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A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and
dephosphorylation in MAPK cascades). Our paper explores the kind of information processing and filtering that can be
accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly
sigmoidal (ultrasensitive) input–output characteristic in a certain steady-state regime. Here, we systematically study
the cycle’s steady-state behavior and its response to time-varying stimuli. We demonstrate that the cycle can actually
operate in four different regimes, each with its specific input–output characteristics. These results are obtained using
the total quasi–steady-state approximation, which is more generally valid than the typically used Michaelis-Menten
approximation for enzymatic reactions. We invoke experimental data that suggest the possibility of signaling cycles
operating in one of the new regimes. We then consider the cycle’s dynamic behavior, which has so far been relatively
neglected. We demonstrate that the intrinsic architecture of the cycles makes them act—in all four regimes—as
tunable low-pass filters, filtering out high-frequency fluctuations or noise in signals and environmental cues.
Moreover, the cutoff frequency can be adjusted by the cell. Numerical simulations show that our analytical results hold
well even for noise of large amplitude. We suggest that noise filtering and tunability make signaling cycles versatile
components of more elaborate cell-signaling pathways.
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Introduction

Cells rely on chemical interactions to sense, transmit, and
process time-varying signals originating in their environ-
ment. Because of the inherent stochasticity of chemical
reactions, the signals transmitted in cell-signaling pathways
are buried in noise. How can cells then differentiate true
signals from noise? We examine this in the context of a basic
but ubiquitous module in signaling cascades: the signaling
cycle. Whereas an individual signaling cycle is simply an
element of a large signaling network, understanding its
response is an essential first step in characterizing the
response of more-elaborate signaling networks to an external
stimulus [1,2].

Each cycle consists of a substrate protein that can be in one
of two states: active (e.g., phosphorylated) or inactive (e.g.,
dephosphorylated), see Figure 1. The protein is activated by a
protein kinase that catalyzes a phosphorylation reaction. The
protein gets inactivated by a second enzymatic reaction
catalyzed by a phosphatase. The activity/concentration of the
kinase can be considered as an input of the cycle. The
response of the cycle is the level of phosphorylated substrate
protein that is not bound to the phosphatase and can thus
interact with any downstream components of the signaling
pathway.

Signaling cycles can also require multiple phosphorylations
for activation. Furthermore, cycles of phosphorylation are
frequently organized into cascades in which the activated
substrate protein serves as a kinase for the next cycle.
Activation of the first kinase in a cascade can be triggered by
a receptor that has received a specific stimulus (ligand,
photon, dimerization, etc.). In addition, feedback processes
may be present. Furthermore, reactions may involve shuttling

participating molecules between different cellular compart-
ments, and other spatial effects. The dynamics of signaling
cascades have been the subject of active research using
modeling and experiments. Theoretical and computational
studies of eukaryotic signaling cascades span a broad range of
questions, such as those concerning the dynamics of the
epidermal growth factor receptor (EGFR) [3] or apoptosis
signaling pathways [4], the propagation of noise and
stochastic fluctuations [5–7], the role of feedback [8–11] and
scaffolding proteins [12,13], the contribution of receptor
trafficking [14] and spatial effects [10,15,16], the origin of
bistability [17–19] and oscillations [6,20,21], and the con-
sequences of multiple phosphorylations [6,20–27].
In this paper, our focus will be on the statics and dynamics

of the basic, singly modified signaling cycle, with no spatial
effects. The seminal contribution of Goldbeter and Koshland
considered the steady-state response of this basic cycle and
demonstrated that, under appropriate conditions, the re-
sponse can be in a highly sigmoidal, ultrasensitive regime, or
in a hyperbolic regime [28] (see below). Most modeling studies
have assumed that all signaling cycles operate in the ultra-
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sensitive regime; a few studies have also considered the
hyperbolic regime [29,30]. Here, we demonstrate that there
are actually four major regimes, with the ultrasensitive and
hyperbolic regimes being two of them.

Several previous studies that treat signaling cycles as
modules have focused on the steady-state response to a
constant input, largely ignoring responses to time-varying
stimuli (see, e.g., [23,28,31]). A study of Detwiler et al. [29]
considered the dynamic response of the cycle in the hyper-
bolic regime (when both forward and backward reactions are
first-order), and found low-pass filtering behavior. We also
recently examined the dynamic response of these two regimes
and compared them in their robustness to intrinsic and
extrinsic noise [32].

Here, we systematically consider both the steady-state
response and the dynamic response to time-varying stimuli.
To model the enzymatic reactions in the signaling cycle, we
use the total quasi–steady-state approximation (tQSSA) [33].
The tQSSA is valid more generally than the Michaelis-Menten
(MM) rate law, which assumes the enzyme to be present in
much smaller concentration than its substrate, an assumption
that is not generally valid in signaling pathways. We then use
our model to examine possible regimes of the cycle, and to
identify two new steady-state regimes, for a total of four
different behaviors, each being potentially useful in different
signaling applications. Although these four regimes are
defined at extreme parameter values, we numerically show
that, in fact, together they cover almost the full parameter
space. We obtain analytic approximations to the steady-state
characteristics of each of the four regimes, and refine the
conditions under which the two regimes identified by
Goldbeter and Koshland are in fact achieved.

