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Abstract

Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic
effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-
throughput RNA interference (RNAi) data from C. elegans and identify ‘‘phenotypic signatures’’, which are sets of cellular
defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign
genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs
extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We
hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and
that pleiotropic genes represent ‘‘connectors’’ between these modules. In support of this hypothesis, we find that highly
pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic
genes act as connecting points between different protein complexes or pathways.
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Introduction

The phenomenon of pleiotropy highlights the fact that some

genes in the genome perform multiple biological functions.

Although individual examples of pleiotropic genes have been

discovered [1–4], pleiotropy remains a poorly understood genetic

phenomenon and there have been very few systematic studies. In

S. cerevisiae, the collection of mutant strains for nearly all genes has

enabled high-throughput tests of growth fitness under a variety of

environmental conditions [5,6]. The degree of pleiotropy has been

estimated based on the number of conditions under which mutant

strains showed abnormal fitness [6]. In multi-cellular organisms,

the availability of high-throughput RNAi techniques may lead to

the opportunity for systematic analysis of pleiotropic genes.

However, when multiple phenotypic effects are present, it is not

obvious whether the phenotypic effects should be attributed to the

loss of a single function or to multiple functions. For example, a

phenotypic effect at earlier stages of animal development may

accumulate during cell divisions and migrations, resulting in many

defects at later stages of development. In this case, although many

defects are observed, they can all be accounted for by the loss of a

uniform gene function. Therefore, it is not clear how pleiotropic

genes should be identified in practice and what mechanisms lie

behind pleiotropy.

C. elegans is especially amenable to genome-wide loss-of-function

analyses because of well-characterized anatomy, short life cycle,

and the convenience of RNAi techniques. The C. elegans early

embryo is a model system for studying mitotic cell divisions. Piano

et al screened a set of ovary-enriched genes by RNAi and

systematically described early embryonic defects for 161 genes in

terms of RNAi-associated phenotypes [7]. Using the RNAi data,

they grouped these genes into ‘‘phenoclusters’’, which correlated

well with functional annotations of these genes. Sonnichsen et al.

performed whole-genome RNAi experiments to search for genes

involved in early embryogenesis [8]. They defined a series of

cellular defects occurring in the first two cell divisions, and

identified 661 genes that showed at least one of these defects.

These genes were manually grouped into functional classes. For

example, genes involved in cell polarity were grouped together

since the RNAi of these genes resulted in symmetric cell divisions;

genes involved in DNA damage checkpoints were grouped

together since the RNAi of these genes resulted in delayed P1

cell division. Multiple defects during early cell divisions can be

scored when a single gene is perturbed. All the scored defects

happen in the first approximately 50 minutes of embryonic

development, up to a four-cell stage embryo. This short time

window ensures that most observed defects are direct rather than

secondary. These data and information provide an excellent

biological context to systematically explore the phenomenon of

pleiotropy.

In this paper, we address several open questions regarding

pleiotropy using C. elegans early embryogenesis as the model

system. First, how can complex phenotypes be decomposed and be

linked to the loss of specific biological functions? Second, how can

we systematically identify pleiotropic genes? Third, does pleiotropy

exist commonly in a biological system? Finally, what potential

mechanisms underlie pleiotropy? We find that sets of cellular

defects (or ‘‘signatures’’) are well correlated with losses of certain
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biological functions, and these signatures can be used to

decompose complex phenotypic profiles so as to provide functional

annotations. Approximately half of the genes involved in early

embryogenesis are found to be pleiotropic, suggesting the

prevalence of pleiotropy in biological systems. By integrating

phenotypic profiles with protein-protein interaction networks, we

observe that highly pleiotropic genes tend to show a higher

network ‘‘betweenness’’ [9] than other genes involved in early

embryogenesis, suggesting that pleiotropic genes play an important

role in connecting various biological pathways.

