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Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of
functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the
receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the
task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept
for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an
olfactory receptor. We then use this electronic nose to predict the receptors’ response to other odorants. Our method
can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving
receptor–ligand interactions in non-olfactory settings.
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Introduction

The mammalian sense of smell is able to detect molecules
at levels as low as a few parts per trillion, as well as recognize
and discriminate thousands of volatile molecules of diverse
structure. Smelling begins when airborne odorants traverse
the aqueous mucus layer covering the nasal epithelium, and
bind to receptor proteins (ORs) within the membrane of cilia
stemming from olfactory neurons. These receptors exhibit
the characteristic structural features of the super family of G-
protein–coupled receptors. In mammals, the repertoire of
ORs is extremely large, consisting of over a thousand
different subtypes [1–4]. It is currently held that many
odorants are recognized by more than one receptor type,
and most receptors recognize multiple odorants [5,6].
Olfactory neurons are found in abundance (10–100 million)
within the sensory surface, and it is thought that all sensory
cells expressing the same receptor type project their axons
onto two (or more) topographically fixed glomeruli in the
olfactory bulb [7–10]. Therefore, the number of glomeruli is
estimated to be between 1,000 and 2,000, namely a reflection
of the number of different receptor types. Thus, the receptive
field of a glomerulus—which is defined as the stimulus range
to which it responds—is equivalent to the molecular
receptive range of the olfactory receptor expressed by its
innervating neurons.

As implied by the above-described organization of the
peripheral olfactory system, the initial key to elucidating
olfactory coding lies in elucidating the receptive range of
given olfactory receptors. Indeed, this goal has been the
subject of intensive research in laboratories and computation
centres worldwide. Computational methods typically try to
estimate the binding affinity based on the structures of the
ligand and receptor [11–14]. While unequivocally promising,
the complexity of the computations and the paucity of GPCR
receptors with known structure put limits on the power of
this approach.

In turn, finding the receptive range for a given OR
experimentally is difficult because ORs expressed in heterol-
ogous cells are typically retained in the endoplasmic

reticulum [15]. Furthermore, even when successfully ex-
pressed [16–18], the stimulus set size used is rather small
compared to the large set of possible stimuli, and therefore
capable of covering only a small portion of the receptive
ranges.
Here we set out to ask whether we could use artificial

olfaction to predict ligand–receptor binding affinity, thereby
suggesting a fast and cheap alternative to time-consuming
computations or tedious experiments. This possibility has far-
reaching consequences for drug design and might find
applications in odor communication as well [19].
The most straightforward tools of artificial olfaction are

electronic noses (eNoses) [20,21]. These are analytic devices that
play a constantly growing role as general-purpose odor
analyzers. The main component of an eNose is an array of
non-specific chemical sensors. An analyte stimulates many of
the sensors in the array, and elicits a characteristic response
pattern. The sensors inside the eNose are made using diverse
technologies, but in all cases a certain physical property is
measured and a set of signals is generated. Electronic noses
have been used intensively for many applications, mostly for
classification tasks, with considerable success. For example,
eNoses have been used in medical applications [22–25], for
environmental control [26], for quality assessment of food
products [27–31], in the car manufacturing industry [32], in
predicting biological activity of alcohols [33], and even in
predicting human percept [34].
The results of these applications imply that a good eNose

captures enough information on an odorant to allow its
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discrimination from other odorants [35]. A considerable part
of this information is likely to overlap with the factors that
determine the interaction strength with the biological
receptor, such as relevant structural motifs, surface physical
shape, and charge distribution [21]. Consequently, we
hypothesized that eNose fingerprints capture information
that is relevant to the strength of the biological interaction.

In the first systematic study of OR receptive range, Araneda
et al. [16] measured the response of the rat I7 OR to 90 pure
chemicals, and divided the results into four groups according
to the level of response to the odorant stimulus: high,
medium, low, and no response. In a later and more
comprehensive effort, Hallem et al. [36] measured the
response of 24 Drosophila ORs to a set of 110 odorants.
Here we set out to ask whether we could tune an eNose to
these results such that the eNose could then predict the
receptor response.