To obtain a fuller picture of the signaling cycle and its
function, we then analyze its response to time-varying kinase
activity. We demonstrate analytically that the intrinsic
architecture of the cycles makes them act—in all four

regimes—as tunable low-pass filters for small-enough time-
varying deviations of the kinase activity from baseline levels.
Numerical simulations show that these analytical results
continue to hold quite well even for bigger deviations from
baseline level.
The four different regimes of the signaling cycle make it a

versatile element, able to perform various signaling functions,
while its low-pass filtering enables it to operate in noisy
environments. These properties may help explain why
signaling cycles are so ubiquitous in cell signaling.

Results

Model
The signaling cycle is modeled by two enzymatic reactions,

as illustrated in Figure 1: a forward enzymatic reaction
catalyzed by kinases (enzyme 1, E1) produces active proteins
(A) from the inactive ones (I), and a backward reaction
catalyzed by phosphatases (enzyme 2, E2) deactivates active
proteins:

I þ E1b
a1

d1
IE1!

k1 Aþ E1 ð1Þ

Aþ E2b
a2

d2
AE2!

k2 I þ E2 ð2Þ

Here, a1 (d1) and a2 (d2) are substrate–enzyme association
(dissociation) rates, and k1 (k2) is the catalytic rate of the
forward (backward) enzymatic reaction. For notational
convenience, we shall use the same symbol to denote a
chemical species as well as its concentration. The input to the
cycle is the total concentration of the active kinase,
�E1 ¼ E1 þ IE1, whereas the output is the concentration of
the free (i.e., not bound to phosphatase) active protein A.
Although such systems are usually studied using Briggs-

Haldane or MM approximations (see [34,35]), both can be
inapplicable because they assume much lower concentration
of the enzyme than of the substrate. In fact, substrates and
enzymes of MAPK pathways are usually present at compara-
ble concentrations in Saccharomyces cerevisiae and Xenopus
oocyte cells (as reported in [31] and consistent with data
from the library of green fluorescent protein [GFP]-tagged
proteins [36]).
Instead, we rely on the total quasi–steady-state approx-

Figure 1. Diagram of the Signaling Cycle

The cycle consists of a protein that can be in an inactive (I) or active (A)
form. It is activated and deactivated by two enzymatic species, termed
kinase (E1) and phosphatase (E2), respectively. The reactions and reaction
rates that describe the cycle are shown on the right.
doi:10.1371/journal.pcbi.0030246.g001
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Author Summary

A cell is subjected to constantly changing environments and time-
varying stimuli. Signals sensed at the cell surface are transmitted
inside the cell by signaling pathways. Such pathways can transform
signals in diverse ways and perform some preliminary information
processing. A ubiquitous building block of signaling pathways is a
simple biochemical cycle involving covalent modification of an
enzyme–substrate pair. Our paper is devoted to fully characterizing
the static and dynamic behavior of this simple cycle, an essential first
step in understanding the behavior of interconnections of such
cycles. It is known that a signaling cycle can function as a static
switch, with the steady-state output being an ‘‘ultrasensitive’’
function of the input, i.e., changing from a low to high value for only
a small change in the input. We show that there are in fact precisely
four major regimes of static and dynamic operation (with ultra-
sensitive being one of the static regimes). Each regime has its own
input–output characteristics. Despite the distinctive features of
these four regimes, they all respond to time-varying stimuli by
filtering out high-frequency fluctuations or noise in their inputs,
while passing through the lower-frequency information-bearing
variations. A cell can select the regime and tune the noise-filtering
characteristics of the individual cycles in a specific signaling
pathway. This tunability makes signaling cycles versatile compo-
nents of elaborate cell-signaling pathways.

Signaling: Four Regimes and Filtering



imation (tQSSA) [33,37–39] (see Methods) to obtain the
following equation for the concentration of the total active
protein, �A ¼ Aþ AE2:

d �AðtÞ
dt
¼ k1

�E1 ð�S� �AðtÞÞ
K1 þ �E1 þ �S� �AðtÞ � k2

�E2 �AðtÞ
K2 þ �E2 þ �AðtÞ : ð3Þ

Here X denotes the concentration of an unbound chemical
species and �X denotes the total concentration of bound and
unbound forms; �S stands for the total concentration of
substrate protein (in both active and inactive forms); and
K1 ¼ k1þd1

a1
and K2 ¼ k2þd2

a2
are the MM constants for the kinase

and the phosphatase, respectively. We have written �A(t)
explicitly with its time argument t to emphasize that it is a
dynamic variable; however, for notational simplicity, we will
omit the time argument in the rest of the paper and simply
write �A. The quantities �E1 ; �E2 , and �S are constant here
(although later in the paper, we consider the dynamic
response to small variations in �E1 ). Even though the above
equation is written in terms of �A, the free active protein
concentration A, which is of primary interest, is simply
recovered through the expression A ¼ K2þ�A

K2þ �E2þ�A
�A (see Text S1).

Equation 3 shows the dependence of the rate of production
of the active protein on the number of kinases through the
first term (phosphorylation), and on the number of phospha-
tases through the second term (dephosphorylation). In
particular, when the total amounts of both kinase and
phosphatase are small ( �E1 � K1 þ �S� �A and �E2 � K2 þ �A),
the two terms in Equation 3 reduce to the standard MM rates
for the forward and backward enzymatic reactions of the
cycle. The tQSSA has also been recently proposed and
applied by Ciliberto et al. in [40] to model networks of
coupled enzymatic reactions, including interconnections of
phosphorylation cycles; their reduced tQSSA representation
accurately reproduces behavior predicted by detailed mass
action kinetics (MAK) models.

