_CORE sets; interactions annotated as SCAFFOLD
(previous screens by the same group), LITERATURE (inter-
actions reported in the scientific literature), and INTERO-
LOG (interactions inferred cross-species) were excluded. Fly
data was from the CuraGen screen with clone counts in the
baitprey and preybait columns [5]. A summary of the data
sources is provided (Table 2), and a compendium of the data
sources is available (Dataset S1).
In collecting these datasets, we noted that many two-hybrid

screening publications do not report the clone counts that
are required for capture–recapture analysis. This includes
one of the two major yeast high-throughput screens [2], a
screen for Helicobacter pylori interactions [37], and important
recent screens for human protein–protein interactions [6,7].
Part of the motivation of this work is to demonstrate the
value of making this type of raw data available for analysis.

Model Definitions and Assumptions
The relevant variables describing a two-hybrid screen are

listed in Table 1 and summarized here. Each of N baits is
screened against a prey library. For bait i, ni clones from a
two-hybrid screen are sampled and the preys are identified.
The number of times that prey j occurs within bait i’s sample
is termed nij. The number of unique preys within the ni clones
is termed wi. The number of preys observed exactly once
(singletons) is si. The ni clones comprise a mixture of false

Table 2. Known Properties of the Experimental Datasets Are
Total Number of Baits, N; Mean Number of Preys Sampled per
Bait, n̄; Mean Number of Unique Preys, w̄; and Mean Number of
Singleton Preys, s̄

Degree

Distributions

Error

Models

Properties Yeast Worm Fly

N 1532 729 3639

n̄ 7.65 20.08 14.79

w̄ 2.97 5.55 5.69

s̄ 1.97 3.71 3.57

Best loglik(CV) �19092.6 �30181.8 �89956.2

Best BIC 38181.1 60338.5 179922.0

ER SCALED k 3.45944 4.76994 3.97049

a 0.55761 0.64852 0.82464

ā 0.16004 0.13536 0.19334

Dloglik(CV) �4798.9 �2161.5 �9046.6

DBIC 9297.5 4333.1 18083.0

Bootstrap wins 0 0 0

ER SINGLE k 3.45183 5.08841 4.36615

a 0.15683 0.12943 0.17874

Dloglik(CV) �2129.8 �801.3 �3610.1

DBIC 4155.7 1628.3 7211.0

Bootstrap wins 0 0 0

ER MIXTURE k 3.38218 4.74109 4.00738

a(1) 0.05276 0.09448 0.07314

a(2) 0.46131 0.32557 0.39012

p(1) 0.91038 0.74830 0.68790

ā 0.15473 0.12312 0.19194

Dloglik(CV) �13732.7 �634.7 �1330.6

DBIC 2383.9 1201.2 2653.0

Bootstrap wins 0 0 0

PL SCALED e 1.66726 1.52542 1.49905

a 0.11485 0.46495 0.23888

ā 0.04228 0.10478 0.06251

Dloglik(CV) �497.9 �1322.5 �3131.7

DBIC 977.2 2645.9 6263.0

Bootstrap wins 0 0 0

PL SINGLE e 1.68252 1.48318 1.52957

a 0.07981 0.11876 0.12129

Dloglik(CV) �157.0 �155.8 �1169.9

DBIC 304.8 342.5 2342.0

Bootstrap wins 0 0 0

PL MIXTURE e 1.72066 1.53140 1.57974

a(1) 0.05309 0.05206 0.05931

a(2) 0.30453 0.17786 0.29658

p(1) 0.91965 0.44247 0.65815

ā 0.09276 0.12312 0.15064

Dloglik(CV) �0.4 �284.6 �275.7

DBIC 0.0 60.1 549.0

Bootstrap wins 94 2 0

TPL SCALED e 1.62061 1.24535 1.11528

c 0.00064 0.01233 0.01664

a 0.11386 0.45954 0.22944

ā 0.04178 0.10277 0.05939

Dloglik(CV) �497.3 �1312.4 �2930.3

DBIC 982.3 2624.1 5864.0

Bootstrap wins 0 0 0

TPL SINGLE e 1.64988 0.45954 1.00941

c 0.00078 0.03537 0.03493

a 0.07960 0.11820 0.12069

Dloglik(CV) �156.7 �127.0 �930.9

DBIC 309.4 284.9 1865.0

Bootstrap wins 0 0 0

TPL MIXTURE e 1.62420 0.94826 0.80962

c 0.00255 0.04014 0.07418

a(1) 0.05271 0.05196 0.06081

a(2) 0.30424 0.17725 0.30978

p(1) 0.92445 0.46015 0.66825

ā 0.09234 0.12228 0.15698

Dloglik(CV) 0.0 0.0 0.0

Table 2. Continued.

Degree

Distributions

Error

Models

Properties Yeast Worm Fly

DBIC 3.4 0.0 0.0

Bootstrap wins 6 98 100

Parameter estimates and BIC scores for nine possible generative models are shown.
Degree distributions are Erdös-Rényi (ER), power law (PL), and truncated power law (TPL).
Error models are scaled (SCALED), single (SINGLE), and two-component mixture
(MIXTURE). For each organism, the best BIC over all nine models is reported, together
the difference DBIC for each model. The models selected for each organism are shown in
bold.
doi:10.1371/journal.pcbi.0030214.t002
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positives and true positives, but it is not known a priori which
are the false positives, or even the total number fi of false
positives.

The goal of our analysis is to estimate the number of false
positives, fi, and the number of true positives that were left
unsampled for each bait. Our statistical model makes the
following assumptions.

Prey constructs are either functional (with probability psyst)
or systematically lost (with probability 1 � psyst) with respect
to a particular true interaction partner bait construct. Due to
possible differences in binding sites, a prey may be functional
for one bait and nonfunctional for a different bait. The total
number of true positives for a particular bait i is termed ji, of
which ki [ psystji are functional. The parameter psyst is
estimated from the observed probabilities of bidirectional
interactions.

Prey libraries are normalized, with each prey present at
equal concentration. True-positive interaction partners are
sampled with equal probability with replacement from the ki
functional preys.

False-positive preys occur stochastically, not systematically,
with a low probability per prey and negligible probability that
any single true negative is sampled twice for a given prey.
Thus, clones observed once are a mixture of false positives
and true positives; clones observed two or more times are
assumed to be true positives.

The cumulative probability that a particular clone is a false
positive may be large because it sums over all the possible
true negatives. This cumulative false-positive rate is the false-
discovery rate per clone, termed ai for bait i, and may be
different from bait to bait.

These assumptions are justified in the Materials and
Methods section. Even if restrictive, they still provide a
necessary starting point for building more complicated
models. Given these assumptions, we show in Materials and
Methods how false-discovery rates and corrected counts of
interaction partners can be determined for each bait.

The posterior estimates for false-discovery rates and
interaction counts depend on the functional forms selected
for the bait-to-bait heterogeneity in the false-positive rate
and the protein interaction degree distribution. We used a
variety of model selection criteria, also described in Materials
and Methods, that had perfect performance on simulated
data.

False-Discovery Rates
While false positives are a recognized byproduct of two-

hybrid screens, there has been little work to investigate bait-
to-bait variation in the false-discovery rate. We investigated
three models for bait-specific false-discovery rates, described
in words here and mathematically in Materials and Methods,
Equation 2. The false-positive rate in the model is expressed
per sampled clone, rather than per prey in the library (which
would be a much smaller error rate) or per unique
interaction (which would be a larger error rate).

SINGLE error rate model. The SINGLE error rate model is
essentially a null model in which each bait is assumed to have
the same error rate determined by a single parameter a that
is optimized over all the baits used in a screen.

SCALED error rate model. The SCALED model assumes
mass balance between true positives and true negatives. True
positives are assumed to grow faster. If a protein has many

true interaction partners, these colonies will outgrow the true
negatives, leading to a smaller error rate. Conversely, if a
protein has few or no interaction partners, true negatives will
dominate the sampled clones. The false-discovery rate for a
protein with k interaction partners in this model is a / (kþ a),
where the parameter a is optimized over all the baits used in a
screen. The SCALED model predicts that protein interaction
degree is negatively correlated with false-discovery rate.
MIXTURE error rate model. The MIXTURE model assumes

that baits fall into different error rate classes, with some
having higher false-discovery rates than others. There is no a
priori assumption correlating error rate with any observa-
tion; instead, the class assignments are predicted along with
the error rates for each class. In practice, we investigated a
two-class model with ‘‘good’’ or low-error baits and ‘‘bad’’ or
‘‘promiscuous’’ high-error baits. This model has three
parameters: the class probabilities, and then a single error
rate for proteins in each class.
The MIXTURE model outperformed the SINGLE or

SCALED models for all organisms (Table 2). The yeast baits
were roughly 90% good, with a 5% error rate per sampled
clone, and 10% bad, with a 30% error rate. The overall error
rate for yeast was 9%. Note that this error rate is per sampled
clone. The error rate per unique interaction is 24%, and per
singleton interaction is 36% (Table 3).
The worm and fly baits showed a more even split between

good and bad, with 46% of the worm baits and 67% of the fly
baits in the good category. This may reflect improvements in
methods for generating bait constructs. The error rates for
good baits were 5% for worm and 6% for fly; the error rates
for bad baits were 18% and 31%. The overall false-discovery
rates were 12% and 16% per sampled clone in worm and fly,
corresponding to error rates of about 40% per unique
interaction and 65% per singleton interaction.
These error rates are in general agreement with estimates

obtained by comparing datasets (Introduction). Because our
results are bait-specific, however, we can test popular
hypotheses for the sources of false positives in two-hybrid
screens. Suggestions have included that certain domains are
likely to participate in nonspecific interactions, or more
generally that hydrophobic interactions can generate power
law degree distributions entirely due to spurious nonspecific
interactions [38].
For parametric tests, we used the ratio of the posterior

estimate of the number of false positives for bait i, f̂i, to the
total number of clones sampled, ni, as a posterior estimate âi
for the false-discovery rate per sampled clone. Test statistics
for specific classes of proteins summed the individual (ni, f̂i)
values for proteins within the class, then used the ratio of the
sums as the class estimate.
Prey library quality. Both the worm screen and the fly

screen used two distinct prey libraries: one library was
generated from a sequence-verified ORF collection, and the
second from a cDNA collection. An important motivation for
using an ORF collection is that near-perfect normalization of
prey concentrations and higher-quality prey sequences will
reduce the error rate of a screen. We were able to test that
hypothesis through analysis of the worm data. Unfortunately,
the fly data did not include sufficient detail to permit a
similar test.
We again found strong evidence for the mixture model for

false-discovery rates. With the ORF library, the overall good
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class probability was estimated as 90%, while with cDNA, only
46% were classified as good. The error rates for the good
category were 8% in each case. The error rates for the bad
category were 80% for the ORF library and 33% for the
cDNA library. The overall error rate was lower for the ORF
part of the screen, 16% versus 21%.