Results

To test this hypothesis, we took it upon ourselves to
measure the set of chemicals from the work of Araneda et al.

[16] with the MOSESII eNose [37], and to test how well the
resulting digital fingerprints can serve as predictors of the
interaction strengths with the I7 receptor. For various
reasons (e.g., no CAS identification in Araneda et al.), we
were able to obtain only 39 of the original 90 chemicals used
(see Methods). Out of these 39 chemicals, 28 generated low
response or did not respond at all, whereas the remaining 11
generated medium or high response.
A typical eNose signal consists of a few hundred measured

values per sensor, thus giving rise to a rather large dataset
(Figure 1), necessitating a preliminary stage of feature
extraction in the data analysis pipeline. The most popular
feature extraction techniques in the field of eNoses capture
only a small portion of the information contained in the
signals [38]. While such partial methods are satisfactory for
many applications, the limited size of the current dataset
necessitated maximization of the amount of captured
information. To this end, we used the Lorentzian technique,
a recently developed method for feature extraction that is
particularly suited for this task [38]. This technique is based
on fitting the measured signal to an analytic curve (Figure 1),
developed using simple assumptions regarding the measure-
ment system and the interaction between an analyte and the
sensors. The Lorentzian technique uses four parameters to
characterize each signal curve. These four parameters can be
used to reconstruct the original signal with high accuracy.
A typical response pattern elicited in a single sensor is

shown in Figure 1A. However, part of the 39 chemicals used
in this work displayed abnormal response patterns involving
multiple-peaks or partial corruptions (Figure 1B and 1C).
While all the known feature extraction techniques fail for
such abnormal signals, we were able to generalize the
Lorentzian technique so that it could be used for any kind
of signal in our dataset [39,40].
The Lorentzian technique uses four parameters to charac-

terize each signal. Combined with the 16 sensors of the eNose,
this generates a 64-dimensional digital fingerprint. We
measured ten repetitions per odorant, totalling 390 samples.
Typically, the first sample of each batch somewhat deviated
from the rest of the samples (a phenomenon known as
conditioning), and it was removed from further analysis.
After removing some additional outliers (using Euclidian
distance, the samples that were more than two standard

Figure 1. An Electronic Nose Possible Signals

(A) A typical signal (Octanal, measured with a QMB sensor; solid red) and the best fitting Lorentzian model (dashed blue).
(B) Abnormal signals with double peak.
(C) Abnormal signals with out-of-range signals.
doi:10.1371/journal.pcbi.0040018.g001
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Author Summary

A key goal in biology is to identify specific ligands for specific
receptors. One example is where the ligand is a drug. In turn, in the
olfactory system the ligand is the odorant that binds to olfactory
receptors. There are many olfactory receptor types, and which
odorants will activate which receptors remains largely unknown.
One way to answer this is to systematically vary the molecular
features of ligands and to measure the olfactory receptor response.
However, the vast number of molecular features and their
combinations renders such an effort potentially unsolvable. Here,
rather than looking at the trees (each molecular feature), we looked
at the forest (the smell they generate). We used a device called an
electronic nose that generates a patterned response to odorants.
We then obtained the response to a set of odorants that are known
to activate a particular olfactory receptor, and we used this pattern
to predict the response of that receptor to other odorants. We found
that, on average in three out of four we could predict the response
of olfactory receptors. This result provides a new method for
probing the olfactory system, and also suggests a novel method for
identifying potential drugs.

Predicting Receptors Receptive Range



deviation away from the mean sample), we were left with a
total of 342 samples, 8–9 per odorant.

Due to the relatively small size of our dataset, we used a
coarser two-class classification scheme, according to whether
the response was significant, e.g., medium or high, versus
whether there was no response at all or a low response. In
Figure 2 we visualize this dataset in two dimensions using the
Fisher transformation [41]. This transformation is a linear
transformation that finds new linear combinations of the
original features that optimally discriminate between the
different classes.

