
Predicting Gene Expression from Sequence:
A Reexamination
Yuan Yuan, Lei Guo, Lei Shen, Jun S. Liu*

Department of Statistics, Harvard University, Cambridge, Massachusetts, United States of America

Although much of the information regarding genes’ expressions is encoded in the genome, deciphering such
information has been very challenging. We reexamined Beer and Tavazoie’s (BT) approach to predict mRNA expression
patterns of 2,587 genes in Saccharomyces cerevisiae from the information in their respective promoter sequences.
Instead of fitting complex Bayesian network models, we trained naı̈ve Bayes classifiers using only the sequence-motif
matching scores provided by BT. Our simple models correctly predict expression patterns for 79% of the genes, based
on the same criterion and the same cross-validation (CV) procedure as BT, which compares favorably to the 73%
accuracy of BT. The fact that our approach did not use position and orientation information of the predicted binding
sites but achieved a higher prediction accuracy, motivated us to investigate a few biological predictions made by BT.
We found that some of their predictions, especially those related to motif orientations and positions, are at best
circumstantial. For example, the combinatorial rules suggested by BT for the PAC and RRPE motifs are not unique to
the cluster of genes from which the predictive model was inferred, and there are simpler rules that are statistically
more significant than BT’s ones. We also show that CV procedure used by BT to estimate their method’s prediction
accuracy is inappropriate and may have overestimated the prediction accuracy by about 10%.
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Introduction

Developing computational strategies for predicting tran-
scription factor binding sites (TFBSs) and transcription
regulatory networks has been a central problem in computa-
tional biology for more than a decade. Reviews on this
problem and various proposed methods can be found in [1–
3]. A popular strategy is to search from upstream sequences
of a set of co-regulated genes for over-represented (i.e.,
enriched) sequence features (motifs) [4–7]. With the help of
gene expression microarray technology, the expression level
of thousands of genes can be measured at the same time [8–
10], which makes the discovery of sets of co-regulated genes
and their respective regulatory signals at the genome-wide
level a reality for many species.

Bussemaker et al. [11] pioneered the use of regression
models to relate a gene’s expression with numbers of
occurrences of certain k-mer ‘‘words’’ in the upstream
sequence of this gene. Motivated by their work, researchers
have developed various methods to extract features that are
predictive of gene expression levels. Keles et al. [12,13]
tackled the problem using logic regression, which treats motif
occurrences as binary covariates and selects important
predictors adaptively. Conlon et al. [14] proposed a stepwise
regression procedure called Motif Regressor, which uses
motif matching scores at promoter regions instead of k-mer
occurrences as covariates. Zhong et al. [15] extended these
methods by introducing a more flexible regression model
with an unspecified nonlinear link function. Das et al. [16]
implemented a smoothing-spline regression in the place of
the linear regression used by Motif Regressor. Further along
this general direction, Segal et al. [17] showed that DNA
sequence and gene expression information can be combined
to construct transcriptional modules. Lee et al. [18] used the
ChIP-chip technology and genome-wide location analysis to
infer transcriptional regulatory networks in S. cerevisiae.

Beer and Tavazoie (BT) [19] proposed a novel formulation
of the sequence–expression problem. They asked the very

intriguing, but seemingly impossible, question: how much can
we predict gene expressions from gene upstream sequences?
To address the question, they first clustered a large portion of
genes in S. cerevisiae into 49 tight co-expression groups, found
enriched sequence patterns (motifs) among the promoter
sequences of genes in each group using de novo motif
prediction tools [6,20], and then trained a set of Bayesian
network models to predict the group membership of each
gene using the matching scores of its promoter sequence to
the set of sequence motifs as well as the orientation and
position of the predicted binding sites. They conducted a 5-
fold cross-validation (CV) procedure to estimate their model’s
prediction power and found its prediction accuracy to be as
high as 73%. A great benefit of the Bayesian network, as
shown by BT, is its ability to learn ‘‘combinatorial codes’’ for
gene regulation. Hvidsten et al. [21] have applied a similar
approach to infer ‘‘IF–THEN’’ rules for transcription
regulation. While Bussemaker et al. [11] and Conlon et al.
[14] aimed at using gene expression information to help
discover transcription factor binding motifs (TFBMs) and
binding sites, BT focused directly on the prediction problem.
However, a few key questions remain. First, BT’s assessment