Results

Phenotypic Profiles
Systematic RNAi screens have identified genes involved in early

embryogenesis and have characterized their phenotypic profiles,

which are composed of a series of cellular defects [8]. As has been

described previously [8], phenotypic data can be visualized in a

matrix where rows index genes and columns index defects. A gene

is given a score of either zero (absence) or a positive value

(presence) for each of the 45 defects [8]. We plotted the

distribution of the percentage of genes involved in early

embryogenesis against the number of defects for which the genes

have positive scores (Figure 1). By randomly permuting the values

among genes while keeping each column sum fixed (i.e., fixing the

total number of genes each defect is associated with), we generated

random control datasets and observed that significantly more

genes in the real data set exhibit a large number of loss-of-function

defects than those in random control sets. In the real dataset, 57

out of 661 genes show 15 or more defects, whereas on average

only 1 gene is expected to show this number of defects in a

randomly permuted dataset (P-value,0.001, see Methods).

Correlation among Cellular Defects
Genes exhibiting a large number of defects in their phenotypic

profiles may be candidates for pleiotropic genes. However, should

the degree of pleiotropy be solely determined by the number of

defects? It is possible that occurrences of some cellular defects are

highly correlated with one another. The highly correlated defects

are likely caused by the perturbation of a single-function gene

rather than a pleiotropic gene.

In order to investigate how strongly cellular defects correlate

with each other, we analyzed the occurrence of each individual

defect and the co-occurrence of each pair of defects. We then

computed the ratio of the observed co-occurrence of each defect

pair to the expected co-occurrence as if the two defects occurred

independently (see Methods). We plotted the ratios as a correlation

map (Figure 2) and found that some defects co-occur much more

frequently than expected, while some never co-occur in the same

phenotypic profile, suggesting that not all defects occur indepen-

dently from each other. For example, P1/AB nuclear separation—

cross-eyed (Defect 23) and four-cell stage nuclei—size/shape (Defect 34)

co-occur at very high frequency, suggesting that embryos showing

defects in nuclear separation at the two-cell stage are very likely to

be abnormal in nuclear size and shape at the four-cell stage. P1/AB

nuclear separation—cross-eyed also co-occurs with P0 cytokinesis—furrow

specification (Defect 20) and several other defects, and four-cell stage

nuclei—size/shape also co-occurs with P0 spindle rocking (Defect 17)

and several other defects.

We also analyzed the occurrence of cellular defects by both

linear principal component analysis (PCA) and logistic principal

component analysis (LPCA) [10]. Although LPCA appears to be

more appropriate for 0-1 type of data, PCA is more appealing in

terms of its interpretability because the dimensions of LPCA are

not orthogonal and the eigenvalues of LPCA cannot be used to

rank the importance of principle components. As dimensional

reduction tools, both PCA and LPCA gave similar results for this

dataset–the projection of the defects onto the plane spanned by the

first and second principal components (PCs) reveals very similar

pattern (Figure 3, for LPCA). For example, P0 cytokinesis—furrow

specification (Defect 20), P1/AB nuclear separation—cross-eyed (Defect

23), four-cell stage nuclei—size/shape (Defect 34), and P0 spindle

rocking (Defect 17) show high co-occurrence in the correlation map,

and they are positioned close to one another in the LPCA plot as

well. The observation of closely related defects suggests that the

degree of pleiotropy cannot be readily measured by simply

counting the number of defects. In order to study pleiotropy, we

need to identify combinations of defects, or ‘‘phenotypic

signatures,’’ which describe the effects of losing individual

biological functions.

Phenotypic Signatures
Cell divisions in early embryogenesis involve a number of

biological functions such as chromosome segregation, cytokinesis,

and cell polarity. Sonnichsen et al. manually grouped genes

identified in the RNAi screen into 23 mutually exclusive classes

according to their phenotypic profiles [8]. Among these, 22 classes

have functional annotations and the remaining one is composed of

genes whose phenotypic profiles contain a large number of defects

and do not resemble profiles of any functionally characterized

genes. We designed a computational approach to determine

phenotypic signatures for each of the 22 functional classes and to

identify additional genes potentially belonging to the given class

(Figure 4).