We then applied a classification algorithm known as the
perceptron [42]. To calculate the success rate of our prediction
rule, we used a leave-one-group-out procedure in the
following way: we repeatedly removed one group of samples
of the same odorant from our dataset, to form the test set.
The remaining samples formed the training set. We then
trained a perceptron classifier, while transforming the train-
ing data with the Fisher transformation. The success rate is
than defined as the average of the 39 leave-one-group-out
average runs. The success rate obtained was 76.1% (v2 test, p¼
0.019). In other words, using an eNose, we were able to
predict the I7 receptor response to an odorant in 76% of
cases.

Generalizing to Other Olfactory Receptors
Encouraged by the prediction accuracy for the activity of

the rat I7 receptor from only a small subset of chemicals, we
set out to further test this approach on more OR data. A
recent study measured the response of 24 Drosophila ORs to

a set of 110 odorants [36]. We therefore took upon ourselves
to measure these chemicals using the same eNose.
We first measured 70 chemicals from [36] using the

MOSESII eNose. Each sample was measured 3–4 times. Since
in some cases the chemicals measured did not elicit a strong
response, we modified the eNose measurement technique by
increasing the temperature and the flow rate (see Methods).
This insured that almost all chemicals elicited a clear
response. We than asked if we could predict the activity of
each of the 24 receptors from our eNose signals.
To find a statistically good learning rule that can predict

the correct class of an unknown sample, the training set must
contain a substantial number of examples from each class.
Out of the 24 ORs measured, 12 responded to less than 15%
of the odorants (for example, OR 2a responded weekly to only
three odorants). We therefore ignored these receptors and
did not try to develop a learning rule for them. To find the
learning rule for the remaining 12 Ors, we applied the
perceptron learning scheme again. We grouped the odorants
into two classes. The first contained all the odorants that
elicited a weak response or no response (less than 50 spikes, as
defined in Hallem et al.), and the second class contained all
odorants that had a medium or high response (above or equal
50). Thanks to the larger dataset, we could now use simpler
feature extraction methods compared to those we used for
the I7 receptor. Each sample was represented by a vector of
size 120. This vector contained four datapoints from each of
the 16 signals (see Methods), and 56 values that represent the
28 ratios between the maximum values of the eight signals
from the metal-oxide (MOX) sensors, and 28 ratios of the

Figure 2. Projecting the Samples into Lower Space

(A) A two-dimensional plot of the eNose digital fingerprints. The raw data were transformed using the Fisher transformation, which maximizes class
separability, defined as the ratio of the between-class scatter matrix to the within-class scatter matrix. A suggested separating hyper-plane between the
weak and no-response groups to the groups of medium and high response gives 99.4% correct classification on the training set. Here, non-responding
samples are brown, low-responding ones are yellow, medium-responding ones are cyan, and strong-responding ones are blue.
(B) A three-dimensional sample plot of OR 98a eNose digital fingerprint from the Drosophila experiment using PCA. Here, weak or non-responding are
red, and medium or strong response are blue.
doi:10.1371/journal.pcbi.0040018.g002
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eight signals from the quartz microbalance (QMB) sensors.
Presenting a vector of size 120 to a neural network increases
its computation time and might reduce the success rate. We
thus applied PCA and took the eigenvectors that covered
99.9% of the variance. This reduced the size of the input
vector by a factor of 2/3.