of their method’s prediction power is over-optimistic, as their
CV procedure did not include the motif-finding step (more
details later). But, how much can we really predict? Second, is
the Bayesian network an appropriate model for the task or
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just too complex a black box, prone to overfitting for the
stated tasks? Third, do those inferred combinatorial rules
have real predictive power, or are they only observational
oddities after the model fitting? How should we think about
and quantify uncertainties inherent in such inferred models?
Given the limited amount of data and the vast number of
potential predictors (e.g., 666 sequence motifs, orientations,
and positions of candidate motif sites, etc.), it is not clear if a
complex-structured model can be fitted with any confidence.

Our plan to address the above concerns is as follows. We
first use the same data and the same (but wrong) CV
procedure as in [19] to develop our predictive models, naı̈ve
Bayes classifiers with feature preselections, so as to study the
problem of model fitting. Then, we study contributions of
various sequence features, such as orientations and positions
of the predicted binding sites, to the prediction accuracy.
Lastly, we implement a correct CV procedure and show the
difference of prediction accuracies resulting from correct
versus incorrect CV procedures.

Based on the same gene clustering information, putative
TF binding motifs, and gene upstream sequences as in [19],
our naı̈ve Bayes classifiers outperformed BT’s Bayesian
network without using any information regarding the
position and orientation of the predicted TFBSs. Our
classifiers typically select more motif features, but have far
fewer model parameters than the Bayesian network models in
[19]. We also found that adding the information regarding
TFBS orientation and position cannot further improve the
naı̈ve Bayes classifier’s predictive power in a global way, which
casts doubts on several biological predictions made in [19]
regarding combinatorial rules of gene regulation. We further
studied a few cases in detail and found that the supports for
the inferred combinatorial rules are at best circumstantial.
Finally, we speculate that the incorrect CV procedure used in
[19] has likely overestimated the accuracy rate of their
method by 10%.

Results

Data and Procedure
The data used in this study were obtained from the

supplemental Web site of [19], which contains matching

scores (i.e., the likelihood of a promoter sequence to contain
good sequence matches to a candidate TFBM), and orienta-
tions and positions of the predicted matches of 666 putative
TFBMs for 2,587 genes in S. cerevisiae. In [19], these 2,587 genes
were clustered into 49 different co-expression groups
according to their expression profiles in 255 conditions, such
as environmental stress [22] and cell cycle [8]. We trained a set
of naı̈ve Bayes classifiers to predict the cluster label (member-
ship) for each gene using only its motif matching scores. Since
genes in the same cluster have very similar expression profiles,
a gene’s cluster membership can serve as a surrogate of its
expression behavior under different conditions.
We built one naı̈ve Bayes model for each cluster, resulting

in a total of 49 classifiers. For each cluster, we first ranked all
the 666 sequence motifs according to a Chi-square test
procedure, which reflects these motifs’ capability of differ-
entiating genes in this cluster from all other genes. Then, we
selected the top m most significant motifs as explanatory
variables to train a naı̈ve Bayes classifier (for this cluster),
where m can range from 1 to 666. We used the same 5-fold CV
procedure as that in BT to test the predictive power of our
models. As shown in Figure 1, using the same criteria for
classification accuracy as in [19] (i.e., for any pair of clusters, if
the correlation between their mean expression is greater than
0.65, then misclassifying genes in one cluster into the other is
not counted as errors), naı̈ve Bayes classifiers correctly
predicted expression patterns for 75% of the genes when
the number of preselected motifs m is 5. When m is increased
to 20, naı̈ve Bayes classifiers achieved a 79% prediction
accuracy (see Table S1). In addition, the naı̈ve Bayes models
contain almost all the motif features selected by BT in [19]
and include many more (see Figures S1 and S2). It can also be
seen that, although the training accuracy always increases as
m increases, the prediction accuracy starts to plateau and
then decrease as m exceeds 20, which is indicative of
overfitting as more variables are included. Following BT, we
also calculated the mean correlation of each gene to its
predicted expression pattern. For a gene, its predicted
expression pattern is the mean expression pattern of the
cluster that it is predicted to belong to. With our 20-motif
naı̈ve Bayes model, we obtained a mean correlation of 0.56
without using any position and orientation information,
which is also higher than BT’s result of 0.51.