For a more quantitative comparison, we examined a model
in which the posterior estimate of the error rate for a bait in
the cDNA screen depends linearly on the error in the ORF
screen. This model yielded a p-value of 0.0005 with a slope of
0.34 (95% confidence interval [0.15, 0.53]), demonstrating
that the relative error rate of a bait is consistent from screen
to screen. A rough estimate for the bait-specific increase in
error for the cDNA library relative to the ORF library can be
obtained by forcing the intercept in the linear model to be
zero, which yields a slope of 1.34 (p-value , 2 3 10�16). Thus,
we conclude that each bait has a false-discovery rate that is
approximately 34% higher in the cDNA screen than the ORF
screen.

Promiscuous and chaste domains. We tested the hypothesis
that certain protein domains are more likely to yield false-
positive interactions. PFAM assignments were used to
characterize protein families and domains [39]. For each
domain, we calculated one-sided p-values for both higher and
lower numbers of false positives estimated than expected by
chance. The p-values were then corrected for multiple testing
by multiplying by twice the number of domains tested in each
organism. Several domains were identified as promiscuous,
having significantly higher false-discovery rates than average
(Table 4).

A major theme is the appearance of domains correspond-
ing to membrane-bound proteins (vacuolar ATP synthase,
Chlamidia PMP, nucleoporin, and NIC nuclear pore trans-

port). Other domains occur in tyrosine kinase and other
signaling pathways (SH3, RasGEF). Note, however, that not all
signaling kinases have high false-discovery rates. Indeed,
protein kinases considered as a group actually have signifi-
cantly lower false-discovery rates than average. Thus, we
reject a possible explanation that the absence of scaffold
proteins that provide specificity in protein kinase signaling
[40] leads to a high false-positive rate. Instead, we suggest that
it is particularly the membrane-bound signaling proteins that
have high false-discovery rates, consistent with high false-
discovery rates observed for other protein domains with
membrane localization. This hypothesis is further tested
using cellular compartment annotations (see the section
Gene Annotations).
Domains involved in transcription are also represented as

having high false-discovery rates. It is possible that these
proteins have a low level of auto-activation leading to
spurious false positives. Finally, general cytoskeleton and
protein binding domains occur in the list.
Only a few domains have significantly reduced false-

discovery rates (Table 5). These domains include ribosome
and ribonucleoprotein biogenesis and DNA binding activity.
It is possible that the DNA binding activity is more specific in
these domains, for example limited to single-stranded DNA
(Translin family) or specific sequences (BESS motif) as
compared to the high false-discovery rate proteins.
We also tested the hypothesis that domains that are

prevalent in an organism may yield false positives by spurious
weak cross-reactivity with the binding partners of other
proteins within the same family. This hypothesis was tested
using a linear model in which the overall posterior false-
discovery rate for the proteins within a protein family
depends on the family size. The two-sided p-values for yeast,

Table 3. Error Rates and Projections for Full Coverage Provided for Yeast (PL-MIXTURE), Worm (TPL-MIXTURE), and Fly (TPL-MIXTURE)
Models

Categories Yeast Worm Fly

Screen properties Total number of proteins 6,697 20,069 14,086

Total number of baits 1,532 729 3,639

Total number of preys 2,520 2,116 5,479

Total number used as bait and as prey 772 212 2,109

Fraction screened per bait 0.376 0.105 0.389

Fraction screened overall 0.086 0.004 0.100

False-positive rates Per prey ā 0.093 0.122 0.157

Per unique interaction 0.24 0.44 0.41

Per singleton interaction 0.36 0.66 0.65

True-positive rates Systematic (psyst) 0.31(2) 0.45(4) 0.15(1)

Sampling (psamp) 0.47 0.53 0.67

Total 0.15 0.24 0.10

Mean number of partners Unique preys per bait, full 3.0 5.6 5.7

Unique preys per bait, core 1.8 4.3 1.8

Corrected for false positives 2.3 3.1 3.4

Corrected for false positives and sampling loss 4.8 5.9 5.0

Corrected for false positives and systematic loss 15.4 13.1 33.9

Corrected for false positives and fraction screened 40.8 124.4 87.0

Mean number of partners Corrected for false positives and sampling loss 1.0 2.9 2.7

Corrected for false positives and systematic loss 3.3 6.4 18

Corrected for false positives and fraction screened 8.8 61 46

Total number of protein interactions Estimated from mean 137,000 1,250,000 613,000

Estimated from median 30,000 610,000 325,000

doi:10.1371/journal.pcbi.0030214.t003
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worm, and fly were 0.38, 0.97, and 0.02. Despite the significant
p-value for fly, the R2 for the fit was only 0.004. Thus, if this
effect exists at all, it is a minor contributor to the false-
positive rate.

Gene annotations. We performed a similar analysis for
significantly high or low false-discovery rates for bait proteins
based on their Gene Ontology annotations [41]. Analysis
proceeded according to the three major ontologies: cellular
component (Table S3), biological process (Table S4), and
molecular function (Table S5).

All three ontologies provide evidence that membrane
proteins have higher false-discovery rates in all three species.
Cellular component categories with elevated false-discovery
rates include the Golgi membrane (evidence from fly), the
nuclear membrane and nuclear pore (yeast), the vacuolar
membrane (yeast), other organelle membranes (yeast), and
membrane-bound organelles (worm). Grouping by biological
process, annotations show higher false-discovery rates for
processes related to cellular localization, ion homeostasis, pH
homeostasis, ion transport, and nuclear transport (yeast),
which all involve movement of molecules across biological
membranes. Localization (worm and yeast) also shows a high
false-discovery rate. Molecular functions involving membrane
transport, such as ATPase-coupled transport and general
transporter activity (yeast), also show elevated false-discovery
rates.

While ion transport proteins have high false-discovery

rates, ion-binding proteins do not. Cation binding proteins
(yeast) have significantly lower false-discovery rates than
average, as do proteins with molecular functions of phos-
pholipid binding, nucleic acid binding, and protein binding
(fly).
A similar distinction appears to be in effect for proteins

with enzymatic function. Enzymes that participate in signal-
ing pathways have lower false-discovery rates; enzymes that
participate in basic biosynthesis have higher false-discovery
rates. This hypothesis is supported by results from the
molecular function analysis. Transferases, including methyl-
transferases (fly) and kinases (worm), have significantly lower
false-discovery rates than average. These biochemical reac-
tions are typically important for signaling. Consistent with
this result, proteins with biological processes related to signal
transduction (worm), neurogenesis and neuron morpho-
genesis (fly), cell part morphogenesis (fly), laval behavior
(fly), and memory (fly) have significantly lower false-discovery
rates than average.
Enzymatic functions with higher false-discovery rates than

average include exonuclease and metalloendopeptidase ac-
tivity (fly) and oxidoreductase activity (yeast). Cofactor
binding proteins (yeast), which often participate in enzymatic
reactions, also have elevated false-discovery rates. Biological
processes showing higher false-discovery rates include cofac-
tor biosynthesis (yeast), nucleotide biosynthesis (yeast), and
mRNA metabolic processes (yeast).

Table 4. Promiscuous Domains

Species Domain Domain Description p-Value p-Value

(Corrected)

Baits Having the Domain

Count
P

f̂
P

n ā

Yeast PF01992 vATP-synt AC39 family 1.56 3 10�27 2.44 3 10�24 1 71.82 184 0.390

PF04096 Nucleoporin2 family 9.57 3 10�23 1.49 3 10�19 2 68.06 200 0.340

PF02415 Chlam PMP family 3.58 3 10�22 5.59 3 10�19 1 67.99 199 0.342

PF05669 SOH1 family 4.09 3 10�12 6.38 3 10�09 1 55 217 0.253

PF01842 ACT domain 6.45 3 10�12 1.01 3 10�08 3 45.62 165 0.276

PF00389 2-Hacid dh domain 7.80 3 10�12 1.22 3 10�08 2 44.99 160 0.281

PF00611 FCH family 3.46 3 10�09 5.40 3 10�06 3 44.17 190 0.232

PF07653 SH3 2 domain 4.00 3 10�07 0.0006 6 44.3 221 0.200

PF03357 SNF7 family 4.97 3 10�07 0.0008 3 27.82 109 0.255

PF00018 SH3 1 domain 1.57 3 10�06 0.0024 7 45.29 239 0.189

Worm PF02363 C tripleX repeat 2.97 3 10�12 2.81 3 10�09 5 93.88 369 0.254

PF06493 DUF1096 family 1.63 3 10�11 1.54 3 10�08 5 92.11 374 0.246

PF00097 zf-C3HC4 domain 6.01 3 10�08 5.68 3 10�05 6 49.75 187 0.266

PF03165 MH1 domain 6.07 3 10�08 5.74 3 10�05 3 38.14 130 0.293

PF07714 Pkinase Tyr domain 4.57 3 10�05 0.0432 11 33.44 138 0.242

PF00780 CNH family 4.78 3 10�05 0.0452 2 15.12 45 0.336

Fly PF00784 MyTH4 family 4.16 3 10�10 1.09 3 10�06 2 28.92 56 0.516

PF00626 Gelsolin domain 1.06 3 10�09 2.80 3 10�06 2 34.51 78 0.442

PF00063 Myosin head domain 1.01 3 10�08 2.67 3 10�05 3 33.52 80 0.419

PF02190 LON family 8.56 3 10�08 0.0002 1 29.16 71 0.411

PF00929 Exonuc X-T family 2.40 3 10�07 0.0006 4 38.9 109 0.357

PF07989 Spindle assoc domain 2.80 3 10�07 0.0007 1 24.44 56 0.436

PF00617 RasGEF family 2.20 3 10�08 0.0058 4 45.48 148 0.307

PF01756 ACOX family 3.21 3 10�06 0.0084 3 37.33 115 0.325

PF00752 XPG N family 6.22 3 10�06 0.0164 1 21.04 53 0.397

PF00554 RHD domain 1.27 3 10�05 0.0334 1 21.69 55 0.394

PF00618 RasGEF N family 1.29 3 10�05 0.0338 3 41.99 139 0.302

PF03148 Tektin family 1.33 3 10�05 0.0350 3 36.68 117 0.314

PF04097 NIC family 1.61 3 10�05 0.0424 1 11.96 21 0.570

PF03370 CBM 21 family 1.71 3 10�05 0.0449 1 15.56 34 0.458

These domains have a higher posterior false-discovery rate, a than expected by chance.
doi:10.1371/journal.pcbi.0030214.t004
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Hydrophobic interactions and protein length. The above
results indicating a higher false-discovery rate for membrane
proteins suggest two possible routes toward nonspecific
interactions: (1) Membrane proteins have hydrophobic
residues that associate nonspecifically. Indeed, statistical
models have suggested that nonspecific hydrophobic inter-
actions are responsible for power law degree distributions
observed in two-hybrid screens [38]. (2) Apart from hydro-
phobicity, membrane proteins may become disordered in the
nuclear environment, leading to nonspecific interactions.