Our key equation (Equation 3) simplifies for extreme
combinations of parameter values (i.e., regimes) that are still
of potential biological interest. This equation allows us to
analytically examine (1) the possible cycle regimes of the
system in steady state, and (2) the dynamic response of the
system to time-varying inputs (time-varying activation of the
kinase). The numerical results we present here are not
constrained by the quality of the approximation since they
are based on direct simulation of the MAK equation for the
full system of reactions of Equations 1 and 2 (see Methods).

Four Regimes of the Signaling Cycle
Each enzymatic reaction can be in one of two qualitatively

different regimes: a saturated one in which almost all the
enzyme is bound to its substrate, and an unsaturated one
[41,43]. The regime of the reaction depends on the relative
concentrations of a substrate and the enzyme (E), and on the
MM constant (K) of the enzymatic reaction. The unsaturated
(first-order) regime, in which the rate of reaction is linearly
proportional to the substrate concentration, occurs when the
substrate is much less abundant than the sum of the MM
constant of the reaction and the enzyme concentration (e.g.,
for the second reaction, K2 þ �E2 � �A). In the saturated (zero-
order) regime, the rate of reaction is almost independent of
the substrate concentration and is proportional to the
enzyme concentration. This occurs when the substrate is

much more abundant than the sum of enzyme concentration
and its MM constant (e.g., for the second reaction,
K2 þ �E2 � �A).
Since the signaling cycle is built of two enzymatic reactions,

it can exhibit four regimes of signaling (see Figure 2),
corresponding to the two regimes of each reaction. The
conditions for each of the four regimes are summarized in
Table 1. The steady-state behavior of two of the four regimes
(when the kinase and the phosphatase are either both
saturated or both unsaturated, referred to as ultrasensitive
and hyperbolic, respectively) has been characterized earlier
by Goldbeter and Koshland [28]. Using tQSSA, we are able to
refine the range of parameter values for which these
behaviors hold. The other two regimes have not been
identified before, to the best of our knowledge.

Steady-State Response
Hyperbolic (unsaturated kinase and unsaturated phospha-

tase). In this regime, the cycle exhibits a hyperbolic steady-
state response that saturates at the value provided in Table 2
(see Figure 2A). Using the tQSSA, we find that the hyperbolic
regime requires weaker conditions than previously thought
(K2 þ �E2 � �A and K1 þ �E1 � �S� �A, instead of K2 � �A and
K1 � �S� �A).
Our recent study [32] suggests that the hyperbolic regime is

much more robust to fluctuations and to cell-to-cell
variability in kinase and phosphatase concentrations than
the ultrasensitive regime, which requires fine-tuning of the
threshold level. The hyperbolic regime transmits signals in a
broad range of amplitudes, requiring no tuning of cycle
parameters [32].
Signal-transducing (saturated kinase and unsaturated phos-

phatase). We refer to this new regime as signal-transducing
because, as discussed below, it is ideal for transmitting time-
varying signals without distortion while attenuating higher-
frequency noise. Here, we only point out that its steady-state
response is linear, with a slope (gain) of k1/x2, where x2 is
referred to as the effective phosphatase frequency (see Table
2 and section on Dynamic Response below), until it reaches
saturation (Figure 2B and Table 2). Interestingly, the total
amount of substrate protein only affects the saturation level
and not the slope. Therefore, away from saturation, the
cycle’s activity is independent of the total substrate protein
level �S. Having a linear steady-state response, a property
unique to this regime, is potentially desirable for signaling
that involves graded stimuli. Available biochemical data and
in vivo measurements argue for the possibility of this regime
being present as a component in cell-signaling cascades (see
Discussion).
Threshold-hyperbolic (unsaturated kinase and saturated

phosphatase). In this new regime, the output below a given
input threshold is zero, and then increases hyperbolically
until it reaches its saturation level (approximated by the same
expression as the saturation level of an ultrasensitive regime).
Figure 2C shows the steady-state response of such a cycle.
Ultrasensitive (saturated kinase and saturated phospha-

tase). The output in this regime is close to zero for inputs
below a threshold, and increases rapidly to a saturation value,
consistent with the results obtained in [28] using the MM
approximation. Such highly sigmoidal behavior effectively
quantizes the signal (see Figure 2D). This regime was termed
ultrasensitive because, when the input is close to the
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threshold, small input changes result in large changes of the
steady-state output. Interestingly, cells may adjust the thresh-
old of this cycle by changes in phosphatase level, �E2 .

The MM approximation fails, however, when the amount of
enzyme becomes comparable to that of its substrate. Using
the tQSSA, we are able to refine the range of parameter
values required for ultrasensitive signaling. The criteria for
ultrasensitivity obtained from the MM model [28], namely
K2 � �A and K1 � �S� �A; are actually not sufficient conditions
for the cycle to be ultrasensitive; instead we need
K2 þ �E2 � �A and K1 þ �E1 � �S� �A. When the enzyme con-
centrations become comparable to those of their substrates,
there is no ultrasensitivity, as noted recently by Bluthgen et
al. [43] by more complicated arguments.

