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Recent advances in single-neuron biophysics have enhanced our understanding of information processing on the
cellular level, but how the detailed properties of individual neurons give rise to large-scale behavior remains unclear.
Here, we present a model of the hippocampal network based on observed biophysical properties of hippocampal and
entorhinal cortical neurons. We assembled our model to simulate spatial alternation, a task that requires memory of
the previous path through the environment for correct selection of the current path to a reward site. The convergence
of inputs from entorhinal cortex and hippocampal region CA3 onto CA1 pyramidal cells make them potentially
important for integrating information about place and temporal context on the network level. Our model shows how
place and temporal context information might be combined in CA1 pyramidal neurons to give rise to splitter cells,
which fire selectively based on a combination of place and temporal context. The model leads to a number of
experimentally testable predictions that may lead to a better understanding of the biophysical basis of information
processing in the hippocampus.
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Introduction

The hippocampal network needs to integrate information
about place and temporal context to enable an animal to
navigate its environment based on previous experience [1–5].
Since the discovery of place cells, which fire selectively when a
rat is in a particular location [6], it has been clear that the
hippocampus encodes information about space. More re-
cently, experiments have pointed to additional components
of spatial representation in the rat hippocampus. In a spatial
alternation task on a T-maze, some CA1 cells fire when the rat
is in a particular location on the stem of the maze, but only
after either a left-turn or a right-turn trial [1]. A majority of
cells respond on the basis of recent history, though some are
predictive of future action [7]. These cells, sometimes
referred to as ‘‘splitter cells’’ or ‘‘episodic cells’’ [1,7–9], are
thought to be neural correlates of temporal context. The
term ‘‘context’’ can be operationally defined in many other
ways [2], including more temporally diffuse effects defining
an extended period of behavior or a specific goal [10], or
nontemporal effects such as overall environment or presence
of specific cue stimuli [11]. In this paper, we consistently use
the phrase ‘‘temporal context’’ [12] to refer specifically to the
history corresponding to one lap on the alternating T-maze.

A previous model [2] analyzed how splitter cells might
emerge in the hippocampus during spatial alternation using
the effect of temporal context [12] and based on other
behavioral and physiological data available on the hippo-
campal formation. That model reproduced the splitter-cell
phenomenon, but the result depended upon a multiplicative
interaction between the two major inputs to CA1 pyramidal
neurons: the perforant-path input from layer III of entorhinal
cortex (ECIII) and the Schaffer-collateral input from CA3. At

the time the model was made, the idea that a nonlinear
interaction between these two inputs was required to produce
CA1 output was an assumption, lacking a biophysical basis.
Recently, it was discovered that inputs from layer III

pyramidal cells of entorhinal cortex, which selectively target
the distal dendrites of CA1 pyramidal cells, interact non-
linearly with inputs from CA3 pyramidal neurons (CA3),
arriving more proximally [13]. Distal inputs alone typically
generate dendritic spikes, but these spikes fail to propagate to
the action potential initiation zone in the axon. If a
subthreshold depolarization of the proximal dendrites arrives
in the same time window as distal dendritic spikes, however,
the more proximal input can facilitate propagation of the
dendritic spike, resulting in generation of an axonal action
potential. This biophysical interaction can be regarded as
‘‘gating’’ of the dendritic spike by the CA3 input. This
suggests that CA1 pyramidal cells can act as coincidence
detectors.
The previous model [2] could not immediately be employed
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to examine whether gating in CA1 pyramidal neurons might
provide the necessary multiplicative interaction at the net-
work level because it uses firing rates as opposed to individual
spiking units. In this study we therefore constructed such a
spiking model, using reduced models of CA1 pyramidal
neurons that exhibit gating, and we show how this model can
produce activity for guiding the trajectory of a rat in the
simulated spatial alternation task.

Our model incorporates several biophysical considerations
into a successful algorithm for simulating the spatial
alternation task. Gating in CA1 dendrites gives rise to splitter
cells, and the output of CA1 neurons is used to guide the rat’s
trajectory through the maze. Thus, we show directly how
concerted behavior could emerge from the detailed cellular
properties of hippocampal and entorhinal neurons. Our
model also points to requirements for a neural representa-
tion of temporal context and suggests how the sources of
place and temporal context representations could be
identified experimentally.

Results

Three regions of the hippocampus were simulated: ECIII,
CA3, and CA1. The network consists of representations of
cells in each region and their excitatory synaptic intercon-
nections.

ECIII and CA3 Neurons
ECIII and CA3 neurons were modeled as single nodes

(equipotential compartments) using the equations proposed
by Izhikevich for quadratic integrate and fire neurons with
adaptive recovery and voltage reset [14]. Single nodes were
sufficient to represent ECIII and CA3 pyramidal neurons
because we were not concerned with dendritic processing in
those cells. The Izhikevich scheme was chosen because it is
simple, computationally efficient, and capable of reproducing
a wide range of neuronal behaviors.