Biological Interpretations of Predictive Models
Having fitted the classification models, we now study how

the 666 motifs are present in the model of each cluster. Our
first observation is that most clusters have their distinct sets
of motif features. But a few motifs are selected by multiple
clusters, which may indicate that either the transcription
factors corresponding to these motifs are somewhat multi-
taskers, or the clusters that share these common motifs are
closely related. For example, Motifs PAC and RRPE are
selected in the models for clusters 4, 10, 17, 26, and 29. This
suggests that many genes in these five clusters may be
targeted by the TFs that bind to PAC and RRPE. Clusters
47 and 48 share 17 out of 20 motifs in their models (p , 1 3

10�21). Coupled with the fact that the correlation of the mean
expression patterns of these two clusters is more than 0.8, it
strongly suggests that genes in these two clusters are co-
regulated.
Motif PAC is associated with polymerase A and C subunits
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Author Summary
Through binding to certain sequence-specific sites upstream of the
target genes, a special class of proteins called transcription factors
(TFs) control transcription activities, i.e., expression amounts, of the
downstream genes. The DNA sequence patterns bound by TFs are
called motifs. It has been shown in an article by Beer and Tavazoie
(BT) published in Cell in 2004 that a gene’s expression pattern can be
well-predicted based only on its upstream sequence information in
the form of matching scores of a set of sequence motifs and the
location and orientation of corresponding predicted binding sites.
Here we report a new naı̈ve Bayes method for such a prediction task.
Compared to BT’s work, our model is simpler, more robust, and
achieves a higher prediction accuracy using only the motif matching
score. In our method, the location and orientation information do
not further help the prediction in a global way. Our result also casts
doubt on several biological hypotheses generated by BT based on
their model. Finally, we show that the cross-validation procedure
used by BT to estimate their method’s prediction accuracy is
inappropriate and may have overestimated the accuracy by about
10%.
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[20,23]. Motif RRPE specifically exists in genes involved in
rRNA processing [20]. BT extracted from their model a
combinatorial prediction rule for cluster 4 [19]: PAC should
have a score higher than 0.6 and be within 140 bp of ATG;
RRPE should have a score higher than 0.65 and be within 240
bp of ATG. Table 1 shows numbers of genes in a few different
clusters that satisfy these constraints. The statistics suggest
that PAC and RRPE are both significantly enriched in cluster
4, but not uniquely. Clusters 10, 17, 26, and 29 also have
significant portions of genes that satisfy the constraints of
both motifs. Our naı̈ve Bayes method successfully picked PAC
and RRPE for all these five clusters, whereas BT did not select
RRPE for cluster 10, or PAC for cluster 29. It suggests that,
due to its complex nature, the Bayesian network model in [19]
can easily miss important features. Furthermore, our method
using no information about TFBS orientation and position
correctly predicted 94% of the genes in cluster 4 and 87% of
the genes in clusters 10, 17, 26, and 29, which is comparable to
the 92% and 87% accuracy of [19] for the same clusters.