The phenotypic signature of a class is defined as a collection of

cellular defects significantly enriched in that class as compared to

the whole dataset. More specifically, for each class as defined in

[8], we computed the P-value for the enrichment of each defect

according to the hypergeometric distribution. This class’ pheno-

typic signature is then composed of all defects whose enrichment

P-values are no greater than 0.05 after correcting for multiple

comparisons. As a result, we found phenotypic signatures for 18 of

Author Summary

In a biological system, some genes play single roles while
others perform multiple functions. How can we determine
which genes are multi-functional? An informative way for
probing gene functions is to eliminate the expression of a
given gene and observe the phenotypic consequences.
RNAi techniques have enabled the generation of genome-
wide phenotypic data. Conventionally, genes are clustered
into mutually exclusive categories according to the
observed defects following RNAi. However, assigning
genes that may play multiple roles exclusively into a
single category is arbitrary. This paper works out a
computational approach that categorizes genes while
allowing assignment of genes with complex phenotypes
into multiple categories. We apply this approach to genes
involved in cell divisions of C. elegans early embryos, and
find that about half of these genes can be assigned to
more than one functional category. This approach has
allowed the identification of previously undiscovered gene
functions. We also find that genes playing many roles in
early embryos tend to reside in central positions in protein
networks. Our approach can be used to perform functional
annotations based on phenotypic data in other systems
and to identify genes that coordinate multiple biological
functions.

Pleiotropy in C. elegans
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the 22 functional classes. For the remaining 4 classes, no

significantly enriched defects could be identified, because these

classes all contained too few genes (5 or fewer) for any defect to

pass our statistical threshold.

The above procedure can be illustrated for the cell polarity class

(Figure 5). Originally, a total of 12 genes, including some genes

previously known to be involved in cell polarity, were assigned to

this class. We identified 7 defects significantly enriched in this class

as its phenotypic signature. Among those defects, P1/AB asynchrony

of division and four-cell stage configuration are the characteristic defects

of asymmetric cell divisions. Defects in P0 pronuclear meeting, P0

spindle positioning, P0 spindle poles, P1 nuclear migration/rotation, and AB

spindle orientation are the ones that are likely to accompany the loss

of asymmetry. We searched the rest of the dataset for additional

genes with phenotypic profiles matching the signature (see

Methods) and identified RGA-3, a putative Rho GTPase

activating protein. This gene was originally classified as involved

in cortical structure. Our search for phenotypic signatures did not

rule out its functional involvement in cortical structure, but

suggested its additional roles in cell polarity. A recent paper

reported that knocking down RGA-3 along with its paralog RGA-

4 resulted in changes in the boundary of anterior and posterior

domains of PAR proteins in the early embryo [11]. This

experiment confirmed our prediction for RGA-3’s involvement

in cell polarity. Such functional assignment of genes based on

phenotypes may seem obvious, since genes sharing similar

phenotypes should share similar functions. However, without the

in-depth analysis of phenotypic signatures, additional roles of the

genes are often neglected.

Another example of phenotypic signature is shown for the

chromosome function class, which is a relatively large class consisting

of 64 genes originally. Its phenotypic signature included P1/AB

nuclear separation—cross-eyed, P1/AB nuclei—size/shape, four-cell stage

cross-eyed, four-cell stage nuclei—size/shape, and so on (Figure 6). Using

the phenotypic signature, we identified 8 additional genes for this

class. The phenotypic profiles of these 8 genes all contain defects

other than those included in the chromosome function signature, and

thus were originally assigned to other classes. Interestingly, 5 of

these 8 genes are known to be involved in nuclear transport

functions, suggesting potential connections between nuclear

transport and chromosome functions. Evidence supporting their

roles in chromosome function has been reported in recent

literature. NPP-8, which is part of the nuclear pore complex,

was found to be recruited to the chromatin after anaphase onset in

the early embryo [12]. NPP-19, another nuclear pore complex

protein, along with F10C2.4, an uncharacterized gene, were both

found to be tightly co-expressed with a group of genes involved in

chromosome maintenance [13].