In summary, we have demonstrated that a signaling cycle
can operate in four regimes that have qualitatively different
steady-state responses to kinase activation. Of the newly
identified regimes, the signal-transducing regime is a good
candidate for sensing stimuli, when a graded and undistorted
response is required. Depending on the slope of its response,
which is controlled by parameters of the cycle and can be
easily adjusted by the cell to a required level, the input signal
may be amplified or diminished. We consider factors
influencing the choice of the regime for natural signaling
cycles in different cellular processes in the Discussion.
The four regimes we consider, although obtained only at

extreme parameter values, are actually quite descriptive of
the system for a wide range of parameters, and naturally

Figure 2. Steady-State Behavior of the Four Cycle Regimes

(A) When both enzymes are unsaturated, the steady-state response is hyperbolic. The parameters used for this cycle are �S ¼ 1000, a1¼1, K1¼10,000, a2

¼ 1, �E2 ¼ 50, K2¼ 10,000, k1¼ 1, and k2¼ 1, where all reaction rates are in units of 1/s, concentrations and Michaelis constants are in nanomoles, and
second-order reaction rates (a1 and a2) are in 1/nM/s.
(B) When the kinase is saturated and the phosphatase unsaturated, a linear response results. The parameters here are �S ¼ 1000, a1¼100, K1¼10, a2¼1,
�E2 ¼ 50, K2 ¼ 10,000, k1¼ 500, and k2 ¼ 10,000.
(C) When the kinase is unsaturated and the phosphatase saturated, a threshold-hyperbolic response results. The parameters for this cycle are �S¼ 1000,
a1¼ 100, K1 ¼ 10,000, a2¼ 100, �E2 ¼ 100, K2¼ 1, k1¼ 25, and k2¼ 1.
(D) When both enzymes are saturated, an ultrasensitive response results. The parameters used for this cycle are �S ¼ 1000, a1¼ 100, K1¼ 10, a2¼ 100,
�E2 ¼ 50, K2¼10, k1¼1, and k2¼1. The parameters for the four cycles were chosen to be comparable in magnitude to values found in the literature (see
[11,62], for example).
doi:10.1371/journal.pcbi.0030246.g002

Table 1. Conditions for the Four Cycle Regimes

Enzyme Condition Kinase

Unsaturated K1 þ �E1 � �S� �A Saturated K1 þ �E1 � �S� �A

Phosphatase Unsaturated K2 þ �E2 � �A Hyperbolic Signal-transducing

Saturated K2 þ �E2 � �A Threshold-hyperbolic Ultrasensitive

doi:10.1371/journal.pcbi.0030246.t001
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partition the space of possible steady-state behaviors of the
signaling cycle into quadrants, as shown Figure 3. Figure 3
shows the relative error between the steady-state character-
istic of each of the four regimes and that of Equation 3 for a
wide range of kinase and phosphatase MM constants (see Text
S4). It reveals that the regime approximations are quite good
at a wide range of values of MM constant (for example, the

region with a relative error of less than 10% for each regime
covers almost a full quadrant in the plots), and not only when
the MM constants take the very large or very small values
required in the regime definitions. This demonstrates that
these four regimes, though defined by extreme values of
system parameters, actually encompass the full space of cycle
behaviors.
Understanding the steady-state response of the cycle is

informative, but it is only part of the story; signaling cycles do
not necessarily transmit steady inputs, but rather deal with
time-dependent signals that reflect changing environmental
conditions.

Dynamic Response
Signaling cascades in the cell are activated by receptors,

which in turn get activated by ligand binding and inactivated
by internalization and other mechanisms. All of these
mechanisms produce time-varying signals, and are subjected
to noise (i.e., rapid and stochastic fluctuations) due to small
numbers of molecules, diffusion, and other effects. How can a
cell extract a time-varying signal from noisy stimuli?
Response to signals of various frequencies: Low-pass

filtering. To address this question, we first study the response
of the four regimes to time-varying stimuli. A high-frequency
signal is a proxy for the noise in the signal, so understanding
how the cycle responds to high frequencies is essential for
understanding its response to noise.

Figure 3. Relative Error

The relative error between the steady-state characteristic of the hyperbolic (A), signal-transducing (B), threshold-hyperbolic (C), and ultrasensitive (D)
regimes, and that of the tQSSA in Equation 3 are shown. To compute the error for a regime, we first approximated the average squared difference
between the regime’s steady state and that of Equation 3 and then divided its square root by the total substrate S1. A relative error of 0.1 then
corresponds to an average absolute difference between the steady-state characteristic of the regime and that of Equation 3 of 0.1St (see Text S5). The
figures here show that the relative error for each regime is small for a wide region of the K1 versus K2 space, demonstrating that the four regimes cover
almost the full space. The parameters used for this cycle are the same as those in Figure 2D, except K1 and K2, which were varied in the range of values
shown in the x and y axes in this figure. The dashed lines enclose the regions where each regime is expected to describe the system well.
doi:10.1371/journal.pcbi.0030246.g003

Table 2. Expressions for Threshold and Saturation Levels for
Steady-State Regimes of the Cycle

Regime Threshold for Input (E1) Saturation Level

Hyperbolic — k1

k1þw2
1� w2

k2

� �
�S

Signal-transducing — 1� x2

k2

� �
k1=x2

1þk1=x2

� �
�S

Threshold-hyperbolic K1=ððk1=k2 � 1Þð�S= �E2 � 1ÞÞ �S� �E2 1þ k2

k1

� �

Ultrasensitive �E2 k2=k1
�S� �E2 1þ k2

k1

� �

Here, x2 ¼ k2
�E2

K2þ �E2
is the characteristic frequency of the phosphatase.