These hypotheses can be assessed by testing for significant
association between hydrophobicity and false-discovery rates.
Several accepted hydrophobicity scales are available, includ-
ing those due to Kyte-Doolittle [42], Eisenberg [43], Cornette
[44], and Rose [45]. For each hydrophobicity scale, we
summed the values for each residue of a bait protein to

obtain a single summary score for the entire protein chain.
We then tested the significance of a model in which the
posterior estimate for the false-discovery rate of a bait,
defined as f̂i/ni for bait i, depends on its hydrophobicity (Table
6).
The results of this analysis fail to show a conclusive

relationship between hydrophobicity and false-discovery
rates. The results of the fly screen provide some support for
the hydrophobicity hypothesis, with p-values of 0.03 and
0.0002 according to the Kyte-Doolittle and Cornette scales.
Nevertheless, the R2 values are negligible, 0.001 to 0.004,
indicating that any effect is very very small. The p-value from
the Rose scale is 0.08, not significant according to a two-sided
test but significant for a one-sided test. The p-value for the
Eisenberg scale is not statistically significant for fly. Fur-
thermore, none of the hydrophobicity scales yields a
significant model for either yeast or worm.
A possible source of error in the hydrophobicity analysis is

that the hydrophobicity of the entire protein is used for the
linear model. The effect of hydrophobic patches may be
masked by the variance of the sequence as a whole. We
expect, however, that any conserved hydrophobic domains
are included in PFAM.
We performed a similar analysis based on protein length.

No significant correlation was observed between length and
false-discovery rate for the baits in the yeast and worm
screen. A highly significant correlation was observed in the fly
screen. Again, though, the R2 value of 0.02 indicates that any
effect is negligible.
In summary, while membrane proteins have higher false-

discovery rates, this effect may be due to disordering of
protein structure in the nucleus rather than to pure hydro-
phobic interactions between properly folded proteins.
Protein degree. We finally investigated whether protein

degree correlates with false-discovery rate by testing linear
models for dependence of the posterior error rate, âi, on the
number of estimated true-positive interaction partners
observed, wi � f̂i, and the estimated protein degree, k̂i,

Table 6. Correlation of False-Discovery Rates with Hydro-
phobicity Scales and Length

Hydrophobicity Scale Yeast Worm Fly

Kyte-Doolittle Slope 0.003(3) �0.010(8) �0.011(4)

R2 0.0003 0.0021 0.0014

p-Value 0.470 0.219 0.028

Cornette Slope 0.001(3) �0.013(8) �0.018(5)

R2 0.0000 0.0038 0.0039

p-Value 0.868 0.099 0.0002

Eisenberg Slope 0.012(10) �0.028(23) �0.001(14)

R2 0.0008 0.0019 0.0000

p-Value 0.262 0.235 0.970

Rose Slope 0.04(9) �0.1(2) �0.2(1)

R2 0.0001 0.0002 0.0009

p-Value 0.672 0.677 0.082

Length Slope 1.0(5) 3 10�5 1.4(8) 3 10�5 3.9(5) 3 10�4

R2 0.0006 0.0048 0.0196

p-Value 0.324 0.062 ,2 3 10�16

doi:10.1371/journal.pcbi.0030214.t006

Table 5. Chaste Domains

Species Domain Domain Description p-Value p-Value

(Corrected)

Baits Having the Domain

Count
P

f̂
P

n

Worm PF00069 Pkinase domain 4.80 3 10�08 4.54 3 10�05 39 118.87 1491 0.080

Fly PF01997 Translin family 1.83 3 10�16 4.81 3 10�13 2 3.09 271 0.011

PF02944 BESS motif 9.86 3 10�11 2.59 3 10�07 9 10.94 278 0.039

PF02017 CID-N domain 5.23 3 10�10 1.37 3 10�06 4 11.95 277 0.043

PF00646 F-box domain 3.46 3 10�09 9.09 3 10�06 8 6.54 204 0.032

PF04427 Brix domain 2.32 3 10�08 6.09 3 10�05 1 0 103 0

PF08242 PF08242 4.56 3 10�08 0.0001 9 2.83 133 0.021

PF01588 tRNA bind domain 8.51 3 10�08 0.0002 1 5 169 0.030

PF01423 LSM domain 1.64 3 10�07 0.0004 13 11.77 232 0.051

PF03271 EB1 family 1.17 3 10�06 0.0031 1 0 80 0

PF01849 NAC family 1.70 3 10�06 0.0045 3 1.2 95 0.013

PF02179 BAG family 1.96 3 10�06 0.0051 1 0 77 0

PF08241 PF08241 4.68 3 10�06 0.0123 6 2.83 103 0.027

PF00735 GTP CDC family 1.52 3 10�06 0.0399 3 0.31 65 0.005

PF02892 zf-BED domain 1.683 10�06 0.0441 3 8.86 163 0.054

PF04752 ChaC family 1.90 3 10�06 0.0498 2 8.96 162 0.055

These domains have a lower posterior false-discovery rate than expected by chance.
doi:10.1371/journal.pcbi.0030214.t005
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described in the following section. We also investigated the
number of clones sampled ni, an experimental parameter.
Due to the large range of interaction counts, the analysis used
the log-transforms log(w � f̂), log(k̂), and log(n) (Table 7).

The false-discovery rate shows a strong dependence on
estimates of both the observed and total true-positive
interactions for a protein, with R2 values in the range 0.1 to
0.4. This correlation arises because proteins with a large
number of true interactions and proteins with a high false-
discovery rate will both yield many singleton interaction
partners. While the statistical model attempts to discriminate
between these two sources of singleton interactions, some
correlation remains.

The number of clones sampled per bait is often determined
in advance of conducting a screen, and may not vary much
from bait to bait. Under these conditions, the false-discovery
rate is anticipated to be independent of n. This is indeed the
case for yeast and worm. For fly, a very small but significant
positive correlation is seen, with R2 ¼ 0.02. In the fly screen,
some baits yielding new interaction partners were indeed
sampled deeper (personal communication, L. Giot). Even in
the fly screen, however, baits with the most preys sampled are
not necessarily the baits with the greatest number of
interaction partners. The most heavily sampled bait was
CG5063, with 233 preys, one observed 232 times and the
other observed once. And of the ten most heavily sampled
baits, six have predicted degree lower than the average
predicted degree.

False-discovery rate summary. To summarize, our analysis
strongly supports a heterogeneous false-discovery rate among
bait proteins and provides a rigorous basis for identifying
factors that contribute. High-quality bait and prey libraries
from ORFeome-type collections are shown to reduce false-
positive rates by one-third.

An important biological theme that correlates with high
false-discovery rates is membrane localization. This correla-
tion is observed based on protein domains structure and
cellular compartment annotations. Membrane localization
appears to be more relevant than a broader categorization
based purely on protein hydrophobicity. A second theme is
that proteins with enzymatic activity appear to have lower

false-discovery rates when the activity is related to signaling
pathways, and higher false-discovery rates if the activity is
related to biosynthetic pathways.
The overall estimates for false-positive rates, per unique

interaction, are roughly 25% for yeast and 40% to 45% for
worm and fly. Previous estimates for this yeast dataset range
from 70% to 90%; estimates for worm and fly have been
considered untrustworthy due to limited data (see [16]).
The source of the difference may hinge on the interpre-

tation of bait proteins that identify several singleton preys.
These baits are either hub proteins with many true
interaction partners, or proteins with high false-discovery
rates and nonspecific interactions. Previous methods attempt
to perform this classification by cross-comparing with gold-
standard interactions. Our method performs this classifica-
tion by examining the histogram of preys identified two
times, three times, and so on, then back-calculating the
number of preys that should have been observed once.

Protein Interaction Degree Distribution
We selected three representative functional forms as

possible models for the probability that a bait protein has k
functional interaction partners in the prey library, described
in text here and more formally in the section Theory.
Erdös-Rényi (ER) or Poisson model. This model corre-

sponds to the Erdös-Rényi random graph model of a uniform
probability of an interaction between any two proteins, which
has the limiting form of a Poisson distribution. The single
parameter of this model is determined by the mean value of k.
Power law (PL) model. The power law (PL) model describes

a scale-free distribution in which the probability of a protein
having k partners is proportional to 1/ke. The exponent e in
this one-parameter model is determined by the mean value of
log k. This type of network arises from network growth
algorithms with preferential attachment of new nodes to
existing nodes [46], as could be expected to occur from gene
duplication events.
Truncated power law (TPL) model. The truncated power

law (TPL) model reduces the probability of high-degree
proteins by introducing exponential decay as a second
parameter. The TPL model includes the PL model as a
special case. Truncation is a natural consequence of the finite
size of the proteome, and can also arise from a network with
modularity.
Each of these protein degree distribution models was tested

in conjunction with each of the error models during model
selection. The model selection criteria, which included
corrections to penalize the TPL model for having more
parameters, had perfect performance on data simulated from
each of these models.
Of the one-parameter models, PL is clearly superior to ER

for the yeast, worm, and fly datasets (Table 2). This finding is
important because light sampling of an ER network (and
networks with other degree distributions) can yield a bias
toward a power law degree distribution [10,47]. Our methods
for estimating the true protein degree correct for light
sampling, a claim substantiated by perfect model selection for
simulated data (Table S2).
Adding an exponential decay parameter to obtain a TPL

provides an improved model for the worm and fly data. For
the yeast data, however, the truncation does not improve the
fit. A possible explanation for a PL yeast network and TPL

Table 7. The False-Discovery Rate for a Bait Protein, f̂/n,
Positively Correlated with the Estimated Number of True
Interaction Partners That Are Observed, w � f̂, and the Total
Number, k̂

Variable Yeast Worm Fly

log (w � f̂) Slope 0.030(2) 0.026(3) 0.054(2)

R2 0.123 0.089 0.191

p-Value ,2 3 10�16 2 3 10�16 ,2 3 10�16

log(k̂) Slope 0.042(2) 0.040(3) 0.078(2)

R2 0.294 0.218 0.351

p-Value ,2 3 10�16 ,2 3 10�16 ,2 3 10�16

log(n) Slope 0.001(1) �0.0001(18) 0.012(1)

R2 0.001 0.000 0.020

p-Value 0.330 0.957 ,2 3 10�16

The false-discovery rate is not correlated with the number of clones sampled, n, in yeast
and worm. It is correlated in fly, however, with a small but highly significant effect.
doi:10.1371/journal.pcbi.0030214.t007

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2142164

Estimating Coverage



worm and fly network is that truncation can be due to high-
level network partitioning [15]. The truncation in worm and
fly may therefore be due to metazoan tissue-level organiza-
tion, absent in single-celled yeast.

As described in Materials and Methods, the degree
distribution parameters permit posterior estimates of k̂i, the
number of functional interaction partners of bait i in the
prey library. Our choice for the posterior estimate k̂i is
exphlog kii, the exponential of the posterior mean of the
logarithm of the degree. This form of the estimator is
suggested by the observation that hlog ki is a sufficient
statistic to determine the single parameter of a power law
network, Equation 18, and that the experimental networks
are long-tailed even if not purely PL.

The k̂i values can then be used to estimate false-negative
losses due to two distinct sources: stochastic undersampling
of functional preys, with methods described in the section
Parameter Estimation; and systematic loss of nonfunctional
preys, based on a bidirectional analysis described in Materials
and Methods under the section False-Negative Rates.

False-Negative Rates
False negatives due to undersampling. The stochastic false-

negative rate for an entire screen may be estimated as
P

i[k̂i�
(wi � f̂i)]/

P
ik̂i, where the numerator represents the total

number of true interactions minus the observed interactions,
and the denominator represents the total number of true-
positive interactions. Stochastic losses could in principle be
corrected by deeper sampling of two-hybrid clones. One
minus the stochastic loss rate is termed the sampling true-
positive rate and is provided in Table 3 for each of the
organisms.