Pleiotropic Genes
By determining phenotypic signatures and identifying additional

genes as belonging to each functional class, we allow genes playing

multiple roles in early embryogenesis to be assigned to multiple

classes. We define Pleiotropy Index as the number of classes a gene

Figure 1. The distribution of the percentage of genes against the number of defects in their phenotypic profiles. We plot the
distribution of the percentage of genes against the number of defects (brown bars) and compare with that of randomly permuted datasets (blue
bars). The error bars show the standard deviation of the percentages of genes in the randomly permuted datasets. On average, genes in the dataset
show 7 cellular defects in their phenotypic profiles. About 10% of the genes show 15 or more defects, much higher than that of the randomly
permuted dataset.
doi:10.1371/journal.pcbi.1000003.g001

Pleiotropy in C. elegans
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is assigned to. More than half of the genes involved in early

embryogenesis are pleiotropic (i.e., with Pleiotropy Index $2),

suggesting that pleiotropy occurs extensively (Figure 7). Genes that

were not assigned to a functional class in the original screen are

mostly pleiotropic (Table S1). Although the profiles of these genes

do not resemble those of any other known genes, they now can be

decomposed into several phenotypic signatures that lead to

functional discoveries. For example, F25H2.4, an uncharacterized

gene, is assigned to the classes of cytoplasmic structure, mitochondrial

function, meiotic cell cycle progression, and meiosis chromosome segregation.

Although pleiotropy is relatively common, only 3% of the genes

involved in early embryogenesis are highly pleiotropic (i.e., with

Pleiotropy Index $5). Many signaling proteins show a very high

Pleiotropy Index (Table S2), probably because signaling proteins

can be part of various molecular machines functioning in early

embryogenesis. For example, of all the 19 kinases involved in early

embryogenesis, 18 are pleiotropic (95% compared to 59% of all

genes involved in early embryogenesis), and 5 are highly

pleiotropic (26% compared to 3% of all genes). The biochemical

reaction that kinases catalyze is phosphorylation, and a single

kinase can catalyze phosphorylation in multiple contexts and with

different protein targets. Eliminating a kinase may thus result in

multiple sets of defects because a variety of protein targets in

different contexts cannot be phosphorylated properly.

Since the defects in consideration are not independent of each

other, it is possible that the foregoing definition of Pleiotropy

Index, although biologically meaningful, can be biased. To resolve

this issue, we take the top 33 principal components (PCs) of the

Figure 2. A correlation map for pairs of defects involved in C. elegans early embryogenesis. We calculate the ratio of observed co-
occurrence to the expected co-occurrence for every pair-wise combination of defects and plot the ratios into a correlation map. A ratio that is higher
than 1 indicates the two defects are more likely to co-occur than expected by chance. Some defects, such as P1/AB nuclear separation—cross-eyed and
four-cell stage nuclei—size/shape (pointed to with a black arrow), co-occur at a very high frequency. In this map, the co-occurring defects are grouped
together by hierarchical clustering.
doi:10.1371/journal.pcbi.1000003.g002

Pleiotropy in C. elegans
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data matrix, which can account for 90% of the total variation, and

regard them as ‘‘mega-defects.’’ Then, for a gene G, we define its

influence from a functional class K as the average of the

correlations of this gene’s loading vector with those of all the

genes in this class (see Methods). A gene G’s Relative Pleiotropy

Score is the sum of its influences from all functional classes. The

Relative Pleiotropy Score does not have direct functional

implications as Pleiotropy Index does, but it gives a relative value

of how complex a phenotypic profile is and avoids over-counting

highly correlated defects. We observe that the Relative Pleiotropy

Score such defined is highly correlated with Pleiotropy Index

(Figure S1), indicating that both are reasonable proxies to the

concept of pleiotropy.