doi:10.1371/journal.pcbi.0030246.t002

PLoS Computational Biology | www.ploscompbiol.org December 2007 | Volume 3 | Issue 12 | e2462491

Signaling: Four Regimes and Filtering



We studied the cycle’s response to oscillating kinase levels at
different frequencies and amplitudes: �E1ðtÞ ¼ E0ð1þ asinxtÞ.
This is not to say that sinusoidal inputs need be biologically
relevant, but systematically understanding the response to
such inputs gives one intuition about the response to more
general inputs. Furthermore, for small-enough input varia-
tions around some background baseline level, the cycle’s
behavior is, to a first-order approximation, linear and

governed by time-independent parameters; in this situation,
the response to sinusoids determines the response to arbitrary
inputs. In fact, in the signal-transducing regime, the dynamic
response of the cycle (similar to its static response) is linear for
all nonsaturating inputs, without the restriction to small
variations. If all cycles in a signaling pathway are in a linear
regime, then analysis of the overall behavior is amenable to
standard and very effective methods.
Figure 4 shows the amplitude O of the variations in the

output (normalized by the steady-state saturation value of the
cycle), obtained by numerical simulation for three values of a,
and as a function of input frequency x. Invariably, the
response is flat and high at low frequencies, but starts to
decrease after a particular frequency is reached. These results
are very well-described in the case of the smallest a
(corresponding to 11% deviations) by the expression ob-
tained analytically using small-signal approximations (see
Text S4):

O ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2

c

p
 !

E0a; ð4Þ

where E0 is the background kinase level, and where the gain g
and the cutoff frequency xc are functions of the cycle
parameters that are different for the four regimes (see Table
3). The analytical approximation continues to hold quite well
even for larger values of a, the deviation amplitude (up to
91% of the baseline for the results in Figure 4). For
frequencies much smaller than the cutoff, the amplitude of
the output variations is constant and proportional to the

Figure 4. Magnitude of the Response of the Cycle O (Normalized by the Steady-State Saturation Value) versus the Input Frequency x, for Three

Different Input Amplitudes a

The traces in (A), (B), (C), and (D) show the response of the hyperbolic, signal-transducing, threshold-hyperbolic, and ultrasensitive switches,
respectively, as shown in Figure 2. The solid lines are the analytical approximation (Equation 4). The dotted lines are obtained from numerical simulation
of the full system.
doi:10.1371/journal.pcbi.0030246.g004

Table 3. Expressions for Gain and Cutoff Frequency for Four
Regimes of the Cycle (in Response to the Input
�E1ðtÞ ¼ E0ð1þ asinxtÞ)

Regime Gain g Cutoff

Frequency xc

Hyperbolic
�SK1

E0ðK1þE0Þ
x2

x2þx1
1� x2

k2

� �
x1 x1 þ x2

Signal-transducing 1� x2

k2

� �
k1 x2

Threshold-hyperbolic
�E2 K1

E0ðK1þE0Þ k2 x1

Ultrasensitive k1 2k1a E0
�S� �E2 ð1þk2=k1Þ

Here, x2 is the characteristic frequency of the phosphatase, defined in Table 2, where
x1 ¼ k1

E0

K1þE0
is the characteristic frequency of the kinase.

doi:10.1371/journal.pcbi.0030246.t003
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ratio of gain to cutoff frequency. For frequencies above the
cutoff, the output variations have an amplitude that decays as
1/x. Figure S1 presents more detailed results on the variation
of O as a function of both a and x, again obtained by
numerical simulations (see Text S6 for a description of Figure
S1).

An essential property of this signaling low-pass filter is that
the cutoff frequency xc can be easily adjusted by varying
enzymatic parameters and concentrations of the kinase and
the phosphatase. Although all four regimes act as low-pass
filters, their cutoff frequencies xc and gains g depend
differently on the cycle parameters (see Figure 4 and Table 3).

Importantly, for the two newly characterized regimes (the
signal-transducing and threshold-hyperbolic), the gain and
the cutoff frequency can be adjusted independently, thus
allowing greater flexibility to the signaling requirements of
individual signaling pathways (Figure 4 and Table 3).
Furthermore, the dynamics of the signal-transducing regime
again do not depend on total substrate protein levels �S. The
gain and the cutoff frequency for three of the regimes are
independent of the input parameters a and x; the exception
is the cutoff frequency for the ultrasensitive regime, which
depends on the input amplitude.

It is easy to understand the origin of the low-pass filtering
behavior. First, consider a cycle subjected to a slowly varying
input (Figure 5): if the input changes so slowly that the cycle
has enough time to reach its steady-state level before the
kinase level changes by a significant amount, the cycle simply
tracks the kinase level as a function of time through its
steady-state response curve, characteristic for its operational

regime. Now consider a rapidly changing input. Since the
kinase level changes faster, the cycle has less time to adjust to
its steady state corresponding to the new value of the input
before the kinase level changes again. Thus the output will
not be able to reach its full amplitude before the kinase levels
change again in the opposite direction, and the amplitude of
the output is thus decreased (see Figure 5). As the signal
changes faster and faster, the amplitude of the output will
decrease, until the kinase levels vary so fast that the cycle
simply does not respond.
The response of the cycle thus depends on the two