CA1 Neurons
Multiple nodes were required to represent CA1 neurons in

order to simulate gating, which is a result of the geometry and

excitability of their dendritic trees. We used a conductance-
based model for the CA1 cells to make connection with our
previous multicompartmental models that exhibited gating
[13]. CA1 neurons were each composed of four CA1 nodes,
corresponding to the distal apical tuft, apical dendrites, soma,
and basal dendrites of a CA1 pyramidal cell. These nodes
were electrically coupled together in a manner correspond-
ing to pyramidal neuron geometry (Figure 1). The areas of the
nodes were approximately scaled to the areas of the regions
they represent in the multicompartmental model of a
reconstructed CA1 pyramidal neuron [15]. In the multi-
compartmental model, channel densities were adjusted to
match experimental data, so in our reduced model, we use
similar densities (see Methods for model equations). The
response of our reduced model CA1 neuron to a somatic
current injection (Figure 1A) illustrates that it has weakly
excitable dendrites with the backpropagating action poten-
tial failing to invade the distal dendrites, as in the full
morphological models and in experiments [15].

The Virtual Environment
The virtual rat is confined to move through a T-maze with

return arms (Figure 2). It begins at the base of the stem, and at
every time step, updates its position by an amount equal to
Dx. Although the rat moves with small steps, the maze is also
divided into larger positions, marked in the figure. The first
time through the maze, the rat is forced to take an alternating
trajectory marked by the arrows. On all subsequent runs, the
rat chooses where to go by following the spiking patterns of
its CA1 neurons, as discussed below.
The objective of the spatial alternation task is for the rat to

earn rewards, which the experimenter alternately places in
the top right and left corners of the maze. In the model, the
rewards are not explicitly simulated, but a trial is considered
correct if the rat runs to the reward zone that would have
contained the reward in the actual task (Figure 2). On each
trial, the rat runs from the base of the stem to the position
marked ‘‘choice point’’ where it must decide which way to
turn. A correct choice requires the rat to remember which
way it turned on the previous trial, so it can head toward the
opposite reward zone.
Many areas of the hippocampal formation are known to

contain place cells, but where the place representation
originates in the brain is not fully understood. Similarly,
although the hippocampus is known to represent temporal
context, the origin of this representation has not been
identified. Therefore, we test two model variants: In the first,
we assume that primary place information is represented in
ECIII and temporal context is represented in CA3. In the
second, we assume the reverse, that primary place informa-
tion is represented in CA3 and temporal context in ECIII.

Forward Association
Each position in the environment is represented by one

primary place cell, which receives an external current input
every time the rat enters a particular position. The primary
place cells are either ECIII cells or CA3 cells, depending on
which region is assumed to contain the raw representation of
place in the particular simulation.
We assume that at the start of the simulation, the rat has

already learned the spatial alternation task, so the appro-
priate network connectivity has been established. Every
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Author Summary

Understanding how behavior is connected to cellular and network
processes is one of the most important challenges in neuroscience,
and computational modeling allows one to directly formulate
hypotheses regarding the interactions between these scales. We
present a model of the hippocampal network, an area of the brain
important for spatial navigation and episodic memory, memory of
‘‘what, when, and where.’’ We show how the model, which consists
of neurons and connections based on biophysical properties known
from experiments, can guide a virtual rat through the spatial
alternation task by storing a memory of the previous path through
an environment. Our model shows how neurons that fire selectively
based on both the current location and past trajectory of the animal
(dubbed ‘‘splitter cells’’) might emerge from a newly discovered
biophysical interaction in these cells. Our model is not intended to
be comprehensive, but rather to contain just enough detail to
achieve performance of the behavioral task. Goals of this approach
are to present a scenario by which the gap between biophysics and
behavior can be bridged and to provide a framework for the
formulation of experimentally testable hypotheses.

Place and Context in a Spiking Model



primary place cell is synaptically connected only to those
primary place cells representing the positions that the rat can
enter from its current position. Thus, cell 1 is connected to
cell 2, cell 2 to cell 3, and so forth (Figure 3A); this is termed
forward association. When the rat is at the choice point, it
can turn either right or left; cell 5, therefore, is connected
both to cells 6 and 69.

In the real brain, excitatory inputs do not typically
propagate through entire networks because of the require-
ment for inputs from many cells to drive spiking and the
abundance of inhibitory inputs [16–18]. In our model, we
limit the spread of activity through the network of primary
place cells by decreasing the factor w in the transfer function
between cells (see Methods) by 60% for each successive
connection. For the first connection, w is at a maximum value
(wmax), which is sufficient to always induce spiking in cells
directly connected to the primary place cell receiving input.
To prevent inputs from exciting the entire network, we
decrease w with distance from the input site. Reducing w for
every connection does not allow for sufficient membrane
depolarization to bring the third cell in the chain to firing
threshold. For example, if cell 1 receives an input, the
connection from cell 1 to cell 2 has a weight of wmax, the
connection from cell 2 to cell 3 has a weight of 60% of wmax,
which is sufficient to cause cell 3 to fire, and the connection
from cell 3 to cell 4 has a weight of 60% of 60% of wmax, which
is not sufficient to bring cell 4 to threshold. Every time the rat
enters a new position, the w factors are adjusted so that the
forward connections follow this pattern (Figure 3A). This
mechanism is not intended to directly model any biological
process. Rather, it is a simple phenomenological way of

limiting the forward spread of activity through the network
without explicitly including more complex effects such as
inhibition and stochastic firing of neurons.
When the rat enters a new position, the primary place cell