RAP1 is a main regulator of ribosomal proteins in S.
cerevisiae, and many ribosomal protein coding genes are
reported to have RAP1 binding site(s) in their upstream
sequences [24]. BT [19] found that cluster 1 is enriched with
RAP1 binding sites, and their Bayesian network inferred a
rule for genes in this cluster: their RAP1 score on upstream
sequences has to be greater than 0.6, and their RAP1 sites

have to be oriented toward a certain direction. We examined
this rule carefully and observed the following. First, we found
that 82 genes in cluster 1 (a total of 124 genes) and 165 genes
in other clusters (a total of 2,463 genes) have putative RAP1
binding sites (i.e., with RAP1 matching score .0.6), which
gives rise to a p-value of 1 3 10�59 (based on Fisher’s exact
test) for the enrichment of RAP1 sites in cluster 1. Seventy-
three genes in cluster 1 and only 85 genes in other clusters
satisfy both the orientation and the site score requirements,
which yields an even more significant contrast p-value, 1 3

10�64. It seems that the RAP1 orientation can indeed help
enhance the prediction specificity, although only slightly.
However, our naı̈ve Bayes model selected motif M198 as its

main predictor for genes in cluster 1. This motif has a very
similar weight matrix to that of RAP1 but includes an extra
position (Figure 2). By setting 0.6 as the score threshold of
M198, we found that 100 genes in cluster 1 and 126 genes in
other clusters contain the M198 site, which gives us a p-value
of 4 3 10�94 for the M198 enrichment in cluster 1. Thus, if
judged by statistical significance of the prediction specificity,
the naı̈ve Bayes model with one simple predictor easily
outperformed the more complex combinatorial rule inferred
by BT’s Bayesian network.
In order to evaluate the effectiveness of RAP1 (with

orientation constraint, denoted as RAP1d for short) and
M198 as covariates in our classifier, we compared two

Figure 1. Training and Test Set Classification Accuracy for Naı̈ve Bayes Method Using Motif Scores Only

Classification accuracies for training sets increases with the number of top motifs selected in models, while test set accuracies only increase when model
sizes are small. Including too many features will overfit the training set and thus decrease the test set accuracies. 100 random repeats of 5-fold CVs were
performed, and the curves display the mean accuracies. The error bars denote the maximum and minimum accuracy achieved in the 100 random
repeats.
doi:10.1371/journal.pcbi.0030243.g001
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procedures. In both procedures, one single best motif was
selected for each cluster. The only difference was that, for
cluster 1, M198 was used in Procedure One and RAP1d was
used in Procedure Two. As a result, Procedure One predicted
20 more genes correctly than Procedure Two, and the
improvement is mainly in cluster 1. For cluster 1 alone,
Procedure One has a 30% false positive and 18% false
negative rates, while Procedure Two has a 38% false positive
and a 34% false negative rate. These results further suggest
that M198 is a better motif for cluster 1 than the oriented
RAP1. In the next subsection, we provide a more thorough
investigation on the biological relevancy of motif site
orientation and its effect on the classification accuracy.

Effect of TFBS Orientation and Position
The result in the previous subsection does not mean that

the motif site orientation is not biologically important. In
fact, we found that 91 of the 100 predicted M198 sites for
genes in cluster 1 are oriented toward one direction. In
comparison, only 56 of the 126 predicted M198 sites for genes
in other clusters are oriented the same way. Clearly, including
both the M198-score and its site orientation constraints can
improve the prediction specificity for cluster 1, as observed
by BT for RAP1. However, in a similar procedure comparison
as in the previous subsection, adding the orientation
constraint of M198 does not improve the global prediction.
This orientation constraint may help reduce the false positive
rate for cluster 1, but it at the same time increases false
positive rates in other clusters. Thus, a fundamental question
is: is it appropriate to justify the ‘‘authenticity’’ of a
prediction model based on its prediction performance? Our
analysis suggests that a combinatorial regulation rule, and
perhaps many other causal relationships, may not be reliably
inferred using an automatic ‘‘learning machine’’ under a
global classification accuracy criterion.

To assess globally whether the TFBS orientation and
position information can further help predict gene expres-
sion, we added the covariates representing TFBS orientations
and positions to the feature list of our model. We performed
the same feature preselection and naı̈ve Bayes procedures as
described above on the augmented dataset. The classification
accuracies for the training sets were very close to the result
from using motif score alone. However, the classification
accuracies for the test sets were slightly worse than before.