Our results indicate that about half of the interactions that
could have been observed were observed in each of the
screens: 47% for yeast, 53% for worm, and 67% for fly. To
our knowledge, these are the first estimates of stochastic
undersampling rates for two-hybrid screens. The roughly
50% true-positive rate for functional clones is remarkably
high given the low overlap between screens done in the same
organism. The dominant contribution to false negatives may
therefore be systematic losses from nonfunctional or absent
preys (see the section False Negatives due to Systematic Loss)
rather than stochastic undersampling.

Because the estimates for sampling coverage seemed higher
than typically assumed for two-hybrid screens, we developed
a cross-validation scheme to test these predictions using the
experimental data (see the section Cross-Validation with
Experimental Data). In short, we used half of each dataset to

estimate model parameters, which were then used to predict
the number of total interactions and the number of singleton
interactions in the remaining half. The predictions from
cross-validation perfectly overlay the experimental data for
worm and fly, and are in excellent agreement for yeast (Figure
2).
The cross-validation method is also able to predict the

number of true-positive and false-positive interactions within
the data, and to extrapolate for larger datasets. The
extrapolated curves for true positives in Figure 2 indicate
that the number of clones sampled could be doubled without
seeing decreasing returns of true positives, but could not be
increased much beyond that.
Even though half of the functional preys are predicted to

be present in the datasets as published, identifying these true
interaction partners remains a challenge. The true-positive
rates drop to 21%, 31%, and 42% for yeast, worm, and fly if
singleton interactions are discounted. While singletons are
not typically incorporated into high-quality subsets, they can
be very useful as part of data integration methods that
combine multiple data sources for greater confidence [20,48–
50].
False negatives due to systematic losses. Once the false-

negative rates have been corrected bait-by-bait for under-
sampling, bidirectional analysis can be used to estimate the
additional false-negative rates due to systematic losses (see
the Materials and Methods section False-Negative Rates).
These estimates are built from a subset of data representing
true positives that are identified in one direction and which
could have been identified in the reverse direction. The
calculations are restricted to proteins that have at least one
interaction recorded as a bait and a prey to exclude
constructs that may be completely nonfunctional. The
systematic false-negative rates, denoted 1�psyst, are estimated
as 0.69 for yeast, 0.55 for worm, and 0.85 for fly (Table 8).
This result may indicate a high quality set of bait and prey

constructs for worm. These constructs came out of an effort
to clone the worm ORFeome [51] and may be of higher
quality than the yeast set, which had been generated earlier.
The fly false-negative rate may be higher due to greater
reliance on cDNA libraries and reduced effort to confirm
each construct in the collection set. In particular, a cDNA
that is not full-length may lack domains responsible for
certain interactions.
Overall false-negative rates. The overall false-negative rate

is 1 � psystpsamp. The corresponding true-positive rates,
psystpsamp, are provided in Table 3: 15% for yeast, 24% for
worm, and 10% for fly. These false-negative rates provide an
immediate explanation of the low number of interactions
seen in multiple screens: two screens that are each only 10%
complete will only share 1% of their interactions, assuming
perfect concordance of the baits and preys screened.
High-throughput screens have by design used different

strategies for the sampling space—the baits and pairs
tested—and the depth of clones sampled within this space
[52], which further reduces the intersection in practice.
Comparison with previous per-protein estimates. To our

knowledge, there has been only one previous method for
estimating the true number of interaction partners of a
protein in a two-hybrid screen, based on the number of
interactions in the intersection of two independent screens
and which we denote k˙ [22]. This previous method is limited

Table 8. Parameter Estimates for the True-Positive Rates for
Avoiding Systematic Losses

Parameter Yeast Worm Fly

N2 736 216 4326

N0 549 135 3810

Nþ 187 81 516

psamp 0.81 0.84 0.81

psyst 0.31(2) 0.45(4) 0.15(1)

doi:10.1371/journal.pcbi.0030214.t008
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by requiring that each interaction is a true positive, and thus
takes information from only the high-confidence component
of an interaction screen. Yeast is the only organism where two
large-scale screens have considerable overlap in baits and
preys used [2,3]. Predictions using the k˙ estimator are
possible for only the 631 proteins that were used in both
screens. Of these 631 proteins, 307 are predicted by k˙ to have
a single interaction partner, 140 are predicted to have two
interaction partners, and only 34 are predicted to have more
than ten interaction partners.

In contrast, the methods presented here are able to make
predictions for all 1,532 bait proteins used in the screen.
Furthermore, by making use of the full tabulation of clone
counts for each prey, rather than just the number of high-
confidence preys, the method is able to discriminate between
baits that are high-degree due to a high false-positive count
and baits that are high-degree due to many true interaction
partners.

The entire set of predictions k̂ from Equation 19 and ĵ
from Equation 31, is compared with the previous estimator k˙

in Dataset S2, with degree distributions depicted in Figure S5.
Jumps in the degree distribution k̂ occur due to large classes
of baits for which every prey is a singleton (Table S6). Counts
of reported interaction partners from other screens are from
BioGRID [53]. Representative cases are summarized (Table 9)
with selected examples discussed below.

Agreement on a short, converged list of interaction partners. For
some proteins, the sampling from the two-hybrid screen
seems to have converged on an accurate, short list of
interaction partners with agreement between k̂ and k˙. One
example is the gene TSC11, involved in actin regulation. The
corresponding bait had ten clones sampled, in which one
interaction partner appeared seven times, a second partner
appeared two times, and a third partner appeared one time.
The estimate k̂ predicts 2.22 total partners and gives an 80%
probability that the singleton partner is a false positive. The

k˙ estimator suggests a single interaction partner. This
protein has six co-complex members, but there is no overlap
between the co-complexed proteins and the two-hybrid
interaction partners.
Disagreement with a new, higher estimated interaction count. In

these examples, the new estimator suggests that several of the
singleton observations are true interaction partners, yielding
a high interaction count. The k˙ estimator does not include
the singletons, leading to a low estimate of only one or two
interaction partners. An example is the RNA15 gene product,
which had 12 singleton preys, two preys observed twice, and
one each observed three and four times. From the 16 unique
interactors, the k˙ method suggests two true positives. Our
estimator suggests that eight of the 12 singletons are true
positives. After correcting for undersampling, the estimator
suggests 18 interactions. This protein has 14 known co-
complex members, and four overlap with the two-hybrid
data.
Agreement with many false positives filtered out. Other baits with

a small predicted number of interaction partners by k̂ and k˙

actually have a large raw interaction count and a correspond-
ing prediction of many false positives. Two examples from
this category are YKL002W, involved in endosomal sorting,
and YOR264W, involved in daughter cell fate. The YKL002W
bait had 86 clones sampled, with 28 singleton observations
and 38 unique partners. The mixture model predicts that all
28 singletons are false positives, and suggests 10.3 true
interaction partners. The k˙ method suggests ten interaction
partners as well. Only two co-complexed proteins have been
detected for this gene, and neither overlaps with the two-
hybrid partners. Results for the YOR264W bait are similar. Of
67 clones sampled, 23 were singletons. An additional prey was
identified twice, and a third was identified 42 times. Both k̂
and k˙ suggest that the true interaction count is two, as
opposed to the raw count of 25 unique partners. No co-
complexed proteins have been reported for this protein.

Table 9. Protein Interaction Count Predictions Provided from This Method, k̂, and from a Previous Method, k˙

ORF Symbol Description Prey counts w f̂ k̂ k˙ Y2H Co-Complex Intersection

YOR171C LCB4 Sphingoid kinase 1@1,2,8 3 0.86 2.15 1 4 0 0

YDR488C PAC11 Dynein 1@2,9 2 0.00 2.02 1 2 5 0

YER093C TSC11 Actin regulation 1@1,2,7 3 0.80 2.22 1 3 6 0

YDL116W NUP84 Nuclear pore complex 15@1; 1@2,4 17 3.39 29.85 2 21 16 2

YML092C PRE8 20S proteasome 5@1; 6@2; 1@13 12 2.50 10.14 1 14 27 2

YGL044C RNA15 Cleavage factor I of mRNA 12@1; 2@2; 1@3,4 16 3.88 17.98 2 22 14 4

YJL070C YJL070C Hypothetical protein 4@1; 2@2; 1@3 7 0.93 8.82 1 5 3 0

YOR167C RPS28A 40S ribosome 7@1; 1@24,46 9 7.00 2.00 9 14 0 0

YGL127C SOH1 RNA pol II 55@1; 3@2,3; 1@4,5,11,14,51,62 67 55.00 12.00 18 62 20 8

YKL002W YKL002W Endosomal sorting 28@1; 6@2; 1@3,5,7,31 38 27.75 10.28 10 35 2 0

YOR264W YOR264W Daughter fate 23@1; 1@2,42 25 23.00 2.00 2 24 0 0

YLR423C APG17 Activator of Apg1p kinase 4@1,2; 3@3; 1@4,5,6,7,10,15 17 3.44 13.67 34 73 12 8

YMR153W NUP53 Nuclear pore complex 1@1; 3@2; 1@3,5,8 7 0.66 6.57 28 26 9 3

YNL333W SNZ2 Stationary phase-induced gene 3@2; 1@3 4 0.00 4.73 16 9 1 1

YDL239C YDL239C Spore wall formation 10@1; 1@2; 4@3,4; 2@5,7; 1@23,34 25 9.87 15.14 45 36 2 1

YCR038C BUD5 GTP/GDP exchange factor 3@1; 2@2 5 0.61 7.51 NA 5 4 0

YOR299W BUD7 Bud-site selection 12@1; 3@2 15 1.59 36.77 NA 15 6 0

YBR058C UBP14 Ubiquitin-specific protease 2@1; 4@2 6 0.42 7.91 NA 7 14 0

YPL020C ULP1 Ubiquitin-like protein specific protease 5@1; 2@2 7 0.87 12.71 NA 10 6 1

The columns Y2H and Co-Complex provide the total number of Y2H interaction partners and co-complexed proteins reported in the literature, together with the number of proteins
common to both categories.
doi:10.1371/journal.pcbi.0030214.t009
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Disagreement with a new, lower estimated interaction count.
Observing multiple partners multiple times provides strong
evidence that sampling has converged, with k̂ not much
different from the raw number of unique partners. The k˙

estimator can give a larger estimate in these cases, possibly
due to increased variance from a small denominator. An
example is the NUP53 gene product, with one singleton, three
partners observed twice, and one partner each with three,
five, and eight clones. The new estimator gives a 66% chance
that the singleton is a false positive and suggests seven
interaction partners overall. The k˙ estimator suggests 28
interaction partners. This protein has nine reported co-
complex members, with three overlapping with the two-
hybrid partners.

New ability to provide an estimate. The k̂ estimator provides
estimates for baits that have only been run in a single screen.
For example, the BUD5 GTP/GDP exchange factor has three
singletons, and two partners observed twice each. These
results suggest that sampling may be close to converged, with
roughly eight partners expected. This protein has four co-
complex members, although none overlaps with the two-
hybrid partners.