Network Property of Highly Pleiotropic Genes
Recent work has revealed a modular organization of genes and

proteins in model organisms [13–18]. Here a module refers to a

group of genes or proteins acting in concert to achieve a certain

biological function. However, it is not yet clear how these modules

are connected and coordinated. An immediate implication from

our finding of pleiotropic genes is that gene modules overlap

instead of being separate from one another. We hypothesized that

pleiotropic genes act as ‘‘connectors’’ between different modules.

The few most highly pleiotropic kinases, for instance, connect most

of the major modules in early embryogenesis (Figure 8).

Many cellular events in early development are mediated by

protein-protein interactions (PPIs). Complexes or pathways in PPI

Figure 3. LPCA analysis of the cellular defects. The X axis and Y axis represent the first and the second principal components in LPCA analysis,
respectively. The data points labeled with numbers represent the cellular defects, which can be separated according to first two components. The
correspondence between numbers and defects are the same as in Figure 2. The defects in proximity in the graph are likely to be closely related
biologically.
doi:10.1371/journal.pcbi.1000003.g003

Figure 4. A scheme of our method for identifying phenotypic signatures. We start with pre-defined classes and search for defects that are
enriched in each class. The enriched defects compose the phenotypic signature of a given class. We then search for genes that were originally not
included in the class but can be matched with the phenotypic signature the class. In this process, a gene may be assigned to multiple classes. The
defects shown in orange and green represent phenotypic signatures of two different classes. In this example, Gene D is re-assigned to both classes.
doi:10.1371/journal.pcbi.1000003.g004

Pleiotropy in C. elegans
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networks can be the molecular identities of modules. According to

our hypothesis, the highly pleiotropic proteins we have identified

should reside in central positions in the C. elegans PPI network

[13,19]. We tested our hypothesis by studying the relationship

between a protein’s ‘‘betweenness’’ and its Relative Pleiotropy

Score or Pleiotropy Index. The betweenness of a given node is

defined as the number of times that node is on the shortest paths

connecting any two nodes in a network [9] (see Methods). It is a

network property that measures the extent to which a node is

topologically in a central position between sub-graphs of a network

[9], and it has been applied to characterize modularity of

biological networks [20,21]. We ranked the betweenness values

for early embryogenesis genes that involve two or more

interactions in the network, and found that the rank of

betweenness is significantly correlated with the Relative Pleiotropy

Score (P-value = 0.004) (Figure 9). Furthermore, this statistical

significance of the correlation appears to be contributed mostly by

a few genes with the highest Relative Pleiotropy Scores. For

example, the sum of betweenness ranks for the 12 genes with the

highest Relative Pleiotropy Scores is 1123, whereas the sum of

betweenness ranks for 12 randomly sampled early embryogenesis

genes is 1794 on average (P-value = 0.01). Similarly, we found that

the sum of betweenness values for the 11 genes with the highest

Pleiotropy Indices (Pleiotropy Index$5) is significantly higher than

that for 11 early embryogenesis genes chosen at random (454701

vs. an average of 179400, P-value = 0.03) (see Methods). The

betweenness property of highly pleiotropic genes presents

supporting evidence to our hypothesis that pleiotropic genes act

more as connectors between gene modules.

Discussion

In this paper, we presented the first systematic investigation of

pleiotropic genes in a multi-cellular organism. Using pre-defined

functional classes as seeds, we identified phenotypic signatures

associated with these classes, and then assigned genes based on

their matches to the signatures. We annotated many uncharacter-

ized genes with complex phenotypic profiles by decomposing their

profiles into signatures that are indicative of biological functions.