(PPC) representing that position receives an external current
input representing place information. The PPC representing
that position continues to get external input when the rat
moves to the next two locations. Combining this system with
forward association results in place fields that span five
positions, which are larger than the spatial elements in our
model [19]. The size of the model place fields is reasonably
consistent with the size of experimentally observed place
fields [20]. This scheme also mimics the fact that in vivo, place
cells fire on several theta cycles once they are activated [21].
When the rat is in the start position at the base of the stem,

primary place cell 1 (PPC1) receives an external input. PPC1
then fires, and forward association results in firing of PPC2
and PPC3 and an excitatory postsynaptic potential (EPSP) in
PPC4 (Figure 3B). When the rat moves up the stem into
position 2, PPCs 1 and 2 receive external input, and the spike
in cell 2 propagates through PPC4. When the rat gets to the
choice point at the top of the stem, PPC5 gets external input
that spreads both to the right to PPCs 6 and 7 and to the left
to PPCs 69 and 79 (Figure 4). If the rat turns to the right and
enters position 6, PPCs 69 and 79 on the left will remain firing
because PPC5 at the choice point continues to receive input.
Once the rat reaches position 8, the right reward zone, the
forward association from the choice point to PPCs 69 and 79

stops, and only cells in front of the rat fire. Since the firing of
the choice point cell spreads symmetrically to both the right

Figure 1. Elements of the Network Model

(A) ECIII and CA3 neurons are represented by single ECIII and CA3 nodes. Reduced model of a CA1 pyramidal neuron consists of four CA1 nodes
electrically coupled together, representing the apical tuft, more-proximal apical dendrites (dends), soma, and basal dendrites. Shown are voltage
responses of single, uncoupled ECIII, CA3, and CA1 neurons to 2-ms current injections of 200 pA, 200 pA, and 375 pA, respectively. The backpropagating
action potential into the apical dendritic compartments of our CA1 pyramidal cell model shows that it has weakly excitable dendrites.
(B) ECIII and CA3 cells receive external current inputs during the simulations. An ECIII cell provides input to the distal dendritic compartment of a CA1
cell, and a CA3 cell innervates its proximal dendritic compartment. Synaptic potentials are modeled as alpha functions, and if the voltage in the
presynaptic cell exceeds�30 mV, an input is given to the postsynaptic cell.
doi:10.1371/journal.pcbi.0030234.g001
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and the left arms of the maze, the rat must use temporal
context information to choose the correct trajectory.

Temporal Context
Our model utilizes two temporal context cells with very

broad place fields to encode temporal context; one represents
the stem and the left half of the environment, and the other
represents the stem and the right half (Figure 5A). In our
model, a temporal context cell (TCC) is a place cell whose
firing outlasts the external input, but is not sustained forever.
Such sustained neuronal firing is the fundamental require-
ment for a representation of temporal context [12]. There are
several mechanisms available both on the single-cell and
network levels that could give rise to it [12], and in our model,
we choose a recurrent network for simplicity. The first time a
TCC fires, it activates a large network that feeds back onto
itself, and as it fires successive spikes, the percentage of the
network that it succeeds in recruiting decreases (Figure 5B).
Specifically, the recurrent network for each TCC contains 22
neurons, and for every 40 spikes fired, the number of network
cells activated is decreased by one. This has the effect of
keeping a TCC firing for a limited amount of time after input
to it has ceased.

As the rat enters each position on the stem of the maze,
both TCCs receive an external input that is too weak to
induce firing in either cell (Figure 5C). If it makes a right turn,
the input to the right TCC increases, causing it to fire, but the
input to the left TCC ceases. When the rat reenters the stem
after the right turn, both TCCs receive weak input again, but
this is sufficient to keep the right TCC firing, but not to
initiate firing of the left TCC. Furthermore, the right TCC
continues to fire for several positions after the rat has made a
left turn even though input to it has ceased. Thus, when the

rat turns left after a preceding right turn run, the right TCC
is still spiking and the left temporal context cell has not yet
begun to fire. As the rat continues to move through the left
arm of the maze, the right TCC shuts off and the left one
begins to fire. This lateral selectivity of the right and the left
TCCs is used by the virtual rat to determine which way to
turn.

Computation by CA1 Neurons
Each position in the maze is also represented by two CA1

neurons. The model CA1 neurons have just four compart-
ments, but are capable of reproducing the gating phenom-
enon [13]. In our model, input from ECIII enters the distal
dendritic compartments of the CA1 cells, mimicking the
perforant-path input that selectively innervates the apical
tufts of CA1 pyramidal neurons, and input from CA3 enters
their more proximal dendritic compartments, mimicking the
Schaffer-collateral input. On their own, the ECIII inputs
generate dendritic spikes in the CA1 tuft, which fail to
propagate forward to the soma. The CA3 inputs on their own
generate EPSPs in the proximal apical dendritic compart-
ment of the CA1 neurons, but are insufficient to induce
spiking. When the ECIII and CA3 inputs are coincident,
however, propagation of the dendritic spike is rescued,
resulting in somatic action potentials.
If we assume the ECIII cells are PPCs and the CA3 cells are

TTCs, the CA1 neurons fire dendritic spikes in their most
distal nodes and experience sustained depolarization of their
more proximal ones, but fire somatic spikes only when both
the place cells and the TCCs are coactive. This case
corresponds to gating, because the spike is initiated in the
apical tuft and propagates forward to the soma because of the

Figure 2. The Virtual Environment

The virtual rat is confined to move through a T-maze with return arms. Although it moves in small steps, the maze is divided into larger positions,
numbered 1–5 for positions on the stem, 6–12 for positions on the right, and 69–129 for corresponding positions on the left. The rat begins in position 1
at the base of the stem, moving up the stem to the choice point at the top of the stem. Virtual reward zones are in the right and left corners of the
maze. The arrows denote a correct trajectory with the rat alternating between right and left turns at the choice point.
doi:10.1371/journal.pcbi.0030234.g002
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extra depolarization entering the more proximal region
(Figure 6A).