Comparison with previous false-negative rate estimates.
Global false-negative rates have been estimated in the past by
comparing a high-throughput interaction set to a gold-
standard set extracted from the literature. We have carried
out this analysis using curated interactions from the Database
of Interacting Proteins (DIP) [54] and methods described in
the section False-Negative Rate from Literature. The true-
positive rates from our capture–recapture model are in
excellent agreement with rates estimated from overlap with
the curated literature (Table 10). For yeast, the capture–
recapture estimate is 16%, while the 95% confidence interval
from the literature is 15%–20%; for fly, capture–recapture
gives 10% and the literature comparison gives 6%–26%.

The capture–recapture method has two benefits over the
literature comparison. First, for organisms with scant
literature data, the literature comparison provides an
uninformative broad range for the true-positive rate com-
pared to the narrow range of the capture–recapture method.
Thus, for worm, the capture–recapture method suggests a
true-positive rate of 24% with a standard deviation of
roughly 63%, while the literature comparison gives a broad
range of 0%–78% as a 95% confidence interval. Second, the

capture–recapture method is able to identify independently
the losses due to systematic factors and due to stochastic
undersampling, while the literature comparison can only
provide a lumped estimate.

Comparison with Previous Total Interaction Count
Estimates
The summary results, Table 3, extrapolate the number of

interaction partners from the estimated number of true
positives within the preys screened to the total number in the
proteome. The results suggest about 40 pairwise interaction
partners per protein in yeast, and roughly 100 pairwise
interaction partners per protein in worm and fly.
These numbers, however, are based on the estimated

means. For long-tailed degree distributions, the median
values may provide greater intuition, and may in fact be
more robust by discounting outliers with high interaction
counts. Median numbers of interaction partners obtained
from parametric degree distributions (see the section Total
Interaction Counts), are provided at the bottom of Table 3.
The final values obtained are roughly ten partners per yeast
protein, 61 for worm, and 46 for fly. The 1.5-fold difference
between worm and fly might point to built-in biases in the
screens (different baits and preys, different selection thresh-
olds, etc.) rather than any fundamental biological differences.
Using the median and mean estimates as brackets, our results
suggest between 30,000 and 140,000 pairwise interactions in
yeast; 600,000 to 1,200,000 in worm; and 300,000 to 600,000 in
fly.
Other work, using a contingency table approach similar to

k˙, has suggested a 95% confidence interval of about 40,000
to 75,000 interactions in yeast, and 150,000 to 370,000 in
human [16]. This previous work was unable to make
predictions for worm or fly, however, due to the lack of
multiple datasets for comparison.

Discussion

The methods introduced here provide a new model for
false-positive and false-negative rates for two-hybrid screens.
To our knowledge, this is the first model that considers the
number of observations of each prey, as opposed to a binary
interaction / no-interaction summary statistic, to calculate
these rates. We have validated the model thoroughly using
simulated data and using published biological datasets. The
applications to published data demonstrate the crucial ability
to predict how many new interactions will be observed as
more preys are collected, together with the true-positive and
false-positive fractions.
One of the major criticisms of the two-hybrid method has

been a high false-positive rate. Unlike previous methods that
produce average false-discovery rates over an entire screen,
our method provides bait-by-bait estimates. False-discovery
rates are heterogeneous: some baits perform better than
others. As others have suggested [38], this permits the
possibility of correlating false-positive rates with hydro-
phobicity and related protein properties. We find strong
evidence for higher false-discovery rates for membrane
proteins, but not for hydrophobic proteins in general. Two-
hybrid screens such as the split-ubiquitin system [55] have
been developed to detect interactions between membrane

Table 10. True-Positive Rates Estimated from Literature Com-
parisons

Species Threshold Number

in Screen

Number

in Small

Scale

True-Positive

Rate (Percent)

95% CI

(Percent)

Yeast �10 118 508 23 [20,27]

�100 154 888 17 [15,20]

Worm �10 0 1 0 [0,78]

Fly �10 0 8 0 [0,28]

�100 6 44 14 [6,26]

Gold-standard sets of interactions were extracted from DIP [54] using publications
reporting no more than 10 or 100 interactions.
doi:10.1371/journal.pcbi.0030214.t010
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proteins. These assays could very well show a correlation of
false-positive rates with other classes of proteins.

Classification of proteins according to enzymatic function
reveals that those in signaling pathways have lower false-
discovery rates than those in metabolic pathways. This
suggests greater evolutionary pressure to maintain specificity
of information-carrying networks.

One suggested mechanism of network evolution is that
recent paralogs may continue to share interaction partners.
This would imply that proteins within a single family should
show cross-reactivity with each other’s binding partners,
eventually leading to false positives due to weak remnants of
ancestral interactions. We rejected this hypothesis by finding
no significant correlation between false-discovery rate and
family size.

Analysis of false-positive rates also provides a quantitative
estimate of the value of using constructs from a sequence-
verified ORF collection rather than from cDNA libraries.
When we classify bait constructs as ‘‘good’’ or ‘‘bad,’’ we find
that the ‘‘good’’ category is 90% for an ORF collection and
45% for a cDNA library. On the prey side, using an ORF
library produces one-third fewer false positives than a cDNA
library.

This model yields estimates of false-negative rates from
screening statistics, and to our knowledge is the first attempt
to discriminate between false negatives due to undersampling
and false negatives due to biological and systematic effects.
We find that sampling and systematic factors are both
important contributors to false negatives, with undersam-
pling yielding a roughly 23 reduction in interactions, and
systematic effects yielding an additional 23 to 63 reduction.
False-negative rates estimated from the statistical model are
in general agreement with those estimated from comparisons
between datasets or to a gold standard.

The statistical framework provides a convenient route to
assessing the likelihood of different population-level func-
tional forms for the protein degree distribution and the false-
discovery rate. We provide conclusive evidence that, among
one-parameter degree distribution models, a PL model is far
superior to an ER model. We find evidence for exponential
truncation of the degree distribution in worm and fly, but not
in yeast. The number of interactions per protein is predicted
to increase from about ten partners for yeast to about 50
partners for the metazoans worm and fly. These results
suggest that more complex organisms have more interactions
per protein component, as well as more components overall.

This model will have value in application to ongoing pool-
based assays for protein–protein interactions in model
organisms and human. An immediate demonstration is the
ability to predict the total number of pairwise protein–
protein interactions based on two-hybrid data. We suggest
that the total number of pairwise interactions observable by
the two-hybrid system is roughly 140,000 in yeast, and 600,000
to 1,300,000 in worm and fly, with about 95% remaining to be
discovered.

An attractive extension of the model presented here is to
include unequal capture probabilities for true interaction
partners. The current model represents true-positive preys as
a two-component mixture: a fraction 1� psyst of true-positive
preys are considered absent from the pool, with capture
probability 0; the remaining k true-positive preys have
uniform capture probability. It would be possible to include

more components, or even a continuous variable represent-
ing an inhomogeneous capture probability of a prey. This is
important for libraries generated directly from mRNAs with
varying abundances, and could still be important for libraries
generated from normalized clone collections due to varying
effective nuclear concentrations and binding constants.
Including heterogeneous capture rates for baits could be

accomplished by extending the model to represent the true-
positive rate psyst for each bait as an additional hidden
variable to be optimized within the Expectation–Maximiza-
tion (EM) framework. In this work, psyst is a global parameter
calculated after the sampling-based parameters have been
estimated.
Both of the above extensions would involve a probability

model that considers interactions in both directions, bait–
prey and prey–bait, and would necessarily add complication
to what is already a mathematically detailed model. While a
more complicated model would seem unlikely to lead to
different conclusions from those presented here, it could
answer questions relating capture probabilities to protein
physical properties, protein abundances in libraries, and
transient versus stable protein interactions.
Developing related statistical models for other types of

protein interaction screens will also be important. A constant
proviso attached to interaction screens is the suspicion that
methods such as two-hybrid screens, affinity pull-downs
[56,57], and protein binding chips [58] will identify different
subsets of interactions. Quantitative comparisons are diffi-
cult, however, because systematic assay-specific differences
are confounded with random loss of interactions due to
incomplete sampling. Methods such as the one presented
here will contribute to understanding what different screen-
ing technologies tell us about the proteome.

Materials and Methods

Theory. An overview of notation is provided (Table 1). Consider a
particular protein j used as one of N baits in a two-hybrid screen
against a pool of C species of preys of which jj are true interaction
partners. We assume that jj ¼ C so that C � jj ’ C is a good
approximation for the number of true negatives for each bait. We
model the first stage of a two-hybrid screen as an all-or-none process
reflecting whether a bait mates successfully with a prey and yields
progeny that survive selection. For simplicity, and to reduce the
number of free parameters, we assume an identical systematic true-
positive rate psyst for each bait j with each of its jj true interaction
partners. The parameter psyst includes systematic biological effects,
such as generating functional fusion proteins in the two-hybrid
system. The number of surviving true positives is kj with binomial
distribution

Prðkj jjj ; psystÞ ¼ ½jj !=kj !ðjj � kjÞ!�p
kj
systð1� psystÞjj�kj : ð1Þ

We further assume that the C true negatives continue to grow
slowly in the selective media with a population expansion that is only
p* times the population expansion of surviving true positives. We
assume a stochastic, not systematic, model for false positives, with p*¼
1 and identical for each prey.

Also for simplicity, and in accord with prey libraries constructed
from normalized ORF collections, we assume that each prey is present
initially at equal concentrations. The final mass fraction of false
positives is denoted aj ¼ p*C[kj þ p*C], yielding a scaled error model
that depends on a single constant p*C [ a. More generally, a variety of
error models are possible:

SCALED: aj ¼ a=ðkj þ aÞ
SINGLE: aj ¼ a

MIXTURE: aj ¼ aðzjÞ
ð2Þ

The MIXTURE model introduces an index zj 2 f1,2. . .,mg to one of
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m possible values of a and prior probabilities p(1)þp (2)þ . . .þp (m)¼
1 for the m components. With m¼ 2, this permits ‘‘good’’ baits (zj¼ 1)
and ‘‘bad’’ baits (zj ¼ 2) with a(1) � a(2).

The second stage of screening bait j is to sequence nj clones from
the mixture of true positives and false positives. We assume that each
of the kj true positives is sampled with uniform probability (1� aj)/kj
and each of the C false positives is sampled stochastically with
uniform probability aj/C. The number of times that prey species m,
either a true positive or a false positive, is sampled within the nj
clones is njm, with 0 � njm � nj and

P
mnjm ¼ nj. The probability of the

observed counts njm is a multinomial, [nj!/Pmnjm!]Pmhnjmm , with hm¼ (1�
aj)/kj or aj/C.

As is typical in a capture–recapture setting, it is more convenient
to work in the context of abundance classes. Let kðiÞj for i � 1
represent the observed data as the number of preys observed exactly i
times within the nj samples. For convenience, we introduce sj as a
synonym for kð1Þj , the number of singleton preys observed only once.
The total number of distinct preys observed is wj,

kðiÞj ¼
X
m

dðnjm ¼ iÞ ð3Þ

wj ¼
X
i�1

kðiÞj ð4Þ

nj ¼
X
i�1

i � kðiÞj ð5Þ

where d(arg) is 1 if its argument is true and 0 if false. The standard
generalized multinomial distribution is obtained by summing over
the fSg permutations that yield wj distinct species,

PrðfkðiÞj gjnj ; kjÞ ¼ nj !=
Y
i�1

kðiÞj !i!k
ðiÞ
j

" #X
S

Y
m

hnjmm ; ð6Þ

identical to Equation 3 of [34]. A rough motivation for this formula
is that nj/Pi�1i!

kðiÞj is the number of distinct permutations of the
nj clones, jSj/Pi�1k

ðiÞ
j ! is the number of distinct permutations of the

observed species, and Pmhnjmm is the probability of selecting the species
in specified order.