We also identified additional functions which were previously

unknown for some characterized genes.

Our approach can potentially be generalized and applied to

many other phenotypic datasets. For example, Gene Ontology

categories can be used in place of pre-defined functional classes in

order to obtain phenotypic signatures. Furthermore, the repro-

ducibility of detecting defects in RNAi experiments may also be

used to define signatures from large amount of phenotypic profiles.

Although each gene identified as required for early embryo-

genesis was assigned to only one class in the original RNAi screen,

we found that nearly half of these genes are pleiotropic. Some

genes, in particular those encoding signaling molecules, are highly

pleiotropic. We examined evolutionary rates of highly pleiotropic

genes by comparing sequences from C. elegans and C. briggsae. We

found that highly pleiotropic genes evolved at similar rates to other

early embryogenesis genes (data not shown), suggesting that

pleiotropy may not constitute severe constraints for protein

evolution. Our finding is consistent with a previous report that

pleiotropic and non-pleiotropic genes evolve at similar rates in

yeast [22]. We also assessed the possibility that abundantly

expressed genes are more likely to be highly pleiotropic. We

retrieved the expression levels of early embryogenesis genes from a

SAGE (Serial Analysis of Gene Expression) dataset [23], and

correlated with Pleiotropy Index. By performing linear regression

we found a significant negative correlation between expression

level and Pleiotropy Index (P-value,0.01) (Figure S2). The highly

pleiotropic genes tend to be less abundantly expressed than genes

assigned with only one or two phenotypic signatures. This is

consistent with our observation that signaling molecules such as

kinases are enriched in the set of highly pleiotropic genes. The

genes involved in cell signaling are often only expressed at a low

level but play very important regulatory roles.

Figure 5. The phenotypic signature for the cell polarity class. This signature consists of 7 defects (highlighted in red). One additional gene,
K09H11.3 (RGA-3) (pointed to by a red arrow), is assigned to the cell polarity class.
doi:10.1371/journal.pcbi.1000003.g005

Pleiotropy in C. elegans
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Figure 6. The phenotypic signature for the chromosome function class. This signature consists of 6 defects (highlighted in red). Eight
additional genes (pointed to by red arrows) are assigned to the chromosome function class.
doi:10.1371/journal.pcbi.1000003.g006

Pleiotropy in C. elegans
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Finally, we proposed a mechanistic interpretation of pleiotropy

from the perspective of functional modules in cellular networks.

Since pleiotropic genes are multi-functional, we reasoned that they

are likely to coordinate distinct functions involved in early

embryogenesis. Consistent with this notion, we found that highly

pleiotropic genes exhibit higher betweenness in PPI networks than

randomly selected genes. However, there are examples of non-

pleiotropic genes showing high betweenness and high pleiotropic

genes showing low betweenness. A potential reason is that current

PPI data is neither comprehensive nor precise. False positives and

false negatives exist in the datasets of genome-wide yeast two-

hybrid screens. Consequently, the estimation of centrality based on

betweenness may not accurate for every protein in the network.

Another possible reason is that mechanisms other than centrality

in PPI networks may contribute to pleiotropy. Hodgkin discussed

possible underlying mechanisms of pleiotropy and classified them

into seven different types [24]. ‘‘Combinatorial pleiotropy’’, the

situation that a protein plays various roles through its various

binding partners, is only one type of mechanism. This mechanism

is important for the pleiotropy in early embryogenesis, probably

because many protein complexes mediate this process.

It is not clear yet what mechanisms underlie pleiotropy in other

biological processes in multi-cellular organisms. We combined

results from two genome-wide RNAi screens [25,26] which scored

maternal sterility, embryonic lethality, and a limited number of

post-embryonic defects with the C. elegans PPI networks. We found

7 genes that exhibited 8 or more of the scored defects and had 2 or

more interactions. These 7 genes had a higher sum of betweenness

values than that of 7 randomly selected genes, though the P-value

of the difference is marginal (P-value = 0.09). This result indicates

that PPI networks may contribute to pleiotropy in a broader

context, but other mechanisms of pleiotropy probably apply as

well. Currently, few datasets that score a large number of

phenotypes in detail are available for multi-cellular organisms.