If we assume that the PPCs occur in CA3 and TCCs in
ECIII, the output of the CA1 neuron is the same as in the
previous case because we require both the ECIII and CA3
inputs for spiking (Figure 6B). In our reduced model, the
persistent input to the CA1 apical tuft compartment due to
the ECIII temporal context cell serves to depolarize the apical
tuft for long periods of time. This depolarization sums with
the depolarization entering more proximally, bringing the
apical dendritic compartment past action potential thresh-
old. With a different choice of parameters in our model, the
action potential could have been initiated in the soma instead
of the proximal apical dendrites, but in either case, the action
potential readily spreads throughout the rest of the cell. The
facilitated spike propagation in the dendrites (compare
Figures 1 and 6) results from the synaptic depolarization
associated with activation of the Schaffer-collateral input.

CA1 Output Guides the Trajectory of the Rat
In our model, the rat uses the output of its hippocampus to

select actions at all locations in the maze. Action selection in
spatial memory tasks is a complex process involving
interactions of the hippocampus with the prefrontal cortex
and other regions, which receive hippocampal output as their
input. Instead of trying to simulate these dynamics, we use a
simple rule by which action selection is determined from the
output of the hippocampus directly: the rat always moves to a
position corresponding to a spiking CA1 neuron, with the
stipulations that it can only move to an adjacent position and
it cannot move backward.

For this single rule to govern the movement of the rat
through the entire task, the wiring of the network was set up
as follows. The two CA1 cells representing each position in

the maze receive input from the PPC representing that
position and from both TCCs (Figure 7). Although both TCCs
project to every CA1 cell, we presume that some learning
process has taken place to strengthen some connections and
weaken others. Thus, for positions on the stem of the maze,
one CA1 cell receives strong input from the right TCC and
weak input from the left one, and the other receives strong
input from the left TCC and weak input from the right one.
CA1 cells for the right return arm of the maze (positions 8–
12) receive strong input from the right TCC, and CA1 cells
for the left return arm of the maze (positions 89–129) receive
strong input from the left TCC. For the two positions
adjacent to the choice point on either side, the situation is
reversed: CA1 cells 6 and 7 on the right side of the maze
receive strong input from the left TCC, and CA1 cells 69 and
79 on the left side of the maze receive strong input from the
right TCC (Figure 7). This enables the rat to move simply by
following the spiking of its CA1 neurons. For example, if the
rat is at the choice point and it has previously completed a
right-turn run, CA1 cell 69 will be spiking, but cell 6 will not.
Based on this information, the rat will enter position 69 and
move toward the reward zone on the left side of the maze
(Figure 8). Thus, with biophysically realistic elements wired
together in this manner, a simple rule is sufficient to simulate
the spatial alternation task.

Simulation of Splitter Cells
The interaction of place and temporal context inputs to

cells representing locations in the stem effectively results in
splitter-cell responses (Video S1). Figure 9 illustrates the
output of CA1 neurons representing all positions in the maze.
When the virtual rat enters the stem from the right arm, the
network shows clear firing activity in one set of neurons
representing the stem (1R, 2R, 3R, 4R, and 5R), but not in the

Figure 3. The Network of Primary Place Cells

(A) First column: when the rat enters position 1, PPC1 receives an external input. w factors are decreased (see text) so that the input propagates forward
to PPC3, but the response in PPC4 is below spike threshold. Second column: when the rat enters position 2, all w factors are reset. PPCs 1 and 2 receive
external inputs that elicit spiking in PPCs 3 and 4, but not PPC5. When the rat enters positions 3 and 4, external inputs are delivered and w factors are
adjusted in a similar manner (remaining columns).
(B) Time series plots for the primary place cells representing positions 1, 2, 3, and 4 on the maze. For each cell, the bottom trace is the input current and
the top trace is the voltage response. PPCx gets external input at positions x, xþ1, and xþ2, and forward association input from positions x�1 and x�
2. Therefore, a PPC spikes at most in five positions.
doi:10.1371/journal.pcbi.0030234.g003
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other set of neurons representing the stem (lack of activity in
1L, 2L, 3L, 4L, and 5L). In contrast, when the virtual rat enters
the stem from the left arm, the network shows firing activity
in a different set of neurons representing the stem (1L, 2L,
3L, 4L, and 5L), and does not show firing activity in the
previously active set of neurons representing the stem. This
demonstrates that the cellular gating phenomenon used by
the model CA1 cells provides the necessary mechanism for
selective firing based on prior temporal context.

In summary, we have shown how a differential representa-
tion of temporal context in the hippocampus might be
constructed from the biophysics of hippocampal and
entorhinal pyramidal neurons. The CA1 cells in the stem of
the maze are place cells, but they also fire selectively based on
temporal context. One population of CA1 cells in the stem
fires only after left-turn trials, and the other fires only after
right-turn trials (Figure 9). This is a direct consequence of a
nonlinear interaction between the ECIII and CA3 inputs,
causing the CA1 cells only to fire if they get coincident input
from these two pathways. Because one population of CA1

cells in the stem is strongly connected to the right TCC and
the other to the left TCC, the CA1 cells in the stem become
splitter cells.