Our final approximation is that each true negative occurs at most
once as a false positive, njm ¼ 0 or 1 when m is a true negative. The
expected number of false-positive clones within the nj clones is anj.
The probability that each of these, selected at random from the C
total possibilities, is distinct is P

aj nj
m¼1[1� (m� 1)/C], or approximately

exp[�(
Paj nj

m¼1m � 1)/C] ¼ exp[�ajnj(ajnj � 1)2C] , analogous to the
Birthday Paradox (the probability that two people in a large random
group share a birthday). An appropriate constraint ensuring distinct
false positives is that nj �

ffiffiffiffi
C
p

/aj. With genome-size prey libraries, C �
5,000, and we anticipate that aj � 0.5, making this approximation
valid for nj � 140. For yeast, ten baits (0.67%) violate this constraint;
for worm, 18 baits (2.5%); for fly, ten baits (0.27%).

Denote fj as the number of false-positive observations within the
sample nj. By the above assumption, the false positives must be within
the sj singletons, and 0 � fj � sj. Using the uniform capture
probabilities, Pmhnjmm ¼ ð1� ajÞnj�fja

fj
j =k

nj�fj
j Cfj . The number of permu-

tations jSj can be calculated under the above assumption of singleton
false positives as

jSj ¼ ½sj !Cfj=fj !ðsj � fjÞ!�3 ½kj !=ðkj � wj þ fjÞ!�: ð7Þ

The first factor is the number of ways that false positives can be
assigned to a subset of fj of the sj singleton species. We have used C!/(C
� fj)! ’ Cfj , which is valid because C� nj � fj. The second factor is the
number of permutations that select the wj� fj observed true positives
out of kj. Combining results yields

PrðfkðiÞj g; fj jnj ; kj ;ajÞ ¼ nj !=
Y
i�2

kðiÞj !i!k
ðiÞ
j

" #

3 ½afj
j ð1� ajÞnj�fj=fj !ðsj � fjÞ!�

3 ½kj !=ðkj � wj þ fjÞ!k
nj�fj
j �;

ð8Þ

with an additional factor of p(zj) depending on the hidden variable zj
that indicates the component for the MIXTURE error model,
Equation 2.

The probability distribution for the hidden variables fj and kj are
obtained through the Bayesian relation

Prðkj ; fj ; fkðiÞj gjnj ; ajÞ
¼ Prðkj ; fj jfkðiÞj g; nj ;ajÞPrðfkðiÞj gjnj ; ajÞ
¼ PrðfkðiÞj g; fj jnj ; kj ;ajÞPrðkj jnj ;ajÞ:

ð9Þ

For the MIXTURE model, the analogous equation includes the
hidden variable zj. When kj is independent of nj and aj, Pr(kj j nj,aj)¼
Pr(kj) [ Pr(kj j U), where U comprises one or more global parameters
describing the interaction degree distribution. The simplified
Bayesian result is

Prðkj ; fj jsj ;wj ; nj ;aj ;UÞ ¼ Prðkj jUÞ
3 ½afj

j ð1� ajÞnj�fj=fj !ðsj � fjÞ!�
3 ½kj !=ðkj � wj þ fjÞ!k

nj�fj
j �

3 dð0 � fj � sjÞdðkj � wj � fjÞ

=
Xsj
f¼0

X‘

k¼wj�f
fPrðkjUÞ

3 ½af
j ð1� ajÞnj�f =f !ðsj � f Þ!�

3 ½k!=ðk� wj þ fjÞ!knj�f �g;

ð10Þ

or Pr(yj j xj,Q) where the hidden variables yj¼f kj, fjg, and possibly zj;
the observed variables xj are the counts of singletons (sj), distinct
preys (wj), and total samples (nj); and the parameters Q are the global
parameters for the error model (a, a, or fa(1). . . a(m);p(1). . .p(m)g) and
the protein degree distribution. The three summary statistics fsj, wj,
njg are sufficient statistics for the observed data fkðiÞj g due to the
assumption of homogeneous probabilities for observing each true-
positive and true-negative species. The sum over k formally starts at wj
� f, which may equal 0 when each of the nj observations is a singleton.
In the results, however, we restrict attention to probability
distributions for which Pr(k ¼ 0 j U) ¼ 0 and start the summation at
k¼ 1.

Three distributions are considered:

Poisson ðERÞ;U ¼ fkg:
PrðkjkÞ ¼ ðkk=k!Þe�k=½1� e�k�

Power law ðPLÞ;U ¼ feg:

PrðkjeÞ ¼ k�e=
X‘

k9¼1
k9�e ¼ k�e=fðeÞ

Truncated power law ðTPLÞ;U ¼ fe; cg:

Prðkje; cÞ ¼ k�ee�ck=
X‘

k9¼1
k9�ee�ck9

ð11Þ

The normalization of the Poisson distribution by 1�e�k in Equation
11 reflects that the summation begins at k¼ 1 rather than at 0.

In keeping with the definition of 1 � psyst as the systematic false-
negative rate, it may be more appropriate to use parametric
distributions for Pr(j), than to obtain Pr(k) as the convolution Pr(k)
¼
P

j�k Pr(k j j)Pr(j). We are in a sense replacing Pr(k j j) of Equation
1 by a delta function near the mean value jpsyst in order to retain the
form of a simpler parametric distribution.

Parameter estimation. Estimates for fkj, fg for each bait could in
principle be obtained using Equations 10–11. This requires, however,
estimates for the global parameters Q. Furthermore, the asymptotic
form of the summand in Equation 10 is kwj�njPr(k j U). Writing the
asymptotic form of Pr(k j U) as k�e, existence of a maximum a
posteriori estimator requires njþ e� wj . 0; convergence of the sum
requires njþ e�wj . 1; and convergence of the mean of kj requires nj
þ e � wj . 2. For the ER prior, k . 0 guarantees convergence of all
powers of kj; for the TPL prior, c . 0 guarantees convergence.
Convergence could be achieved by normalization of k in Equation 11
to a finite cutoff C rather than to ‘. In practice, however, results for
the PL model are sensitive to the cutoff value when e , 2. The TPL
and ER models are not sensitive to a cutoff, as both provide a natural
cutoff as part of the model parameters. If a cutoff is appropriate, we
anticipate that these models will provide improved descriptions of a
degree distribution.

To overcome both these difficulties, we use EM to obtain
parameter estimates Q̂ that maximize the probability of the observed
data [59,60],
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Q̂ ¼ argmaxQPrðQjfxjgÞ ¼ argmaxQ
Y
j

Prðxj jQÞ; ð12Þ

assuming a uniform prior Pr(Q). We introduce the notation

hFðx; yÞi[ ð1=NÞ
XN
j¼1

X
yj

Prðyj jxj ;Q9ÞFðxj ; yjÞ ð13Þ

for the mean of a generic function F(x,y) of the hidden and observed
variables. The sum over the hidden variables expands to

X
yj

!
Xsj
fj¼0

X‘

kj¼wj�fj
ð14Þ

for the scaled a and single a error models, and to

X
yj

!
Xsj
fj¼0

X‘

kj¼wj�fj

Xm
zj¼1

ð15Þ

for the m-component mixture. As mentioned before, while some
models permit kj¼ 0, the power law model does not; for consistency,
we start all degree distributions at kj ¼ 1 and the lower limit of the
sum over kj is effectively max(1,wj� fj). The standard equations giving
a new parameter estimate Q in terms of a previous estimate Q9 are

0 ¼ rQhlog Prðx; yjQÞi ¼ rQhlog PrðyjQÞi; ð16Þ

where the simplification holds because Pr(xj,yj jQ)¼Pr(xj j yj ,Q) Pr(yj
j Q) and Pr(xj j yj, Q) ¼ Pr(xj j yj) is independent of Q. Update
equations for the error models are as follows:

SCALED: a ¼ h f i=hn=ðaþ kÞi
SINGLE: a ¼ h f i=hni

MIXTURE: aðzÞ ¼ h f dðzj ¼ zÞi=hndðzj ¼ zÞi
and: pðzÞ ¼ hdðzj ¼ zÞi

ð17Þ

Update equations for the degree distribution are as follows:

ER: hki ¼ k=ð1� e�kÞ
PL: hlogki ¼ �ðd=deÞlog fðeÞ

TPL: hlogki ¼
X‘

k9¼1
logk9 � k9�ee�ck9=

X‘

k9¼1
k9�ee�ck9

and: hki ¼
X‘

k9¼1
k9 � k9�ee�ck9=

X‘

k9¼1
k9�ee�ck9:

ð18Þ

An interesting and unfortunately common boundary case occurs
when only a single clone is sequenced for a bait, nj¼ 1. In these cases,
sj and wj must also be 1, and Pr(xj j Q)¼ 1 regardless of Q. Thus, baits
with n ¼ 1 do not affect the final model parameters because the
partial derivatives of their contributions to the log-likelihood are
always 0.

The appearance of the expectation of log k rather than k in the EM
equations for the power law parameter e in the PL and TPL models
suggests the use of the posterior mean of log k as a route to estimating
the hidden variable decay. We define this estimator as k̂,

k̂j ¼ exp
X‘

kj¼1
Prðkj jxj ;QÞlog kj

2
4

3
5: ð19Þ

Model selection. The three error models and the three degree
distribution models yield a total space of nine possible models, with
varying degrees of freedom (df): 1 df for the scaled and single error
models; 2m� 1 df for the m-component mixture error model; 1 df for
the ER and PL degree distributions; 2 df for the TPL distribution. We
used three separate criteria to assess which model provides the best
fit: log-likelihood cross-validation (CV); full data Bayesian informa-
tion criterion (BIC); and bootstrap BIC.

The CV method with F-fold cross-validation divides the full data
into F subsets. For subset f, model parameters Qf are estimated using
the remaining F � 1 subsets, and the log-likelihood of subset f is
calculated as loglikf ¼ log Pr(fxfgjQf). This procedure is repeated F
times, once for each subset. Thus, each subset is used F � 1 times to
obtain model parameters and 1 time to obtain an unbiased log-
likelihood. The final log-likelihoods,

P
f loglikf, can be compared

directly. The statistical significance of a difference in log-likelihoods
for two models can be assessed using a paired test, such as the
nonparametric Wilcoxon rank signed test, for the differences
loglikðMÞf � loglikðM 9Þ

f for pairs of models M and M9.
The BIC is an appropriate heuristic for performing model

selection in the context of maximum likelihood parameter estimation
for Q and a uniform prior over model classes M:

PrðMjfxjgÞ }

Z
dQPrðfxjg;QjMÞ

log PrðMjfxjgÞ’ log PrðfxjgjQÞ þ ðd=2Þlogð2p=NÞ
BIC[�2log PrðfxjgjQÞ þ d logN;

ð20Þ

where d is the number of df in the model and N is the number of sets
of observations, here baits. A smaller BIC indicates a more likely class
of models, and the term d log N penalizes more complex models.
Overfitting is unlikely for our models: the typical number of sets of
observations N ; 1,000, while the models have only two to four free
parameters.