The mechanisms underlying pleiotropy are worth further investi-

gations once we have more comprehensive and accurate pheno-

typic profiles as well as other types of functional genomic data.

Methods

Permutation of Genes and Their Loss-of-Function Defects
Phenotypic profiles were represented as a binary matrix where

rows indexed genes and columns indexed defects. Each entry in

the matrix was either zero or a positive number, indicating the

absence or presence of defects. We obtained control datasets by

randomly permuting values among genes for each column while

keeping the number of positive cells in each column fixed.

Co-occurrence of Defects and the Construction of a
Correlation Map

We calculated the frequency of occurrence for each individual

defect (F(i)) and the frequency of co-occurrence for each pair-wise

combination of defects (F(i,j)).

Figure 7. Distribution of pleiotropy indices. We define Pleiotropy
Index (PI) as the number of functional classes a gene is assigned to. We
plot the distribution of genes with different PIs in a pie chart. We
observe that more than half of the genes are pleiotropic (PI$2), and
only 3% of the genes are highly pleiotropic (PI$5).
doi:10.1371/journal.pcbi.1000003.g007

Figure 8. Pleiotropic genes as ‘‘module connectors’’. The extensive existence of pleiotropic genes suggests that gene modules are
overlapping rather than separate from one another. Genes assigned to the same functional class are represented as a module and pleiotropic genes
correspond to the intersections of modules. In the illustrated example, the most pleiotropic kinases, including dom-6, mpk-1, plk-1 and air-1, connect
most of the modules in early embryogenesis into a ‘‘module network’’.
doi:10.1371/journal.pcbi.1000003.g008

Pleiotropy in C. elegans
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F ið Þ~occurrence of defect i=total number of genes

F i,jð Þ~co� occurrence of defect i and defect j together=

total number of genes

For each pair of defects, we calculated the ratio (R(i,j)) of the

observed co-occurrence frequency over the expected frequency as

if the two defects occurred independently: R(i,j) = F(i,j)/(F(i)6F(j)).

We generated a map of R(i,j) using the heatmap function in the

statistical language R.

Enrichment of Defects in Functional Classes
There were 22 manually assigned functional classes in the

phenotypic dataset. We used genes originally assigned in a class as

seeds to identify defects enriched in that class. The collection of

enriched defects was defined as the phenotypic signature of the

given class. We used the cumulative hypergeometric distribution to

determine whether a defect was significantly enriched in a class

compared to the whole dataset. In a given class, if the phenotypic

profiles of x genes contained a given defect, the P-value was

calculated as the following:

P Y§xð Þ~1{
Xx{1

i~0

K

i

� �
N{K

n{i

� �

N

n

� �

In this formula, N represents the total number of genes in the

dataset; K represents the total number of genes for which

phenotypic profiles contain the given defects; n represents the

number of genes in the given class.

Matching Phenotypic Profiles to Phenotypic Signatures
For each functional class, we examined whether any additional

genes can be assigned to the given class by matching phenotypic

profiles to the identified signature of that class. First, we obtained

phenotypic profiles of genes originally assigned to the given class

and calculated the average number (‘‘A’’) of defects matching the

signature of that class. Second, we obtained phenotypic profiles of

genes not originally belonging to that class and scored them by the

number of defects matching the signature. If a gene scored equal

to or higher than A, this gene was assigned to the given class. This

procedure does not require a perfect match, but it does make the

enrichment of defects in the signatures even more enriched in each

individual class. In the procedure, we allowed genes to be assigned

to multiple classes besides their original assignment, since some

genes might play more than one role in early embryogenesis.