To test our learning rule, we applied a ‘‘leave 10 groups
out’’ procedure. We performed each test 500 times. On each
test, we randomly removed ten odorants and all their
repeated measurements; this set was defined as the test set.
The remaining odorants were used as a training set. We then
trained a perceptron. The success rate for each receptor was
defined as the average success rate of all the 500 runs. The
results are depicted in Figure 3. As can be seen, in almost all
the receptors we tested the success rates were above 70%,
with the best success rate being 86% for receptor ORs 7a,
59b, and 67c, and the lowest being 63% for receptor OR 35a.
We tested the significance of the result using a v2 test (by
comparing the expected 2-classes distribution of the null
hypothesis to the observed 2-classes distribution of the
learned rule. The null hypothesis is to always predict the
class most abundant). We also tested the significance by using
a 2-samples t-test to compare the mean success rate of the

null hypothesis versus the learned rule. As can be seen in
Figure 3, in ten out of 12 receptors we tested, the predictive
power was significant (v2 test, p , 0.01). To further test the
strength of this method, we applied a leave group out test of
various group sizes. As seen Figure 4, the prediction rates
slightly diminish when larger group sizes were used.
To further verify that the results cannot be attributed to

chance, we tested the ability to predict a randomly created
OR response. To do this, we randomly shuffled the response
vector of each OR and then tested if we can learn the pseudo
created OR response using the same algorithm. We repeated
this randomization process 30 times for each receptor and
calculated the average prediction success rate for the 12
randomly created receptors, which turned out to be 56%, a
value not different from chance (T(22)¼�1.04, p¼ 0.31) and
significantly below our results with real OR responses (T(22)¼
�6.05, p ¼ 0.0001).

Testing the Prediction Rule on New Data
The most convincing way to test such empirically devel-

oped rules is to use data that was not used in the rule building
set. To this end, we set out to test an additional 21 odorants
that were tested in [36], but were not part of the 70 odorants
used above. We measured each of these 21 odorants 3–4 times
using our eNose, with the same parameters and outlier
removal scheme as used above. This process generated 54
samples, representing 2–3 measurements of each of the 21
odorants. We then checked the prediction success rates of our
previously learned rules on these new odorants. The results
are depicted in Figure 5. The average prediction rate was
77.07%, where the maximum was 88.8%. In 3/4 of the ORs, we
obtained a success rate of above 70%, while in three ORs we
obtained a success rate of ;64% (ORs 67a, 43b, and 35a). The
prediction values of a few sample ORs of the list of 21
odorants is detailed in Table 1. In other words, we were able
to predict the response to odorants that were not used in our
original model building set.

Discussion

Predicting the response of an OR from the molecular
features of an odorant ligand has met limited success. As the
number of molecular features involved in the receptor-ligand
interaction can be very high and the number of subsets and
relations between these features grows very fast, the task of
identifying the important features and relations is daunting.
With this in mind, here we quantified the response to an

Figure 3. The Prediction Success Rates of the 12 ORs We Tested Using

Leave-10-Groups-Out Process

The average success rate across all receptors was 77.5%. The success
rates of the ORs marked with ‘‘þ’’ did not differ significantly from the null
hypothesis prediction rule (v2 test , p¼,0.01).
doi:10.1371/journal.pcbi.0040018.g003

Figure 4. The Prediction Success Rates of the 12 ORs When Using

Different Group Sizes as Test Set

doi:10.1371/journal.pcbi.0040018.g004

Figure 5. The Result of Predicting the Response of 21 New Odorants

Using the Prediction Rules Developed from the Set of 70 Odorants

doi:10.1371/journal.pcbi.0040018.g005
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odorant in synthetic sensors, in order to obtain an indirect
measure of the forces and parameters involved.

Our results suggest that an eNose can be used to predict,
with reasonable accuracy, the response of an OR to an
unknown odorant. This provides a link between artificial and
biological olfaction. The fact that we could not duplicate the
successful learning process for the pseudo-receptors lends

further credence to this link. The observation that eNoses
capture information that is relevant to biological interaction
is promising in that they can provide a fast path for analysing
the relationship between odorant and receptor, and can be
extended to other kinds of biological interaction, outside the
realm of olfaction.
The prediction rates for 21 new samples using the 12 ORs

Table 1. A Few Examples of Prediction Values versus the Observed Values on the Set of the 21 New Odorants