Discussion

Representations of Context in the Rat Hippocampus
Although studies in humans suggest that the role of the

hippocampus in episodic memory requires context for where
and when an event occurs [22], the idea that the representa-
tion of space in the rat hippocampus includes a contextual
component remains somewhat controversial. Early evidence
for a hippocampal representation of context comes from the
observation that some place cells are active only when a rat is
traveling in a particular direction in tasks such as the radial
maze or linear track, but not when the rat is running on an
open field [20,23]. Place cells also remap their firing locations
when a rat searches for food in a directed manner as opposed
to foraging randomly [9]. These data indicate that not only
does the hippocampus encode locations, but the representa-
tion changes depending on the behavioral context.

Figure 4. Forward Association from the Choice Point

Left: time-series plots for the PPCs representing the choice point and the three positions to the right and left of the choice point. For each cell, the
bottom trace is the input current (200 pA) and the top trace is the voltage response. Activity spreads symmetrically from the choice point cell to the
cells representing the right and left arms of the maze. Right: place fields for the cells depicted on the left. The dots represent spikes, showing where the
animal was located when the cell fired.
doi:10.1371/journal.pcbi.0030234.g004
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Additional evidence for a contextual component of spatial
representation in the hippocampus comes from the discovery
of splitter cells, CA1 place cells that fire only after a left- or a
right-turn trial in a spatial alternation task [1,7,8]. Splitter
cells were not observed in spatial alternation on a Y-maze
[24]; later experiments, however, showed that a reward
presented at the base of the stem prevents the splitter-cell
phenomenon, and splitter cells are observed if a reward is not
presented at the start of the overlapping segment [25].

Behavioral data show that hippocampal lesions impair a
rat’s performance of spatial alternation when a delay is
imposed between right-turn and left-turn trials, but do not
impair its performance of the task when it alternates through
the maze continuously [26,27]. Recent recording experiments
show that context-dependent hippocampal activity occurs in
both the delayed and continuous versions of the spatial
alternation task, although, paradoxically, in the delayed
version, it occurs during the delay period and not on the
stem of the maze [27]. Thus, although the hippocampus is not
required for continuous spatial alternation, it generates
splitter-cell activity during the task. The differences in
hippocampal activity during the delayed and continuous
versions of spatial alternation indicate that the hippocampus
is a dynamic system that may adapt to the demands of
different tasks [27].

Another study shows that neurons recorded in the same
spatial location, but in recording chambers with different
shapes, have firing rates differing by several orders of
magnitude, whereas their place fields remain the same.
Conversely, neurons recorded in recording chambers of the
same shape, but in different spatial locations, show a change
in both the rate and location of firing [11], indicating that the
hippocampus contains codes for both spatial position relative
to local cues and the context of the overall location of the
local cues in the environment.
Although it now seems clear that the hippocampus

represents context, the origin of the contextual representa-
tion in the hippocampal network is not known. In our model,
a requirement for a representation of temporal context is a
transient response that outlasts the stimulus that generated it
(e.g., a right turn) but is not sustained forever. In different
versions of our model, we incorporated this in ECIII or CA3
neurons, under the assumption that each cell type has the
potential to perform that function. ECIII neurons have been
shown to exhibit sustained firing that could be manipulated
by varying their inputs [28,29]. The representation of
temporal context by a gradual reduction in sustained neural
activity used here was based on previous models of temporal
context [12,30,31]. A distinguishing anatomical feature of the
CA3 network is that CA3 pyramidal cells are reciprocally

Figure 5. The Network of Temporal Context Cells

(A) At first, the left (L) and right (R) TCCs are each connected to large recurrent networks of 22 cells each.
(B) When the rat enters the right arm of the maze, the right TCC receives strong external input (200 pA), causing it to fire. With successive spiking, the
right TCC can recruit a smaller and smaller portion of its network. The TCC continues to fire without external input only as long as it can recruit a
recurrent network of sufficient strength.
(C) Left: time-series plots for the right and left TCCs. Bottom traces are the input current, and top traces are the voltage response. Note that the
magnitude of the input current increases (from 100 to 200 pA) as the rat moves from the stem into the arms of the maze. Right: context–place fields for
the cells on the left. Note that the context–place fields are extremely broad.
doi:10.1371/journal.pcbi.0030234.g005
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connected to one another [32], which could enable them to
continue spiking long after input to them has ceased [33].
Since either single neurons in ECIII [28,29] or the recurrent
network connectivity in CA3 could instantiate the represen-
tation of temporal context in the real hippocampus, we
represented temporal context in these two ways in different
versions of our model. Although both models were able to

reproduce splitter cells in CA1, the responsible biophysical
interaction was slightly different in the two models.