Phenotypic signatures of different classes contain different sets of

defects. In a few cases, the signature of one class (X) contains all the

defects from the signature of another class (Y). In other words, the

defects in the signature of class Y are a subset of that of class X.

Thus, a phenotypic profile containing all the defects of the

signature for class X automatically contains all the defects of the

signature for class Y. In order not to overestimate the degree of

pleiotropy, genes with phenotypic profiles matching the signature

of X are only assigned to class X, instead of both X and Y. For

example, the signature of the protein synthesis class contains all of the

defects from the signatures of the cytoplasmic structure, meiosis

chromosome segregation, chromosome segregation, and mitochondrial function

classes. It can be speculated that blocking protein synthesis results

in a number of deleterious effects that resemble perturbing

cytoplasmic structure, meiosis chromosome segregation, chromo-

some segregation, and mitochondrial functions. Thus genes

assigned to the protein synthesis class were not considered for

assignment to any of the above classes.

Figure 9. Scatter plot of Relative Pleiotropy Score and rank of betweenness. The rank of betweenness is significantly correlated with the
Relative Pleiotropy Score. This correlation is largely contributed by the highly pleiotropic genes (upper right corner).
doi:10.1371/journal.pcbi.1000003.g009
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LPCA Analysis of Phenotypic Data
LPCA is a dimensionality reduction method for binary data [10].

We applied LPCA to the phenotypic profiles of early embryogenesis

genes and projected all the defects onto the first two principal

components for visualization. The MATLAB code of LPCA was

downloaded from www.cis.upenn.edu/,ais/software/lpca_code.tar.

Principal Component Analysis and Relative Pleiotropy
Scores

We applied PCA to the phenotypic profiles which consist of 661

genes in rows and 45 defects in columns. Eigenvalue diagnosis

indicated that 33 principle components accounted for 90% of the

variation in the dataset. We calculated an average of Pearson

correlation coefficients between the gene of interest and any genes

from a given functional class. The relative pleiotropy score is

defined as the sum of average Pearson correlation coefficients of all

the functional classes.

Calculation and Comparison of Betweenness
The betweenness of a node is defined as the number of shortest

paths running through the node of interest [9]. We computed the

shortest paths between all pairs of nodes in the largest component

of C. elegans PPI networks [13,19]. For each pair of nodes, we

enumerated all possible paths in between the chosen pair and

increased the betweenness score of the nodes on the shortest paths

by one. If there were N alternative shortest paths on route, we split

the credit and assigned partial score 1/N to the nodes on the

shortest paths. We computed betweenness values for proteins that

interact with at least two other proteins, because a protein with

only one interacting partner could not be on any shortest paths

except for the paths involving the protein itself. We calculated the

sum of betweenness values for the early embryogenesis proteins

with Pleiotropy Index of 5 or higher. The P-value of significance

was estimated by randomly selecting the same number of early

embryogenesis genes that had betweenness values and by

calculating the sum of their betweenness values. The simulation

was repeated 1,000,000 times.

Supporting Information

Figure S1 A scatter plot of the Pleiotropy Index and the Relative

Pleiotropy Score. These two measures are significantly correlated.

Found at: doi:10.1371/journal.pcbi.1000003.s001 (0.03 MB

DOC)

Figure S2 A scatter plot of the Pleiotropy Index and the

expression level measured in a SAGE dataset. Genes with

Pleiotropy Index equal or greater than 5 are grouped together.

Found at: doi:10.1371/journal.pcbi.1000003.s002 (0.03 MB

DOC)

Table S1 Functional annotation of genes with complex

phenotypic profiles.

Found at: doi:10.1371/journal.pcbi.1000003.s003 (0.02 MB

DOC)

Table S2 Highly pleiotropic genes.

Found at: doi:10.1371/journal.pcbi.1000003.s004 (0.02 MB

DOC)
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