ID

Receptor: 9a 22a 35a 59b

CAS: Predicted Observed Predicted Observed Predicted Observed Predicted Observed

1 105-37-3 1 1 1 1 1 0 1 1

2 105-37-3 1 1 1 1 1 0 1 1

3 142-62-1 0 0 0 1 0 0 0 0

4 142-62-1 0 0 0 1 0 0 0 0

5 111-27-3 1 1 1 1 1 1 0 0

6 111-27-3 1 1 1 1 1 1 0 0

7 111-27-3 1 1 1 1 1 1 0 0

8 111-27-3 1 1 1 1 1 1 0 0

9 111-87-5 1 0 1 1 1 1 0 0

10 111-87-5 0 0 0 1 0 1 0 0

11 111-87-5 0 0 0 1 0 1 0 0

12 80-56-8 0 0 0 0 0 0 0 0

13 80-56-8 0 0 0 0 0 0 0 0

14 80-56-8 0 0 0 0 0 0 0 0

15 98-86-2 1 1 0 0 0 0 0 0

16 98-86-2 0 1 0 0 0 0 0 0

17 98-86-2 0 1 0 0 0 0 0 0

18 87-44-5 0 0 0 0 1 0 0 0

19 87-44-5 0 0 0 0 0 0 0 0

20 87-44-5 0 0 0 0 0 0 0 0

21 119-36-8 0 0 0 0 0 0 0 0

22 119-36-8 0 0 0 0 0 0 0 0

23 119-36-8 0 0 0 0 0 0 0 0

24 71-36-3 1 1 1 1 0 1 1 0

25 71-36-3 1 1 1 1 1 1 0 0

26 71-36-3 1 1 1 1 1 1 0 0

27 107-92-6 0 1 0 1 0 0 0 0

28 105-54-4 1 1 1 1 1 1 0 0

29 105-54-4 1 1 1 1 0 1 1 0

30 105-54-4 1 1 1 1 0 1 0 0

31 105-54-4 1 1 1 1 0 1 0 0

32 97-53-0 1 0 0 0 0 0 0 0

33 97-53-0 1 0 0 0 0 0 0 0

34 97-53-0 1 0 0 0 0 0 1 0

35 97-53-0 0 0 0 0 0 0 0 0

36 97-53-0 0 0 0 0 0 0 0 0

37 123-92-2 1 1 1 1 0 0 1 0

38 123-92-2 1 1 1 1 0 0 1 0

39 123-92-2 1 1 1 1 1 0 1 0

40 123-92-2 1 1 1 1 0 0 0 0

41 503-74-2 0 0 0 0 0 0 0 0

42 503-74-2 0 0 0 0 0 0 0 0

43 60-12-8 0 0 0 0 0 1 0 0

44 60-12-8 0 0 0 0 0 1 0 0

45 100-52-7 1 1 0 0 0 1 0 0

46 100-52-7 1 1 0 0 0 1 0 0

47 98-01-1 1 1 0 0 0 1 1 1

48 98-01-1 1 1 0 0 0 1 1 1

49 66-25-1 1 0 1 1 0 1 0 0

50 66-25-1 0 0 1 1 1 1 0 0

51 3391-86-4 0 1 1 1 1 1 0 0

52 3391-86-4 0 1 1 1 1 1 0 0

53 10482-56-1 0 0 0 1 1 0 0 0

54 10482-56-1 0 0 0 1 1 0 0 0

‘‘1’’ stands for active (above 50 spikes) and ‘‘0’’ for non-active. Each odorant was measured 3–5 times; from each group outliers were removed as in the experiment with the 70 odorants.
doi:10.1371/journal.pcbi.0040018.t001
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tested ranged from 64% to 89%. One may ask what underlies
this variability in classification power. Because we could not
explain these differences from the receptor response char-
acteristics or the learning scheme (we tried several other
learning methods, but in general the results were similar), we
hypothesize that one source of the differences might be the
noise in the measurements—of both the olfactory response
and the eNose. Another likely source is that the ORs for
which we could find only weak classifiers are tuned to
molecular features that are not captured by the current
eNose technology. This implies that an eNose with a greater
number of sensor modules will provide more information
and will improve the ability to extract more accurate rules.
Finally, in this respect, it is noteworthy that even when the
prediction rates are not high (but significantly differ from the
null hypothesis rule) they can be further improved using
boosting methods (from M. Kearns, Thoughts on hypothesis
boosting, unpublished manuscript, December 1988), that turn
a collection of weak classifiers into a single, highly accurate,