Predictions of the Model
Our model predicts different behavior in CA1 cells

depending on which of its afferents carry temporal context
information. If temporal context enters CA1 from CA3, its

Figure 6. Gating in the Reduced Model of a CA1 Pyramidal Neuron

(A) Shown are the cells representing position 2 of the maze. Here, the ECIII cell encodes place information and the CA3 cell represents temporal context.
The CA1 cell only fires somatic spikes when the ECIII and CA3 inputs are coincident. As the rat enters the stem from the right arm, the subthreshold
responses in the proximal apical dendrites and soma correspond to dendritic spikes that fail as they propagate forward. The gray inset shows the first
set of CA1 spikes on an expanded time scale.
(B) Same as above except the ECIII cell represents temporal context and the CA3 cell encodes raw place information. Although the somatic action
potential profiles in (A) and (B) are roughly identical; in this case, the spike is initiated in the proximal apical dendritic compartment and propagates
forward to the soma and backward to the apical tuft, as can be seen in the gray inset.
doi:10.1371/journal.pcbi.0030234.g006
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function is to facilitate forward propagation of dendritic
spikes triggered by the place information arriving in the
distal tuft via the ECIII input (Figure 6A). If temporal context
enters CA1 from entorhinal cortex, it depolarizes the apical
dendrites and facilitates a spike in response to the place
information arriving in more-proximal dendrites via the CA3
input. In this case, the action potential is initiated in the
proximal region of the cell and backpropagates into the distal
dendrites (Figure 6B). This is because in our model, the high-
frequency input arriving from the TCCs causes a depolariza-
tion of the CA1 dendrite rather than causing a distal
dendritic spike.

The model also makes a specific prediction that splitter-cell
activity in CA1 requires inputs from both ECIII and CA3.
Although inputs from CA3 to CA1 have been reduced or
eliminated in a few studies [34–36], the effects of these
manipulations on splitter cells have not been determined.
However, the finding that CA1 place cells are not disrupted
by elimination of CA3 inputs [36] is seemingly at odds with
our model, which requires both CA3 and ECIII inputs to
produce firing. This result could be explained, however, by an
upregulation of ECIII innervation following CA3 lesions.
Rapid and reversible inactivation of ECIII or CA3 inputs
would provide more stringent tests of our model.

Relation to Previous Models
There are many models of the hippocampus that attribute

specific functions to individual subregions, and a few full
models that attempt to integrate the functions of the
different subregions [37,38]. The model presented here is
related to a previous model of neural activity during spatial

alternation [2], which effectively simulates the phenomenon
of splitter cells due to a multiplicative interaction of ECIII
and CA3 inputs to CA1 neurons. However, our model is
fundamentally different from the previous one because in
that model, activity was represented in a more abstract
manner, using mean firing rates in hippocampal regions,
rather than spikes in biophysically realistic neurons. In this
study, we recast many aspects of the previous model into a
spiking model constrained by experimental data. Another
difference is that the previous model used single neurons to
represent locations on the stem and obtained splitter-cell
responses during retrieval through the differential activation
of neurons representing the left or right reward arm. In
contrast to the current model, the previous model showed
more splitting, primarily near the choice point, and the
presence of splitters at earlier points on the stem required
the specification of very large place fields. The previous
model also differed in that it modeled a learning-based
development of the representation of space and temporal
context, it incorporated theta rhythms, and it included an
abstract representation of prefrontal cortex to guide behav-
ior.
The model presented here addresses specific biophysical

mechanisms important for solving problems that require the
use of context. Earlier models have addressed different
mechanisms for context-dependent changes in neural firing
activity using more-abstract threshold units [39,40]. In other
models, spiking network models of the hippocampus were
developed to guide navigation toward different goal locations
[41,42]. Our model complements these previous approaches
by using more biophysically realistic models of neurons and
relating these properties to the context-dependent proper-
ties of splitter cells.

Limitations of the Model and Opportunities for
Developing Anatomically and Biophysically Realistic
Models of the Hippocampus
Our model is a very simple representation of place and

temporal context in the hippocampus, intended primarily to
highlight possible biophysical mechanisms by which these
properties could be represented in ECIII and CA3, and
mechanisms by which coincidence of these signals could lead
to spiking in CA1 pyramidal neurons. Although simple
models can offer insight and predictions, identifying some
of the simplifying assumptions highlights the possibility of
future enhancements to the model.
One simplification in the present model is the fact that we

simulate only three of the many hippocampal regions likely to
be important for delayed spatial alternation. Input to CA3
comes from ECII both directly and indirectly via the dentate
gyrus, and information processing in these regions should be
considered in future models.
Increasing the number of neurons could also enhance our

model by allowing for a more continuous representation of
space and a more distributed representation of temporal
context. In addition, representing each location by a
population of neurons would allow each cell to respond to
its inputs stochastically, which would be a closer reflection of
reality than our simple implementation.
Also not considered in our model are the prominent theta

and gamma oscillations in the hippocampus believed to be
important for spatial processing [21,23,43]. Oscillations are

Figure 7. Network Wiring Diagram

Circles represent PPCs, triangles represent CA1 cells, squares represent
TTCs cells, and lines indicate connections. The solid lines show robust
connections that came about as a result of a presumed learning process,
whereas the dashed lines suggest weak connections that have not been
strengthened due to learning. Cells representing positions in the stem of
the maze are connected as depicted for position 3: one CA1 cell for
position 3 is connected to PPC3 and the right (R) TCC, whereas the other
CA1 cell representing position 3 is connected to PPC3 and the left (L)
TCC. Cells representing positions in the arms of the maze (except for
positions on either side of the choice point, see below) are connected in
the same way as the cells for position 119. Both CA1 cells representing
position 119 are connected to PPC119 and to the TCC representing the
ipsilateral side of the maze, in this case the left TCC. The exception to this
occurs in positions 6, 7, 69, and 79, which are wired as follows: both CA1
cells representing each position are connected to PPC representing that
position and to the TCC representing the opposite side of the maze from
which the position is located.
doi:10.1371/journal.pcbi.0030234.g007
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likely to be important for the encoding of place and context
information, as well as for the synaptic plasticity that may
underlie the dynamic nature of their hippocampal represen-
tation.