This result implies that, although it may be biologically true
that orientations and positions of authentic TFBSs have an
effect on the binding of the corresponding TFs in some cases,
such information for predicted TFBSs do not help in
predicting co-expression of genes globally when motif
matching scores are given. Even in BT’s Bayesian network
models, position and orientation constraints were selected
only 5.1% and 0.6% of the time, respectively. In both of the
strong cases detailed in [19], we were able to find a simpler
rule (matching scores only) that is as sensitive and specific as
or better than the combinatorial rules reported by BT.
We would like to caution the reader again, however, that

our results cast doubts on some of these delicate model
interpretations of BT but do not imply that the position and
orientation of TFBSs are biologically unimportant.

The Cross-Validation Procedure
So far we have followed BT’s approach as closely as

possible: using the same set of motif features generated by
[19] and employing exactly the same CV procedure as theirs.
The only difference between our and their approach is that
we used the naı̈ve Bayes model, whereas they used the more
complex Bayesian network.
However, we cannot help notice that the 615 de novo

motifs (excluding the 51 known motifs) generated by [19]
were found by using the Gibbs motif sampler AlignACE [20]
to search the upstream sequences of all genes in both the
training and the test datasets for each cluster. These motifs
were further optimized so as to be more specific to the
respective clusters they were discovered from by a simulated
annealing procedure [19], still using all genes in both the
training and test datasets. These steps inevitably generate
motifs (features) that are already biased in favor of the
existing clustering in the test set. In a valid CV procedure,
only the information for the training set genes, including
both their upstream sequences and their cluster labels, are
allowed to be used in both feature extraction and model
training.
To correctly measure how much of gene expression

information can be predicted by DNA sequence features,
we implemented a valid 5-fold CV procedure, still using the
gene clustering result of BT. First, genes in each cluster were

Figure 2. Motif Logos of M198 and RAP1

These two TFBMs are very similar, except that M198 is one position
longer than RAP1 on the right end. Compared to RAP1, M198 can help
distinguish genes in cluster 1 from other genes in a higher statistical
significance, without using any position or orientation constraints.
doi:10.1371/journal.pcbi.0030243.g002

Table 1. Number of Genes That Satisfy PAC and RRPE
Constraints (PAC score .0.6, Located within 140 bp of ATG;
RRPE score .0.65, Located within 240 bp of ATG)

Cluster ID Constraints

— PAC RRPE Both

Cluster 4 105 70 (80) 66 (66) 46 (52)

Cluster 10 68 38 (47) 33 (37) 22 (29)

Cluster 17 64 10 (17) 33 (38) 8 (14)

Cluster 26 53 24 (29) 34 (37) 21 (26)

Cluster 29 49 13 (18) 21 (27) 8 (13)

Others 2,248 60 (179) 203 (329) 15 (63)

Numbers in parentheses are the corresponding counts with only motif score constraints.
doi:10.1371/journal.pcbi.0030243.t001
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divided into five sets of approximately equal sizes at random.
Each time, we left out 20% of genes (one subset of genes for
each cluster), and used the remaining 80% of genes (i.e., the
training set) and their upstream sequences for de novo motif
finding via AlignACE [20]. These motifs were then optimized
by a simulated annealing algorithm. The total number of
motifs we found ranged from 600 to 700 for each training set,
which is consistent with the number of 666 motifs in [19]. We
then preselected the top 20 motifs (see Figure S3) for each
cluster and trained naı̈ve Bayes classifiers based on the
training set and the preselected motifs. Finally, the classifiers
so trained were used to predict the cluster memberships of
the left-out 20% genes. The classification accuracy of this
correct CV procedure is 61% according to the criterion in
[19], which is still significantly higher than random guessing.
When we further added the 51 known motifs to the motif sets,
the classification accuracy increased to 64%.