Sometimes, the BIC heuristic may indicate a small preference for
one model over another. Bootstrap replicates may be used to assess
the stability of the BIC results. Bootstrap replicates are constructed
by selecting N examples from the full data of N examples uniformly
and with replacement. Thus the number of times n that an example
occurs in a bootstrap replicate is approximately Poisson with Pr(n)¼
1/(n!e). The BIC heuristic for each model is then calculated for each
bootstrap replicate, and the number of times that each model has the
best BIC score is recorded.

Domain-specific false-positive rates. We calculated the cumulative
number of clones sampled for a domain, ndom, and the cumulative
posterior estimate for the number of false positives, f̂dom, by summing
over the counts for each protein annotated as having that domain:

ndom ¼
X
i2dom

ni ð21Þ

f̂ dom ¼
X
i2dom

f̂ i: ð22Þ

p-Values for the upper and lower tail, p. and p,, were calculated
assuming a binomial distribution with ndom trials and a success rate
equal to the overall false-discovery rate â for each organism (0.093 for
yeast, 0.122 for worm, 0.157 for fly). To ensure a conservative test,
fractional values of f̂dom were rounded down for the upper-tail test
and rounded up for the lower-tail test,

p. ¼
Xndom

f¼b f̂ domc;

ndom
f

� �
âf ð1� âÞndom�f ð23Þ

p, ¼
Xd f̂ dome
f¼0

ndom
f

� �
âf ð1� âÞndom�f : ð24Þ

Finally, the single-value p-values were adjusted for the number of
domains observed among baits in each species (783 for yeast, 473 for
worm, 1,310 for fly). When two domains refer to an identical subset of
proteins, results for only a single domain are displayed.

Validation with simulated data. Parameter estimates. Simulations
were performed separately for each of the three protein degree
distributions (ER, PL, TPL) combined with each of the three error
models (scaled, single, mixture), yielding nine total models. Simu-
lations over a range of parameter values used N¼ 1,000 baits and n¼
10 clones sampled per bait, and were usually repeated three times at
each parameter value (Figures S1–S3). The agreement between known
and estimated parameters is very good over parameter values that
span the estimated values for the published datasets (Table S1).
Agreement is quantified by the root-mean-square (RMS) difference
between the known and estimated parameters and the R2 goodness of
fit measure, defined as 1 �

P
t(ht � ĥt)

2/
P

t(ht � h̄)2 with sum t over
trials, ht the true parameter value for trial t, h̄ the mean of h over the
trials, and h̄t the estimated value for trial t. The RMS values are
generally less than 0.05 in absolute units. The R2 values for the TPL-
mixture range from 0.65 for the false-discovery rate parameter to
0.98 for the power law parameter. The R2 values depicted for the
TPL-mixture model are not typical but rather the worst results
obtained over all combinations of degree distribution and error
model (Figure S1–S3). Other models with fewer parameters are more
accurately estimated. For example, simulations using the PL-mixture
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model yield an R2 of 0.99 for e, 0.97 for p(1), and 0.88 for a(1) and a(2).
Simulations using the PL-single model and PL-scaled model yield R2

� 0.99 for all parameters (Table S1).
Hidden variable estimates. Simulations also assessed the ability to

predict hidden variables (Figure S4). We simulated a dataset using
parameters obtained by fitting the fly experimental data with a TPL
degree distribution and a two-component error model. The
simulated dataset had N ¼ 1,000 baits and n ¼ 10 baits per prey.
Next, the EM algorithm was used to estimate the model parameters ê,
â(1), â(2), and p̂(1). The estimated parameter values, rather than the
true known values that generated the data, were used to avoid
introducing a favorable bias in the hidden variable predictions. The
converged model parameters were then used to obtain the posterior
estimates hlog ki, h f i, and hd (z¼ 1)i for each bait, with the notation
h. . .i defined by Equation 13 (Figure S4). Using the log-transform of k
is more natural than using k due to the long tail of the power law
distribution. It is also motivated by the EM equations for the power
law exponent e, which depends on hlog ki rather than hki as shown in
Equation 18.

The hidden variable hlog ki is estimated with R2¼ 0.84, indicating
good correlation between true and estimated values. The RMS error
in the estimate is 0.42, indicating the ability to predict the true value
of k within a factor of exp(60.42), or 1.5-fold. The RMS for the
number of false positives is 1.1, which means that the estimate for the
number of false positives for a bait is usually within 1 of the true
count. Estimates of the error component of a bait are accurate for
low values (low error rate) and high values (high error rate) of ẑ. Baits
with intermediate estimated values, 1.2 � ẑ � 1.6, may come from
either error component. For these baits, all but one or two of the
preys are singletons, and it is difficult to determine whether this is
due to a large bait degree or a large error rate.

Model selection for simulated data. We next validated the BIC heuristic
for model selection (Table S2). In this test, we used each of the nine
possible models (three degree distributions 3 three error models) to
generate datasets with N¼ 1,000 baits and n¼ 10 preys per bait, then
calculated the log-likelihood for each of the nine models. A total
of 81 fits were performed (nine generative models 3 nine fitting
models). The parameters of the generative models were deliberately
selected to yield similar data by using the values obtained by fitting
the experimental worm data (Table 2). In each case, the BIC
identified the model accurately (Table S2). The probability to obtain
a perfect result by chance is approximately (1/9)9, or 2.6 3 10�9.

The BIC results indicate the TPL model can provide a good fit for
data generated by all three models: ER, PL, and TPL. The TPL model
includes the PL model as a special case with the exponential decay
constant c ¼ 0. A large value of c, which truncates the degree
distribution, permits the TPL model to mimic the ER model. The BIC
score adds a penalty of log 1,000¼ 6.91 to the TPL fit to account for
the extra parameter. In several of the entries of Table S2, this penalty
is essential to select the true generative model over the TPL model.

Model selection for experimental data. Properties of the exper-
imental datasets for yeast, worm, and fly are summarized at the top of
Table 2: total number of baits, N; number of preys sampled per bait,
n; number of unique observed interaction partners per bait, w; and
number of interaction partners observed a single time, s. Each dataset
was fit using three separate degree distribution models (ER, PL, TPL)
and three error models (SCALED, SINGLE, MIXTURE), a total of
nine possible combinations of degree distribution and error model.

Model selection. The BIC heuristic selects the PL-MIXTURE model
for yeast and the TPL-MIXTURE model for worm and fly (Table 2). In
general, the PL and TPL models are much better than the ER models.
The MIXTURE error model is somewhat better than the SINGLE
error model, which in turn is much superior to the SCALED error
model. To explore the robustness of this conclusion, we used 10-fold
cross-validation (CV) to compute the log-likelihood of the data under
each of the models. The CV method identifies the TPL-MIXTURE
model as the best for worm and fly, and finds no significant difference
between PL-MIXTURE and TPL-MIXTURE for yeast (p-value¼ 0.35).
Finally, we generated 100 bootstrap replicates each of the yeast, worm,
and fly datasets, calculated the BIC scores for each of the nine models,
and tabulated the number of times that each model had the best score.
The PL-MIXTURE model won 94/100 times for yeast, and the TPL-
MIXTURE won 98/100 times for worm and 100/100 times for fly.

Model parameters. The PL models yield power law parameters e that
are robust to the choice of error model: e¼ 1.67–1.72 for yeast, 1.48–
1.53 for worm, and 1.50–1.58 for fly. In contrast, we can mimic a
conventional fit by estimating the PL e using Equation 18 but with k
(the corrected number of interaction partners) replaced with w (the
observed number of unique partners, which may include false
positives). The conventional fit introduces two sources of error: it

inflates bait degrees by including false positives, and it deflates bait
degrees by excluding false negatives. The conventional estimates for
yeast, worm, and fly yield exponents of 2.22, 1.66, and 1.61, which are
larger (have steeper decay of the degree distribution) than the model
results. Thus, the error due to false negatives may dominate the error
due to false positives when PL parameters are estimated. Parameter
estimates based on prey degree rather than bait degree might be less
sensitive to these sources of error.

Work by others connects the inverse of c to the typical domain size
in a network [15]. The best-fitting TPL models for worm and fly have c
’ 0.04 to 0.07, suggesting a domain size of ten to 30 proteins in a
subnetwork. These estimates may not be overly precise as the TPL
parameters are sensitive to the error model. The worm data, for
example, yields (e, c)¼ (1.25, 0.012) for scaled, (0.46. 0.035) for single,
and (0.95, 0.040) for mixture error models. The extra variability arises
because a larger value of e can compensate for a smaller value of c.
The yeast network, which is best fit by a PL-MIXTURE model, yields a
very small value of c when fit by any TPL model. This suggests that the
yeast network may show less modular structure than either the worm
or fly networks. Interaction networks from viruses, parasites, and
simpler organisms have been shown to be less clustered than
interaction networks from more complex organisms [52].

The fraction of false positives is estimated consistently by the
SCALED, SINGLE, and MIXTURE error models regardless of the
choice of degree distribution. The false-positive fraction is calculated
as
P

if̂i/
P

ini from the estimated false-positive count f̂i and number of
preys ni for each bait i. This fraction is estimated as 0.08–0.09 for
yeast, 0.12 for worm, and 0.16 for fly. The false-positive fraction is, of
course, larger when defined relative to the number of unique
interactions identified rather than the number of preys.

Cross-validation with experimental data. Although the generative
model, the model parameters, and the hidden variables are unknown
for the experimental yeast, worm, and fly data, cross-validation is still
possible. The cross-validation used half of the dataset to predict the
number of new and single interactions in the remainder of the dataset.

First, for each bait, we extracted a random half of the preys to serve
as a training set. For baits with an odd number n of preys, we selected
(n�1) / 2 and (nþ1) / 2 for the training set with equal probability. Next,
we used the training half of the data to estimate model parameters for
each organism. For simplicity, we restricted attention to TPL–
MIXTURE model.

With the maximum likelihood parameter estimates, we then
obtained posterior estimates for the false-positive rate and true
interaction count of each bait protein. The false-positive rate was
determined directly from the mixture model. Based on experience
with simulated data, we used exp(hlog ki) for the posterior estimate of
the bait degree. As noted before, the EM equations for PL-like
networks, Equation 18, suggest that the logarithm of the degree is a
more natural variable than the degree itself (which is not even
guaranteed to converge).

Finally, we use the statistical model to predict how many unique
interaction partners and singleton interaction partners are expected
to be observed as the remaining test half of the data is added back.
The predictions of the model based on the training half can then be
compared with the actual results for the number of unique partners,
w, and the number of singleton partners, s. Since the posterior
estimate of the bait degree may be fractional, we replaced the
factorial function with the Gamma function. Also, rather than
starting with the values for s and w for the training set and calculating
the marginal increase, we performed a more demanding comparison
by using the model parameters to estimate s and w for the observed
training set as well. Fitting error was observed only for the count of
yeast singletons.