CA1 pyramidal neuron dendrites are innervated by several
types of interneurons, which are not included in our model.
As inhibition is likely to profoundly influence the integration
of excitatory inputs from ECIII and CA3 as well as hippo-
campal oscillations, biophysically realistic models of hippo-
campal networks should certainly include such interneurons.

In our model, we assumed that learning has already taken
place to establish the network wiring. Other models have
addressed the process of encoding associations between
sequentially active place cells [42,44,45]. Incorporation of
these mechanisms could be used to study the mechanisms by
which the connectivity we used in our model (e.g., forward
association and cross-wiring) could be established.

Another simplification of our model is that primary place

and temporal context information are represented separately
in ECIII or CA3. In reality, however, there is evidence for
representations of space in both CA3 [11,33,46,47] and EC
[8,48,49]. In addition, transverse lesions to the dorsal CA3
region of rat hippocampus revealed impairments in spatial-
memory retention in the Morris water-maze task [50], and
selective CA3 lesions impair detection of novel spatial
arrangements of objects [51]. Both of these studies suggest
that CA3 can also encode different types of context during
specific behavioral tasks. A more sophisticated model would
therefore utilize hybrid place–context neurons in CA3 and
possibly in ECIII as well.
These limitations represent opportunities for improve-

ments and enhancements of our model. In addition, they
highlight the need for the merger of cellular and systems-level
studies of the hippocampus before a complete picture will
emerge regarding the dynamic and complex representation
of information in the hippocampus.

Figure 8. Firing Patterns of CA1 Cells near the Choice Point

Left: time-series data for the somata of CA1 neurons representing the choice point and the three positions to the right and left of the choice point.
There are two CA1 cells associated with each location, as described in the text; only one cell for each location is shown. For the cell representing the
choice point (CA1 5), the cell shown is the one associated with a right turn. Here, PPCs are taken to be ECIII cells, and TCCs to be CA3 cells, but when the
representations are switched, the time series is essentially unchanged. Note that this figure includes the first time the rat goes through the maze, so it
contains the initial transient where the final dynamics of all the neurons have not yet been established. Right: place fields for the somata of the cells on
the left.
doi:10.1371/journal.pcbi.0030234.g008
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Methods

The ECIII and CA3 node types use the equations due to Izhikevich
for a quadratic integrate and fire neuron with adaptive recovery, and
the rule that after a spike, the voltage, v, is reset to the parameter c,
and the recovery variable, u, is incremented by the parameter d [14].

dv
dt
¼ 0:04v2 þ 5vþ 140� uþ I

CA
du
dt
¼ aðbv� uÞ

if ðv � 30 mVÞ; v! c and u! uþ d

ð1Þ

The model requires two other parameters: a, which represents the
inverse time scale of u, and b, which represents the sensitivity of u to
subthreshold changes in v. In all simulations, the parameters take the
values a¼0.02 ms�1, b¼0.2, c¼�65 mV, and d¼ 4 mV, which result in
regular spiking behavior. When a node is designated as a TCC,
however, the parameters are a¼ 1 ms�1, b¼ 0.2, c¼�60 mV, and d¼
�20 mV, which produce a more prominent after-depolarization and
increased excitability. All ECIII and CA3 cells are assumed to have an
area of 1,000 lm2 and a capacitance of 1 lF/cm2.

The CA1 node types use Hodgkin-Huxley–style equations for
sodium channels, delayed rectifier potassium channels, and A-type
potassium channels.

C
dv
dt
¼ �gNam3hðv� ENaÞ � gKDRn

4ðv� EKÞ

� gKAklðv� EKÞ � gLðv� ELÞ þ
I
A

dm
dt
¼ m‘ðvÞ � m

sm
;

dh
dt
¼ h‘ðvÞ � h

sh

dn
dt
¼ n‘ðvÞ � n

sn

dk
dt
¼ k‘ðvÞ � k

sk
;

dl
dt
¼ l‘ðvÞ � l

sl

ð2Þ

The model parameters are as in [15] and [52], and are listed in
Tables 1 and 2.

The current, I, on the right hand side of Equations 1 and 2, has
three components:

I ¼ Icoupling þ Isynaptic þ Iexternal

At every time step in the simulations, the voltage of every node is
checked and the currents are calculated and added to the derivative.

The four nodes composing each CA1 neuron are connected
electrically. The coupling current is calculated from the voltage

Figure 9. The CA1 Network

Raster plot showing spiking patterns for the entire CA1 network (including the initial transient). Cell number is plotted against position, and a vertical
bar indicates a somatic spike when the rat is in a particular position. Cells in the stem are splitter cells: CA1 cells 1–5 R and 1–5 L fire only after right-turn
and left-turn trials, respectively. The lines show how the rat can use the output of its CA1 cells to determine correct trajectories through the maze.
doi:10.1371/journal.pcbi.0030234.g009
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difference between two nodes and a coupling conductance (Table 3)
using Ohm’s law:

Icoupling ¼ gcouplingðvnode1 � vnode2Þ

Nodes can also be connected with synapses. When the voltage of a

node exceeds a threshold of �30 mV, it is said to have generated an
event, an action potential, at time tevent. This creates a synaptic
current that is added to the derivative of voltage:

Isynaptic ¼ weight3 te�t=s

where t is measured from the time of the event. Synapses are modeled
as alpha functions and have a time constant of 5–20 ms (Table 4). For
computational efficiency, events that happen more than 50 ms in the

Table 1. Parameters of CA1 Pyramidal Cell Models

Ion Channel Activation Inactivation Parameters

Sodium channel; ENA ¼ 55 mV

m‘ðvÞ ¼
am

am þ bm

smðvÞ ¼
1

ðam þ bmÞ=qt

am ¼
Raðv � thaÞ

1� e�ðv�thaÞ=qa

bm ¼
Rbðv � thaÞ

eðv�thaÞ=qa � 1

sm � smmin

h‘ðvÞ ¼
1

1þ ev�th‘=q‘

shðvÞ ¼
1

ðah þ bhÞ=qt

ah ¼
Rdðv � thiÞ

1� e�ðv�thiÞ=qd

bh ¼
Rgðv � thiÞ

eðv�thiÞ=qg � 1

sh � shmin

tha ¼ �30

mVqa ¼ 7.2 mV

Ra ¼ 0.4 (mVms)�1

Rb ¼ 0.124 (mVms)�1

i ¼ �45 mV

qd ¼ 1.5 mV

qg ¼ 1.5 mV

Rg ¼ 0.01 (mVms)�1

Rd ¼ .03 (mVms)�1

th‘ ¼ �50 mV

q‘ ¼ 4 mV

sm min ¼ 0.02 ms

sh min ¼ 0.5 ms

qt ¼ 2.1435

Delayed rectifier potassium channel;

EK ¼ �72 mV
n‘ðvÞ ¼

1

1þ an

snðvÞ ¼
bn

qta0nð1� anÞ

an ¼ e

fnðv � vhalfnÞ:001 � 9:648 � 10000

8:315ð273:16 þ celsiusÞ

bn ¼ e

fn gmnðv � vhalfnÞ:001 � 9:648 � 10000

8:315ð273:16þ celsiusÞ

sn � snmin

fn ¼ �3

vhalfn ¼ 13 mV

gmn ¼ 0.7

a0n ¼ 0.02 (ms)�1

sn min ¼ 1 ms

qt ¼ 5.873

A-type potassium channel;

EK ¼ �72 mV
k‘ðvÞ ¼

1

1þ ak

skðvÞ ¼
bk

qt a0kð1þ akÞ

f ¼ fk þ
pw

ð1þ eðv�tqÞ=qqÞ

ak ¼ e

fðv � vhalfkÞ:001 � 9:648 � 10000

8:315ð273:16þ celsiusÞ

bk ¼ e

fþ gmkðv � vhalfnÞ:001 � 9:648 � 10000

8:315ð273:16þ celsiusÞ

sk � skmin

l‘ðvÞ ¼
1

1þ al

slðvÞ ¼
0:26ðv þ 50:13Þ

qtl

al ¼ e

flðv � vhalflÞ:001 � 9:648 � 10000

8:315ð273:16þ celsiusÞ

bl ¼ e

fl þ gmlðv � vhalflÞ:001 � 9:648 � 10000

8:315ð273:16þ celsiusÞ

sl �
slmin

qtl

qt ¼ 5.873

fk ¼ �1.8

pw ¼ �1

tq ¼ �40 mV

qq ¼ 5 mV

vhalfk ¼ �1 mV

gmk ¼ 0.39

a0k ¼ 0.1 (ms)�1

fl ¼ 3

vhalfl ¼ �56 mV

gml ¼ 1

a0l ¼ 0.05 (ms)�1

qtl ¼ 1

sk min ¼ 0.1 ms

sl min ¼ 2 ms

Leak conductance; Eleak ¼ �65 mV gleak ¼ 0.3

doi:10.1371/journal.pcbi.0030234.t001

Table 2. Further Parameters of CA1 Pyramidal Cell Models

Node ḡNa

(S/cm2)

ḡK(DR)

(S/cm2)

ḡK(A)

(S/cm2)

Area

(lm2)

Tuft 0.025 0.050 0.070 2,000

Proximal dendrites 0.025 0.050 0.050 4,000

Soma 0.025 0.050 0.050 1,000

Basal dendrites 0.025 0.050 0.050 2,500

Capacitance is 1 lF/cm2 in every node.
doi:10.1371/journal.pcbi.0030234.t002

Table 3. Parameters for Electrical Coupling between CA1 Nodes

Node 1 Node 2 gcoupling (nS)

Tuft Proximal dendrites 3.5

Proximal dendrites Soma 12.5

Soma Basal dendrites 12.5

doi:10.1371/journal.pcbi.0030234.t003
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past are not considered. Since the alpha function approaches zero at
large t, the resulting synaptic current would be negligible. The
selection of synaptic weights is discussed in the main text and they are
listed in Table 4.

At various points in the simulation, cells receive external current
inputs. These inputs are 2-ms current pulses ranging between 100 and
200 pA, also discussed below.

Iexternal ¼ I0 for 2 ms:

Numerical integration of Equations 1 and 2 is performed using the
fourth-order Runge-Kutta algorithm with a time step of 0.001 ms.

All code was written in C and run on a Mac PowerPC with OS 10.4.

Supporting Information

Video S1. Rat Movie

Multimedia clip for Web site.

Found at doi:10.1371/journal.pcbi.0030234.sv001 (3.5 MB MOV).
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