timescales: the duration of the stimulus s ¼ 1/x and the
intrinsic switching time of the cycle sc ¼ 1/xc. If the
stimulation is longer than the switching time, s� sc, then
the cycle will adjust its response by 2aE0g/xc. On the other
hand, a shorter, transient stimulus, s� sc, is not likely to
activate the cascade.
Interestingly, ligands activate a kinase by binding to it. The

results here imply that weak ligands binding for a time
interval shorter than sc are unlikely to produce any down-
stream activation of the pathway, whereas those that stay
bound longer than sc activate the pathway. Low-pass filtering
can thus perhaps make a signaling cascade more selective to
higher-affinity ligands.
Response to a noisy signal. Importantly, low-frequency

inputs are proxies for longer input activation, whereas high-
frequency inputs are proxies for short, transient activations
of the cascade and for high-frequency noise. Because of low-
pass filtering, cycles respond to noise less than to signals, and
as the noise shifts to higher frequencies, the cycle responds to
it less. Figure 6 makes the point more precisely: it shows the
response of the cycle to a slowly varying signal buried in
noise, and demonstrates that the noise is filtered out and the
signal is revealed.
In summary, analysis of dynamic response demonstrates

that (1) the cycle acts as a low-pass filter in all four regimes; (2)
the cutoff frequency and the gain of signaling can be adjusted
by the cell to achieve better performance (independently of
each other in the case of the signal-transducing and the
threshold-hyperbolic cycles); and (3) low-pass filtering makes
signaling cascades insensitive to noise and transient activa-
tions. Below, we discuss some biological implications of these
findings.

Discussion

Significant effort has been put in the elucidation and
characterization of signaling cascades and pathways (see, e.g.,
[2,16,44,45] for reviews). When put together, these pathways
form an intricate network of cell signaling, where each node
in the network corresponds to a different chemical species.
Because of the complexity of the network, it is natural to split
it into interconnected modules (sets of nodes whose output
depends only on its input and not on the network down-
stream of it) and analyze possible behaviors arising from
different interconnections of modules (see, e.g., [30,46,47]).
What constitutes a module in the network, however, is still

hard to define, and significant efforts are directed at tackling
this problem (e.g., [48–52]). What constitutes a good general
representation for an arbitrary module in the network is also
an open question. Other efforts have been aimed at under-

Figure 5. Dynamic Response of the Cycles to Fast and Slow Inputs

The cycle has a characteristic response time sc that is a function of its
parameters (see ‘‘Dynamic Response’’ in Results), and which is different
for all four regimes. This plot shows the response of all four regimes to
(1) a slow input that has a period equal to twice the characteristic
response time of the cycle, followed by (2) a fast input with a period
equal to one-fifth of the cycle’s response time. For clarity, time was
normalized by dividing by the characteristic time of each cycle. The
signal in red represents the input kinase levels (for the threshold-
hyperbolic switch, the input used is actually twice the red signal),
whereas the blue traces in (A), (B), (C), and (D) show the response of the
hyperbolic, signal-transducing, threshold-hyperbolic, and ultrasensitive
switches, respectively, as shown in Figure 2.
doi:10.1371/journal.pcbi.0030246.g005
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standing properties of the network as a whole, such as
identifying the number of equilibrium states (e.g., [53,54]).

Using a deterministic model, we have attempted to provide
a systems-level input/output understanding of the signaling
cycle, ubiquitous in signaling pathways. After identifying four
parameter regimes (two of them not reported before, to our
knowledge), their steady-state and dynamic behaviors were
analyzed and numerically verified. The results indicate that
cycles act as low-pass filters, and that each regime may be
useful under different circumstances. Given the values for
cycle parameters, one can use our results to determine the
regime in which the cycle operates. Unfortunately, the
scarcity of parameter values makes it hard to assess which
of these regimes is more widely present in signaling pathways.
The low-pass filtering behavior of the cycle demonstrates that
inputs of the same magnitude, but changing at different
speeds, may produce very different outputs, which argues in
favor of studying the dynamical properties of signaling
pathways.

All physical systems stop responding to fast-enough inputs,
but what makes the low-pass filtering behavior of the
signaling cycle interesting is that it is first-order, with a
single cutoff frequency, and that the cutoff frequency can be
adjusted by evolution (through changes in the enzymatic
catalytic rates) and by the cell (through changes in gene
expression). As such, the signaling cycle is a versatile module
with simple dynamics that can be easily tuned for various
noise-filtering needs and used to construct signaling networks
with more-complicated functions and dynamics.

Of the two newly identified regimes, the signal-transducing
one is of particular interest because it appears ideal to

transmit time-varying intracellular signals without distortion
while filtering out high-frequency noise in the input.
Furthermore, because it is linear, it opens up the possibility
that at least parts of signaling pathways (those built of signal-
transducing signaling cycles, or other yet-unidentified linear
signaling motifs) may be amenable to linear system analysis, a
powerful set of tools to understand the properties of
arbitrary network structures and motifs (for example,
elucidating the roles of cascades, positive and negative
feedbacks, etc.). If naturally occurring cycles operate in the
signal-transducing regime, then analyzing networks built of
these cycles becomes tractable as long as load effects can be
neglected.
Can naturally occurring signaling cycles operate in this

regime? Although it was demonstrated that certain kinases in
S. cerevisiae and Xenopus operate in saturation (with MM
constant of approximately 5 nM and substrate concentrations
of approximately 30–100 nM for yeast [31,55]), little is known
about phosphatases. To explore the possibility that known
signaling pathways operate in the signal-transducing regime,
we manually collected values of MM constants from the
biochemical literature. We then used data for intracellular
protein concentrations measured using GFP-tagged proteins
[36]. Phosphatases seem to have a broad specificity, with a
relatively wide range of MM constants (e.g., 5 to 90 lM for the
PP2C phosphatases), and appear to be present in large
concentrations (e.g., [Ptc1] ’ 1,520 molecules per cell, so �E2