False-negative rates. Our model can distinguish between random
or stochastic false negatives due to undersampling, which could be
detected by sampling additional clones, and systematic false negatives
that cannot be corrected by deeper sampling of clones from a two-
hybrid screen. As described in the section Theory, the overall true-
positive rate is the product of the random and systematic rates, psamp
3 psyst.

The true-positive rate from sampling for bait i is (wi � fi) / ki,
the number of true positives observed out of the ki true positives
represented in the pool. The values of fi and ki are hidden, however,
and psamp must be estimated. An appropriate estimator, weighting
each true positive equally, is

p̂samp ¼
X
i

ðwi � f̂ iÞ=
X
i

k̂i; ð25Þ

using Equation 19 to define k̂i.
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The false-negative rate due to systematic losses may be estimated
from interactions observed in both directions. We first restrict
attention to proteins that were found to have at least one interaction
as a bait and as a prey. Using the notation that nij indicates the
number of times that bait i recovers prey j, we extract the subset with
nij � 2, ensuring that the interaction between i and j is a true positive.
These N2 cases are then subdivided into N0 not observed in the
reverse orientation, with j as bait and i as prey, and Nþ observed at
least once in the reverse orientation:

N2 ¼
X
i;j

dðnij � 2Þ ¼ N0 þ Nþ

N0 ¼
X
i;j

dðnij � 2Þdðnji ¼ 0Þ

Nþ ¼
X
i;j

dðnij � 2Þdðnji � 1Þ

ð26Þ

The indicator function d(arg) is 1 for a true argument and 0 for a
false argument. The expected value of d(nji � 1) is the true-positive
rate for bait j, equal to the product of the true-positive rates
accounting for systematic losses and for random undersampling,

hdðnji � 0Þi ¼ psystðwj � f̂ jÞ=k̂j : ð27Þ

Similarly, the expectation of d(nji � 0) is 1 � psyst(wj � f̂j)/k̂j. The
estimated true-positive rate from just the sampling step for the
interactions contributing to N2, denoted p̂9samp, is

p̂9samp ¼ ð1=N2Þ
X
ij

dðnij � 2Þðwj � f̂ jÞ=k̂j : ð28Þ

In practice, we find that p̂9samp is somewhat larger than the value of
(w � f̂ )/k̂ averaged over all baits. For yeast, worm, and fly, the values
for p̂9samp are (0.81, 0.84, 0.81), and the values for p̂allsamp averaged over
all baits are (0.58, 0.60, 0.71). Note that p̂allsamp, the average of the ratios,
is distinct from p̂samp, the ratio of the averages of w � f̂ and k̂ (Table
10).

An estimator for Nþ in terms of the unknown psyst and other
quantities that are known is

N̂þ ¼ N2 � N̂0 ¼ N2psystp̂9samp ð29Þ

An obvious route to estimating psyst is to assume that Nþ follows
a binomial distribution for N2 trials with success rate p̂systp̂9samp. The
corresponding maximum likelihood estimate p̂syst and its standard
error are

p̂syst ¼ Nþ=N2p̂9samp

rðpsystÞ ¼ p̂syst
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p̂systp̂9sampÞ=Nþ

q
:

ð30Þ

The estimated number of true interaction partners corrected for
sampling losses and systematic losses is then ĵi, with

ĵi ¼ k̂i=p̂syst: ð31Þ

False-negative rate from literature. An alternative estimate for the
false-negative rate of a high-throughput screen may be obtained by
comparison to literature data. To accomplish this, we downloaded
protein interaction datasets from the Database of Interacting
Proteins (DIP) [54]. As is common in studies such as this, we required
a ‘‘gold-standard’’ dataset that did not use information from the two-
hybrid screens we are studying and also was unlikely to be
contaminated by false positives. We therefore filtered the entire
DIP database to include interactions from only small-scale experi-
ments. Because there is no firm definition of small scale, we used
cutoffs of 10 and 100 for the number of interactions reported.

For each unique gold-standard interaction, denote the pair of
proteins (i,j). We defined bi ¼ 1/0 if protein i was / was not used as a
bait in the high-throughput screen, and pi¼ 1/0 if protein i was / was
not used as a prey. We defined similar terms for bj and pj. Also define
I(i, j) as 1/0 if the high-throughput screen detected or missed the
interaction between i as bait and j as prey. We then calculated the
following values:

bait fraction screened ¼
X
ði;jÞ
ðbi þ bjÞ=

X
ði;jÞ

2; ð32Þ

prey fraction screened ¼
X
ði;jÞ
ðbipj þ bjpiÞ=

X
ði;jÞ
ðbi þ bjÞ; ð33Þ

false-negative rate ¼
X
ði;jÞ
½bipjIði; jÞ þ bjpiIðj; iÞ�=

X
ði;jÞ
ðbipj þ bjpiÞ: ð34Þ

These summary statistics consider the gold-standard interaction in
both orientations. For gold-standard interactions between identical
proteins, only one of the two identical terms was included in the sum.
The bait fraction screened and the prey fraction screened indicate
possible correlation in the choice of baits and preys in the small-scale
experiments and the high-throughput screens. The summary statistic
for the false-negative rate should correct for this bias by only
considering interactions that were within the space considered by the
high-throughput experiment. This false-negative rate is interpreted
as including both the undersampling loss and the systematic loss.

Total interaction counts. The mean number of true interaction
partners per bait, corrected for false positives and for undersampling, is

hk̂i ¼ N�1
X
i

k̂i; ð35Þ

Using the definition of the false-negative rate from undersampling,
psamp from Equation 25, the mean may also be written as

hk̂i ¼ N�1
X
i

ðwi � f̂ iÞ=psamp: ð36Þ

Correcting the mean for systematic losses, psyst from Equation 30 ,
yields

hĵi ¼ hk̂i=psyst: ð37Þ

This value requires a final correction for the actual search space
relative to the entire genome size. The correction we use is the
number of preys with at least one interaction, Nprey, relative to the
number of proteins annotated in the entire genome, Nproteome. The
final proteome-wide mean interaction count is (Nproteome/Nprey)hĵi.
The number of pairwise interactions in the entire proteome is then

Npair ¼ ð1=2ÞðN2
proteome=NpreyÞhĵi: ð38Þ

An alternative method for estimating interaction counts is to use
the inferred probability distribution directly: Pr(k j k) for Poisson;
Pr(k j e) for PL; and Pr(k j e, c) for TPL, Equation 11. For brevity,
denote each of these Pr(k j ĥ) for the appropriate parameter estimate
ĥ. An overall value for k denoted k̂ may be obtained using an analog
of the bait-specific estimate Equation 19,

k̂ ¼ exp
X‘

k¼1
PrðkjĥÞlog k

" #
: ð39Þ

A more typical value for the interaction count corrected for
undersampling may be obtained using the median defined by the
parametric distribution. We use linear interpolation to estimate a
non-integer median,

k̂med ¼ kþ � 1þ ½0:5� CumPrðkþ � 1Þ�=PrðkþjĥÞ; ð40Þ

where kþ is the smallest value of k such that CumPr(k) � 0.5 and
CumPr(k) is the cumulative probability

Pk
k9¼1Pr(k9 j ĥ) The median

interaction count corrected for systematic losses, ĵmed, is then

ĵmed ¼ k̂med=p̂syst; ð41Þ

and the median number of interaction partners per protein,
corrected for the space screened, is (Nproteome/Nprey)ĵmed.

Supporting Information

Dataset S1. Raw Data, Parameter Estimates, and Hidden Variable
Estimates for Yeast, Worm, and Fly Two-Hybrid Screens

Found at doi:10.1371/journal.pcbi.0030214.sd001 (273 KB TXT).

Dataset S2. Raw Data and Comparison of Interaction Count
Estimators for Yeast Proteins

Found at doi:10.1371/journal.pcbi.0030214.sd002 (72 KB TXT).
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Figure S1. Parameter Estimates for Simulated Datasets Using N ¼
1,000 Bait Proteins; n ¼ 10 Preys Sampled per Bait; Erdös-Rényi
Protein Degree Distributions with Mean Degree k; and SCALED
(Top), SINGLE (Middle), and MIXTURE (Bottom) Error Models

The MIXTURE error model has two components with population
fractions p(1) and p(2) ¼ 1 � p(1) and false-discovery rates a(1) and
a(2). Estimated parameter values are depicted for three independent
trials.

Found at doi:10.1371/journal.pcbi.0030214.sg001 (42 KB PDF).

Figure S2. Same as Figure S1 but for Power Law Degree Distributions
with Power Law Exponent e

Found at doi:10.1371/journal.pcbi.0030214.sg002 (71 KB PDF).

Figure S3. Same as Figure S1 but for Truncated Power Law Degree
Distributions with Power Law Exponent e and Exponential Decay c
Found at doi:10.1371/journal.pcbi.0030214.sg003 (55 KB PDF).

Figure S4. Estimated Values of Hidden Variables Compared to
Known Values for the Bait Degree k (Left), Number of False-Positive
Preys f (Middle), and Mixture Model Error Component z (Right) for a
Dataset Simulated Using Parameters Obtained from a Truncated
Power Law, Mixture Model Fit of the Fly Experimental Data

Found at doi:10.1371/journal.pcbi.0030214.sg004 (117 KB PDF).

Figure S5. Cumulative Degree Distributions Displayed for the Raw
Number w of Unique Interaction Partners; the Estimated Number ĵ
from Equation 19; and from a Previous Estimator ĵ˙[22]

The steps observed in ĵ are from baits with n ¼ w ¼ s, with values
provided in Table S6.

Found at doi:10.1371/journal.pcbi.0030214.sg005 (70 KB PDF).

Table S1. Parameter Value Ranges and RMS and R2 for Parameter
Estimates Are Provided for Simulated Datasets

Found at doi:10.1371/journal.pcbi.0030214.st001 (164 KB DOC).

Table S2. BIC Scores Obtained by Simulating Datasets by Each of
Nine Generative Models and Calculating the Likelihood of Each
Dataset under the Same Nine Models

Degree distributions are Erdös-Rényi (ER), power law (PL), and
truncated power law (TPL). Error models are scaled a (SCALED),
single a (SINGLE), and a two-component mixture (MIXTURE).

Parameter values for the generative models are based on the fit
values for worm (Table 2). The simulations used N¼ 1,000 baits and n
¼ 10 preys per bait.

Found at doi:10.1371/journal.pcbi.0030214.st002 (52 KB DOC).

Table S3. Cellular Component Gene Ontology Terms Whose Baits
Have a False-Discovery Rate Significantly Different from the
Organism Mean

Found at doi:10.1371/journal.pcbi.0030214.st003 (5 KB TXT).

Table S4. Biological Process Gene Ontology Terms Whose Baits Have
a False-Discovery Rate Significantly Different from the Organism
Mean

Found at doi:10.1371/journal.pcbi.0030214.st004 (20 KB TXT).

Table S5. Molecular Function Gene Ontology Terms Whose Baits
Have a False-Discovery Rate Significantly Different from the
Organism Mean

Found at doi:10.1371/journal.pcbi.0030214.st005 (7 KB TXT).

Table S6. Estimates k̂ and f̂ Provided for Baits in Which Every
Recovered Prey Was Unique

Found at doi:10.1371/journal.pcbi.0030214.st006 (97 KB DOC).
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