classifier. Such boosting could also be achieved by using 2–3
independent eNoses.
One may argue that our solution provides a sort of ‘‘black

box’’: we can tell which odorants may elicit a receptor
response, but we can’t say why. In other words, we have not
directly generated insight regarding the molecular features
dominating the response of a particular receptor. We would
argue, however, that our results remain valuable even in the
absence of mechanistic understanding: experimentally, such
predictions may significantly contribute to the study of the
olfactory system by providing a path to stimulus selection. If
one wants to drive the olfactory system in order to probe its
function systematically, one can use this method to judi-
ciously select stimuli. Outside of the experimental context,
this method may pave a unique path to ligand identification
within a clinical framework. If one has in hand a particular
target ligand, one can now use this method to identify
additional potential ligands. Although one may indeed
remain in the dark as to why these ligands are effective, one
would nevertheless have potential ligands in hand. Finally,
and critically in this respect, a key advantage in our approach
is that the use of an eNose allows the application of the
method to mixtures of odorants, which is not feasible for
methods that quantify the response by recognizing the
individual molecular features.
All that said, this method may also set a path toward more

mechanistic understanding as well. Such understanding may
be achieved by in-depth examination of the particular sensors
that dominate the response in one case or another, or by
systematic examination of ligands that are grouped by this
method, asking what molecular features are common to these
ligands. Although such ligand groupings could be equally
obtained by targeting odorants at expressed biological
receptors, using an eNose for this task is orders-of-magnitude
easier, faster, and cheaper.

Materials and Methods

The I7 OR experiment. The list of the 39 pure chemicals we used,
and their interaction strength with the I7 rat OR, appear in Table 2.

Out of the 90 chemicals used in the I7 experiments, only 14 had a
high or a medium response. We managed to measure 11 of them
(some of them could not be measured by the eNose). From the
remaining low responding or non-responding 76 chemicals, we were
able to obtain 28. These numbers constitute a good representation of
both response groups. We were unable to obtain the additional
odorants because they were not identified by CAS, and were thus of
ambiguous identity.

The Drosophila ORs experiment. We used 91 out of the 110
chemicals used in the Drosophila ORs experiments (various technical
issues such as low boiling temperature prevented us from obtaining
or measuring the remaining 19 odorants). The list of the 91 pure
chemicals used appears in Table 3.

eNose. The MOSES II eNose we used contains eight metal-oxide
(MOX) sensors and eight quartz microbalance (QMB) sensors. MOX
and QMB are two very different sensor technologies that together
capture many facets of the ligand’s nature.

In the I7 experiments, the samples were put in 20-ml vials in an
HP7694 headspace sampler, which heated them to 40 8C and injected
the headspace content into the MOSES II with a flow rate of 25 ml/
litter. There, each analyte was first introduced into the QMB
chamber, whence it flowed through to the 300 8C heated MOX
chamber. The injection lasted 30 s, and was followed by a 15 min
purging stage using synthetic air. Each chemical was measured in
batches, with a single batch containing ten successive measurements.
In total, we performed 390 measurements. Each odorant was
measured at the same level of humidity and temperature. Each single
measurement consisted of 16 time-dependent signals, corresponding
to the 16 sensors.