’ 0.025 lM, whereas [Ptc2–3] ’ 15,000, so �E2 ’ 0.025 lM,
assuming a yeast cell volume of 0.1 pl [31]). Data on singly
phosphorylated substrates are hard to find, but for a rough
indication, consider the doubly phosphorylated protein Pbs2

Figure 6. Response of the Four Cycles to the Input Buried in Noise

The input is a sum of a slow signal (same as in Figure 4) and a Gaussian uncorrelated noise. The resulting input signals are shown in red. The blue traces
in (A), (B), (C), and (D) show the response of the hyperbolic, signal-transducing, threshold-hyperbolic, and ultrasensitive switches, respectively, as shown
in Figure 2. The response shows that the cycles respond to the signal only and ignore or filter out the noise in the input. Time was normalized by the
characteristic time of each cycle to facilitate comparison among cycles.
doi:10.1371/journal.pcbi.0030246.g006
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of S. cerevisiae as an example. Pbs2 is measured to have about
2,000 molecules per cell so that �S ’ 0.03 lM¼ 30 nM. If singly
phosphorylated proteins were characterized by similar
numbers, then their phosphatases could potentially be
unsaturated, since �A, �S� K2 þ �E2. In contrast, kinases that
act on Pbs2 are present at lower concentrations (e.g., [Ste11]¼
736, [Ssk2]¼ 217, and [Ssk22]¼ 57 molecules per cell, or �E1 ’

1–3 nM). Such concentrations are consistent with kinases
operating in saturation, since �E1 þ K1 , �S (assuming K1 is in
the same range as those measured for Ste7, K1 ’ 5 nM). Taken
together, these numbers suggest the possibility of a signaling
cycle operating in the signal-transducing regime.

Different signaling cycles, however, may be operating in
different regimes, raising two questions: first, which regime is
chosen by the cell for a cycle in a particular position in a
network for a specific signaling application? Second, what are
the advantages and disadvantages of each such regime?

To answer the first question, one approach is to determine
in vivo concentrations and MM constants of involved
enzymes. Unfortunately, these data are often unavailable or
scattered throughout publications in the biochemical liter-
ature. The applicability of MM constants measured in vitro is
also questionable. An alternative experimental approach to
establishing what regime a cycle operates in would be to
obtain its steady-state response curve and determine which of
our four cases it corresponds to. Similarly, one could
experimentally obtain the response of the cycle to stimuli
of various frequencies and use our dynamic characterization
to infer the operating regime. One may, furthermore, be able
to estimate some of the biochemical parameters and
concentrations of the participating molecules from these
experimental response characteristics. The success of such
measurements depends on, and hence is limited by, the
availability of in vivo single-cell probes for the phosphor-
ylation state of a particular protein.

The second question, on advantages and disadvantages of
each regime, can be addressed by systematic analysis of cycle
properties: steady-state and dynamic response, robustness to
fluctuations, etc. By matching these characteristics against the
requirements of a particular signaling system, one can suggest
the optimal regime for each signaling application. For
example, one can think that signaling in retina cells shall be
fast and graded, depending on the intensity of adsorbed light.
Similarly, gradient sensing in motile cells has to provide
graded responses on the timescales required to change
direction of motion. On the other hand, signaling of cell
fate–determining stimuli and signaling involved in various
developmental processes may require an ultrasensitive (‘‘on/
off’’) response, while imposing much softer constraints on the
time it takes to switch the system from off to on state (hours
instead of the milliseconds needed in light-sensing). The
performance of the signaling regimes in the context of
cascades and feedbacks is also important for understanding
the rules that govern the choice of a regime for each cycle.

For cycles in signaling applications involving all-or-none
decisions, such as differentiation, apoptosis, or the cell cycle,
it has been argued that ultrasensitive cycles may be useful
because they effectively generate a discrete output that is
either high or low [25]. When such a cycle is tuned
appropriately (such that in the presence of the background
input, it is close to its threshold) [32], it is the best cycle at
recovering time-dependent signals buried in noise, because

its gain for low-frequency inputs is the highest among the
regimes. Therefore, an ultrasensitive cycle is desirable when
the input signals are extremely noisy and/or have to achieve
binary-level outputs.
A signal-transducing cycle, on the other hand, is the best

choice to transmit time-dependent signals without distortion,
because its output is approximately a scaled, but otherwise
undistorted, copy of low-frequency input signals, while noisy
input components are filtered out. It is the only cycle that
does not distort the input. What the other two regimes might
be best at is not clear. The threshold-hyperbolic cycle,
however, may prove useful in situations when no activation
is desirable below a given input strength and when a graded
response is desired for inputs above this threshold.
We here considered the effect of temporal noise in kinase