Note that we cannot directly use the motif finding and
model-fitting procedure of [19] because their complete
algorithm is not publicly available. Furthermore, their-model
fitting procedure needs bootstrapping replications and can
be overly time consuming, unstable, and nonreproducible.
Thus, there is a possibility that the low accuracy of our
correct CV procedure is caused by the lower capability of our
motif finding strategy compared to that of [19]. To calibrate
with BT’s approach, we also applied the exact same incorrect
CV procedure as in [19] using our own motif finding,
optimization, and model-fitting strategies described above.
When using all the genes in all clusters, our de novo motif
discovery strategy found altogether 650 motifs, and the whole
procedure yielded a classification accuracy of 75%, which is
slightly higher than the result of [19] (73%). Based on these
results, we conclude that the incorrect CV procedure of [19]
has likely overestimated the true prediction accuracy of their
expression prediction method by 10%–15%.

Discussion

The naı̈ve Bayes model we adopted is essentially the
simplest version of the Bayesian network. The assumption
of conditional independence of the covariates is far from
realistic in most applications, as well as in this study.
However, it outperformed the more complicated Bayesian
network, as well as SVM, CART, logistic regression, and
Bayesian logistic regression [25] (unpublished data) for this
study. As described by Domingos and Pazzani [26], optimality
in terms of zero-one loss (classification error) is not
necessarily directly connected to the quality of the fit of a
probability distribution. Rather, as long as both actual and
estimated distributions agree on a most-probable class, the
classifier will have a reasonable performance.

Although it is not rare to see successful examples of the
naı̈ve Bayes method, the feature selection step is always
challenging. In our method, features are considered inde-
pendently. Each feature is dichotomized to 0 or 1 according
to a threshold that maximizes a Chi-square test statistic. In
this way, features that are highly associated with a target
cluster will be selected as covariates in the naı̈ve Bayes model
of this cluster. Our method selects not only the features that
are enriched in the target cluster, but also those that are
‘‘depleted’’ in the target cluster but enriched in other

clusters. The latter type of features can be explained as a
logic operator ‘‘NOT’’.
Dichotomization of motif scores in our procedure is a gross

simplification. Although the binding of a TF to DNA may not
be a simple 0–1 trigger, it is easier to model it in this way, and
it is also interesting to see whether this simple model can help
predict gene expression. We expect to lose some information
through discretization, but it is not clear how much the lost
information can help the classification problem. It is a
worthwhile future project to explore possibilities of using the
continuous data, both motif scores, and gene expression
values, directly and more efficiently.
Our study has shown that it is perhaps not very sensible to

justify a model’s ‘‘authenticity’’ by its global prediction
performance, and one may easily inject subjective interpre-
tations into the inference results, especially when the
prediction uncertainty is not explicitly quantified. This in
fact is a challenge for many machine learning approaches,
and researchers have begun to pay attention to the problem
of estimating prediction uncertainties. In this regard, it is
perhaps beneficial to act more like a real Bayesian when using
Bayesian tools. That is, these tools not only provide point
estimates, but also posterior distributions, which summarize
all the information in the data and quantify uncertainties of
the estimates.
The keen difference between the correct and incorrect CV

procedures reminds us how easy it is to be overconfident.
Similar mistakes have also been uncovered in some computa-
tional biology studies in which knowledge from literature is
used to help construct gene clusters or biological networks
and these results are then evaluated and validated by GO
analysis, which is by itself a product partially based on the
literature.
Although it has been accepted as common knowledge in

biology that TFBSs’ orientation and position have a func-
tional role in affecting gene regulation activities, and
anecdotal examples abound [27,28], it is still nonconclusive
how the orientation and position information of putative
TFBSs can help one discern true TFBSs from sporadic
sequence matches that exert no regulatory functions. In
particular, the TFBS orientation and position information
did not help us improve the classification accuracy globally,
and was not even obviously useful in the two strongest cases
detailed in [19]. Since the Bayesian network in [19] is more
prone to overfitting, the danger of overinterpreting the fitted
models can be a serious threat. In a recent study of
nucleosome positioning in yeast, Yuan et al. [29] observed
that true regulatory elements are highly enriched in
nucleosome depleted regions. Thus, certain sequence infor-
mation at a scale of nucleosome binding regions (larger than
TF binding sites) may be more useful than orientation and
position information in differentiating true TFBSs from false
ones.