Table 2. A List of the 39 Chemicals We Used for Our
Measurement and Their Response Level in the I7 Experiment

Name Number CAS Group

benzaldehyde 1 100-52-7 No response

citronellal 2 106-23-0 Strong

Isobutyraldehyde 3 78-84-2 No response

Linalyl acetate 4 115-95-7 No response

trans-2,cis-6-nonadienal 5 557-48-2 Medium

2-methyl undecanal 6 110-41-8 Weak

Undecanal (undecenal) 7 112-44-7 Weak

Pelargonaldehyde 8 124-19-6 Medium

Valeraldehyde 9 110-62-3 No response

trans-2-nonenal 10 18829-56-6 Weak

Caproic aldehyde 11 66-25-1 No response

alpha-hexycinnamaldehyde 12 101-86-0 No response

alpha-methyl-trans-cinnamaldehyde 13 101-39-3 No response

Citral 14 5392-40-5 No response

Geranyl acetate 15 105-87-3 No response

Decanal 16 112-31-2 Weak

trans,trans-2,4-decadienal 17 25152-84-5 Weak

trans-2-hexen-1-al 18 6728-26-3 No response

1-bromooctane 19 111-83-1 No response

2,4-dimethyl-2,6-heptadienal 20 85136-08-9 No response

1-Octene 21 111-66-0 No response

2-Octynal 22 Weak

Octanoyl chloride 23 111-64-8 No response

Octane 24 111-65-9 No response

1-Heptaldehyde 25 111-71-7 Medium

1-Octanethiol 26 111-88-6 No response

2,6-dimethyl-5-heptenal 27 106-72-9 Medium

2-Octanone 28 111-13-7 No response

2,4-diethyl-2,6-heptadienal 29 85136-07-8 No response

cinnamaldehyde 30 104-55-2 No response

Cis-4-decenal 31 21662-09-9 Weak

2,4-Octadienal 32 5577-44-6 Strong

Cis-6-Nonenal 33 2277-19-2 Medium

Octanal 34 124-13-0 Strong

trans-2-octenal 35 2548-87-0 Strong

Cis-4-heptenal 36 6728-31-0 Weak

trans,trans-2,4-heptadienal 37 4313-03-5 Medium

trans-2-decenal 38 3913-71-1 Weak

trans-2-heptenal 39 18829-55-5 Medium

doi:10.1371/journal.pcbi.0040018.t002
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In the Drosophila 24 ORs experiment, we heated the oven to 50 8C
and increased the flow to 40 ml/litter. These parameter changes
increased the number of chemicals that elicit a strong response. To
avoid the problem of conditioning, we put a blank vial before every
measurement and we cleaned the system using steamed air after each
run. We measured each sample 3–4 times.

Feature extraction methods. In the first experiment, we used the
Lorentzian method. Although this method outperforms simple
methods commonly used in eNose applications, the Lorenzian
method is, however, a lengthy process in which all abnormal signals
need to be fixed, as described in [39,40]. Due to the large number of
odorants used in the Drosophila experiment we decide to use a
different feature extraction method that is similar to the Lorentzian
but is easier to apply to all kind of signals. This method extracts four
parameters from each signal. These parameters are: the signal max
value and the time it reaches it, the time the signal reaches the half
max value on the decay part and on the rise part. These four
parameters are similar to the four parameters used in the Lorentzian
model. In many cases the signal max value can change considerably
between measurements of the same odorants; however, the relative
height of the eight sensors is kept. Thus, to capture this behaviour we
added to each odorant representation the 28 possible ratios of the
eight MOX signals and 28 ratios of the eight QMB signals. We thus
ended up with 120 features for each odorant. To ask whether this
feature extractions method is a good representation of the odorants,
we clustered the 273 eNose measurements we had into 70 classes and
tested how many odorants fall into other classes. Out of the 273
measurements, 85% clustered either to their class or to the class
closest to their class, suggesting that this feature extraction method is
a good representation of the odorants.

Perceptron. We used the Matlab [43] implementation of percep-
tron. We presented the training set to the perceptron and calculated
the training error. Since perceptron is guaranty to converge only for
linearly separable problems, we stopped the training if there was no
improvement in three consecutive epochs, or when we reached 100
epochs.
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