levels on the response of the signaling cycle. A more-detailed
model should also take into account the intrinsic noise
coming from the cycle itself, since it consists of chemical
reactions in which the number of molecules per species is
small, and thus a deterministic model based on MAK may be
inadequate. For example, although the deterministic cycle is
known to have a single steady-state solution, Samoilov et al.
(see [6]) found that treating the cycle stochastically can give
rise to a bimodal distribution for the phosphorylated protein.
The ‘‘mass fluctuation kinetics’’ approach described in [56]
may be useful in this regard (see also [57,58]). Other sources
of noise that should also be taken into account are
fluctuations in molecule numbers from cell to cell, as has
been well-documented for gene levels (see [5,59,60], for
example). Lastly, some of the species of the cycle may be
found only in the cellular membrane rather than in the
cytoplasm, or may be localized within specific cellular
compartments, or may move about the cell by diffusion or
active transport in an activity-dependent manner (e.g., the
yeast protein HOG1 that dwells in the cytoplasm unless
doubly phosphorylated, when it translocates into the cell
nucleus). The consequences of these spatial effects need to be
understood (see [16] for a recent review).
Achieving a detailed understanding of signaling pathways is

an important problem, but is highly limited by the lack of
experimental data with enough resolution to support model-
ing efforts. Nevertheless, having coarse-grained functional
characterizations of the possible operating regimes of
constituent cycles may permit system-level modeling of
networks built of such cycles, despite uncertainties and
variations in underlying biochemical parameters and molec-
ular concentrations. Perhaps identifying and analyzing other
relevant modules of biological networks, as we have done
here for a signaling cycle, will shed some light on their
behavior. Similar explorations could be done, for example,
on signaling cycles that require multiple phosphorylation
events to become active, or on G-protein–coupled receptors.
Although characterization of the component modules of a

biological network is a necessary and important step toward
understanding network operation, it should be kept in mind
that the behavior of the network will undoubtedly be
considerably richer than that of the individual modules.

Methods

All analytical expressions were obtained starting from Equation 3,
the tQSSA approximation of the cycle, the derivation of which is
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discussed in Text S1. The full MAK description of the system (again,
see Text S1) was analyzed numerically to obtain the data used in all
the plots. Therefore, although the analytical expressions in this paper
depend on the accuracy of the tQSSA, the general results do not,
because they have been numerically verified on the full system.

The cycle equation (Equation 3) corresponding to each regime is
described in Text S2. These equations were then used to obtain the
steady-state expressions in Table 2; see Text S3. The expression for
the amplitude of the response to sinusoidal inputs (Equation 4) was
obtained from a small-signal approximation of Equation 3, as
described in Text S4. There, we also outline the method to obtain
the expressions in Table 3.

All numerical analysis was done in Matlab and, unless explicitly
mentioned here, is based on the full MAK description of the cycle.
The data in Figure 2 were obtained by setting the derivatives of the
MAK model to zero and solving the resulting algebraic relations
numerically. The data in Figure 3 are the only ones based on the
tQSSA, and are described in Text S5. Figures 4, 5, and S1 were
obtained by numerically integrating the MAK equations for the given
inputs using the stiff differential equation solver from Matlab ode23s.
Finally, the data in Figure 6 were obtained by numerically integrating
the MAK equations using the Runge-Kutta algorithm on inputs of the
form E0(1 þ asinxti þ g(0,1)) (where ti is any time point in the
numerical integration, and g(0,1) is a normal random variable with
unit variance and zero mean). All the code is available upon request.

For all the dynamic simulations, the steady-state level of the input
for the four cycles was chosen such that the steady-state output was
about halfway to saturation to allow the cycles to respond as much as
possible. Choosing other steady-state values where the slope of the
steady state response curve is small would lead to little response.
Particular care has to be taken with the ultrasensitive cycle, which has
a very small range of inputs where its slope is non-zero, implying that
this cycle needs to be finely tuned for it to transmit dynamic
information (see Text S4).

Supporting Information

Figure S1. Magnitude of the Oscillations in the Output as a Response
to Oscillations in the Input about a Background Kinase Level

Plots show the output oscillations O of the hyperbolic, signal-
transducing, threshold-hyperbolic, and ultrasensitive switches, re-
spectively (normalized by the steady-state saturation value of each
cycle), shown in Figure 2, in response to an input of the form
�E1 ðtÞ ¼ E0ð1þ asinxtÞ. The magnitude of O is color-coded and shown
as a function of the input amplitude a and frequency w. Output
oscillations increase with increasing a and decrease with increasing w,
as expected. The four cycles, however, respond very differently to
their inputs. The parameters used for the cycles are the same as those

in Figure 2, and �E2 ¼ 50 nM except for the threshold-hyperbolic
switch, where �E2 ¼ 100 nM.

Found at doi:10.1371/journal.pcbi.0030246.sg001 (808 KB PPT).

Text S1. Derivation of Equation 3

Found at doi:10.1371/journal.pcbi.0030246.sd001 (86 KB PDF).

Text S2. Equations for Four Regimes

Found at doi:10.1371/journal.pcbi.0030246.sd002 (84 KB PDF).

Text S3. Steady State

Found at doi:10.1371/journal.pcbi.0030246.sd003 (152 KB PDF).

Text S4. Dynamics

Found at doi:10.1371/journal.pcbi.0030246.sd004 (150 KB PDF).

Text S5.Quantifying the Quality of the Four Regime Approximations

Found at doi:10.1371/journal.pcbi.0030246.sd005 (73 KB PDF).

Text S6. Low-Pass Filtering

Found at doi:10.1371/journal.pcbi.0030246.sd006 (72 KB PDF).
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