Materials and Methods

Data. For motif j, its score for gene i is denoted as sij, which is
computed in [19] as either zero, when motif j has no predicted
occurrence in the promoter of gene i, or the highest matching score
among all predicted occurrences of the motif in the promoter of gene
i. In this way, a score matrix S¼ (sij)25873666 can be built directly from
the supplement data of [19].

Discretization and feature selection. The continuous scores sij are
discretized into 0 or 1 by a thresholding procedure described below.
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In a word, a threshold for the scores corresponding to a motif is
chosen so as to maximize the specificity of TFBSs for the cluster of
interest. Let N be the number of all the genes in consideration (i.e.,
2,587) and let yi be the class label of gene i (i 2 f1,� � �N). Among these
N genes, Nk,1 of them are in class k (defined as positive set) and Nk,0 are
not in class k (defined as negative set). Thus Nk,1 ¼ #fi:yi ¼ kg, Nk,0 ¼
#fi:yi 6¼ kg and Nk,1 þ Nk,0 ¼ N. For motif j (j 2 f1, � � �,666g) and a
threshold c, define

N ðcÞjk;11 ¼ fi : yi ¼ k; sij.cg;
N ðcÞjk;10 ¼ Nk;1 � NðcÞjk;11;

N ðcÞjk;01 ¼ fi : yi 6¼ k; sij.cg;
N ðcÞjk;00 ¼ Nk;0 � NðcÞjk;01:

The best threshold for motif j in model k is defined as:

c�jk ¼ arg max
c

X1

p¼0

X1

q¼0

ðNðcÞjk;pq � EðcÞjk;pqÞ
2

EðcÞjk;pq
;

where

EðcÞjk;pq ¼
Nk;pðN ðcÞjk;0q þ NðcÞjk;1qÞ

N
; p; q 2 f0; 1g:

More intuitively, the above procedure finds the most significant
Chi-square test result for the 2 3 2 contingency table of the N’s. This
procedure makes the distribution of TFBSs in positive set and
negative set most different. The thresholds calculated above
discretize the score matrix S into a 0–1 matrix and it is denoted as
X. Note that the discretized covariate matrix X will be different for
fitting models in different classes.

The feature preselection step is simply an extension of the
threshold finding procedure. For model k, the best threshold c�jk is
calculated for motif j along with its highest v2 statistic. Features
(motifs) are sorted by their v2 statistics, and the top m ones are
included the models. This selection is done for each model separately.

The naı̈ve Bayes model. The naı̈ve Bayes method has been widely
used in statistical learning. It is based on the very simple assumption
that all feature variables (covariates) are independent given the class
label of the sample. We use cluster 1 and its preselected mmotifs as an
example to describe our naı̈ve Bayes model fitting procedure. Denote
the class label variable as Y and the preselected top m covariates as
X1,� � �, X m. Using the Bayes theorem, we have

PðY jX1; � � � ;XmÞ ¼
PðY Þ

Ym

j¼1
PðXj jY Þ

PðX1; � � � ;XmÞ
:

Thus, the odds ratio can be computed as

PðY ¼ 1jX1; � � � ;XmÞ
PðY 6¼ 1jX1; � � � ;XmÞ

¼ PðY ¼ 1Þ
PðY 6¼ 1Þ

Ym

j¼1

PðXj jY ¼ 1Þ
PðXj jY 6¼ 1Þ :

We further assume Bernoulli models for each Xj given Y and class
label variable Y itself, i.e.,

Xj jp0j ;Y 6¼ 1;Bernoulliðp0jÞ;
Xj jp1j ;Y ¼ 1;Bernoulliðp1jÞ; j ¼ 1; :::;m;

Y jpy ;BernoulliðpyÞ:

The prior distributions for py, p0j, and p1j are set to be uniform. The
training set consists of a class label vector y ¼ (y1,� � �,yN) and the
discretized TFBS score matrix X¼ (xij),i¼1,� � �,N; j¼1, � � �,m. Given the
training set, the posterior distribution of py, p0j, and p1j can be easily
calculated as

p0j jX; y;Betað1þ
X

yi 6¼1
xij ; 1þ

X

yi 6¼1
ð1� xijÞÞ;

p1j jX; y;Betað1þ
X

yi¼1
xij ; 1þ

X

yi¼1
ð1� xijÞÞ;

pyjX; y;Betað1þ
X

yi¼1
1; 1þ

X

yi 6¼1
1ÞÞ:

For a new observation with the covariates vector Xnew ¼ (X1,new,
...,Xm,new), we have

PðXj;new ¼ 1jYnew 6¼ 1;X; yÞ ¼ EðPðXj;new ¼ 1jYnew 6¼ 1; p0jÞjX; yÞ

¼ Eðp0j jX; yÞ ¼
1þ

X

yi 6¼1
xij

2þ
X

yi 6¼1
1
;

PðXj;new ¼ 1jYnew ¼ 1;X; yÞ ¼ EðPðXj;new ¼ 1jYnew ¼ 1; p1jÞjX; yÞ

¼ Eðp1j jX; yÞ ¼
1þ

X

yi¼1
xij

2þ
X

yi¼1
1
;

PðYnew ¼ 1jX; yÞ ¼ EðPðYnew ¼ 1jpyÞjX; yÞ

¼ EðpyjX; yÞ ¼
1þ

X

yi¼1
1

2þ N
:

Thus, we have the predictive odds ratio for this new observation as

PðYnew ¼ 1jXnew;X; yÞ
PðYnew 6¼ 1jXnew;X; yÞ

¼ PðYnew ¼ 1jX; yÞ
PðYnew 6¼ 1jX; yÞ

Ym

j¼1

PðXj;newjYnew ¼ 1;X; yÞ
PðXj;newjYnew 6¼ 1;X; yÞ :

For the 49 classes, 49 models are fitted and the genes in the test set
are assigned to the class with the respective model that fits the data
best. Specifically, for k¼ 1,� � �,49, the odds ratio

PðYnew ¼ kjXnew;X; yÞ
PðYnew 6¼ kjXnew;X; yÞ

can be calculated and a gene will be assigned to a class k* with the
highest odds ratio.

TFBS position and orientation. To reduce the complexity, for each
motif on each gene we only consider the orientation and position of
the site with the highest matching score. The site orientation is coded
into two separate binary variables, xl and xr, where xl¼1 indicates that
the predicted site is left-oriented (away from ATG), xr ¼ 1 for right-
oriented, and xl ¼ 0 or xr¼ 0 otherwise. Note that when a gene does
not contain TFBS for a specific motif, the corresponding xl and xr are
both 0. The TFBS position in [19] is a continuous variable
representing the distance of the TFBS to ATG. We set it to a very
large number if a motif has no occurrence in the promoter region of
a gene. In our naı̈ve Bayes procedure, the new variable d is a
dichotomized version of the original position variable based on an
optimized distance threshold, so that d ¼ 1 means that the distance
from the predicted site to ATG is smaller than the chosen threshold.

Supporting Information

Figure S1. Motif Selection in Clusters (Top 15 Motifs for Each
Cluster)

Rows are clusters and columns are motifs. A red bar represents the
column motif selected in the model for the row cluster. Motifs and
clusters are arranged such that similar selection patterns are close to
each other. Most clusters have a unique selection of motifs. The green
rectangle shows that six clusters share some motifs in their models.

Found at doi:10.1371/journal.pcbi.0030243.sg001 (24 KB PNG).

Figure S2. Top Five Motifs Selected in Each Cluster

All 2,587 genes are used to make this list.

Found at doi:10.1371/journal.pcbi.0030243.sg002 (1.2 MB PDF).

Figure S3. Top Five Motifs Selected in Each Cluster in 5-Fold CV

In each CV, a set of motifs are generated using the training set only.
The known 51 motifs are included too.

Found at doi:10.1371/journal.pcbi.0030243.g003 (5.4 MB PDF).

Table S1. Classification Accuracy of 49 Clusters Using Top 5/20 Motifs
in Each Cluster

Found at doi:10.1371/journal.pcbi.0030243.st001 (126 KB DOC).
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