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Abstract

It is widely believed that learning is due, at least in part, to long-lasting modifications of the strengths of synapses in the
brain. Theoretical studies have shown that a family of synaptic plasticity rules, in which synaptic changes are driven by
covariance, is particularly useful for many forms of learning, including associative memory, gradient estimation, and operant
conditioning. Covariance-based plasticity is inherently sensitive. Even a slight mistuning of the parameters of a covariance-
based plasticity rule is likely to result in substantial changes in synaptic efficacies. Therefore, the biological relevance of
covariance-based plasticity models is questionable. Here, we study the effects of mistuning parameters of the plasticity rule
in a decision making model in which synaptic plasticity is driven by the covariance of reward and neural activity. An exact
covariance plasticity rule yields Herrnstein’s matching law. We show that although the effect of slight mistuning of the
plasticity rule on the synaptic efficacies is large, the behavioral effect is small. Thus, matching behavior is robust to
mistuning of the parameters of the covariance-based plasticity rule. Furthermore, the mistuned covariance rule results in
undermatching, which is consistent with experimentally observed behavior. These results substantiate the hypothesis that
approximate covariance-based synaptic plasticity underlies operant conditioning. However, we show that the mistuning of
the mean subtraction makes behavior sensitive to the mistuning of the properties of the decision making network. Thus,
there is a tradeoff between the robustness of matching behavior to changes in the plasticity rule and its robustness to
changes in the properties of the decision making network.
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Introduction

Synaptic plasticity that is driven by covariance is the basis of

numerous models in computational neuroscience. It is the

cornerstone of models of associative memory [1,2,3], is used in

models of gradient estimation in reinforcement learning

[4,5,6,7,8,9,10] and has been suggested to be the basis of operant

conditioning [11]. In statistics, the covariance between two

random variables is the mean value of their product, provided

that one or both have a zero mean. Accordingly, covariance-based

plasticity arises when synaptic changes are driven by the product of

two stochastic variables, provided that the mean of one or both of

these variables is subtracted such that they are measured relative

to their mean value.

In order for a synapse to implement covariance-based plasticity,

it must estimate and subtract the mean of a stochastic variable. In

many neural systems, signals are subjected to high-pass filtering, in

which the mean or ‘‘DC component’’ is attenuated relative to

phasic signals [12,13,14,15]. However, it is rare for the mean to be

removed completely [16]. Therefore, while it is plausible that a

biological synapse would be able to approximately subtract the

mean, it seems unlikely that this mean subtraction will be

complete. If mean subtraction is incomplete, the synapse is

expected to potentiate constantly. Over time, this potentiation

could accumulate and drive the synapse to saturation values that

differ considerably from those predicted by the ideal covariance

rule (see below). Thus, even if neurobiological systems actually

implement approximate covariance-based plasticity, the relevance

of the idealized covariance models to the actual behavior is not

clear.

Here, we study the effect of incomplete mean subtraction in a

model of operant conditioning, which is based on synaptic

plasticity that is driven by the covariance of reward and neural

activity. In operant conditioning, the outcome of a behavior

changes the likelihood of the behavior to reoccur. The more a

behavior is rewarded, the more it is likely to be repeated in the

future. A quantitative description of this process of adaptation is

obtained in experiments where a subject repeatedly chooses

between two alternative options and is rewarded according to his

choices. Choice preference is quantified using the ‘fractional

choice’ pi, the number of trials in which alternative i was chosen

divided by the total number of trials. The distribution of rewards

delivered to the subject is quantified using the ‘fractional income’

ri, the accumulated rewards harvested from that alternative,

divided by the accumulated rewards from all alternatives. In many

such experiments, choice behavior can phenomenologically be

described by

Dpi&k:Dri ð1Þ
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where i = 1,2 corresponds to the two alternatives, Dpi;pi20.5 and

Dri;ri20.5. The proportionality constant, k corresponds to the

susceptibility of choice behavior to the fractional income and its

exact value has been a subject of intense debate over the last several

decades. According to the ‘matching law’ k = 1 and thus pi = ri. In this

case it can be shown that choices are allocated such that the average

reward per choosing an alternative i, is equal for all alternatives

[17,18] (see also Materials and Methods). However, in many

experiments the value of k is, in fact, slightly smaller than 1, a

behavior that is commonly referred to as undermatching [19,20,21].

An alternative phenomenological description of behavior, known as

‘the generalized matching law’ [19] is p1/p2 = (r1/r2)k. Expanding the

generalized matching law around ri = 0.5 yields Eq. (1) and thus Eq.

(1) is an approximation of the generalized matching law. This

approximation becomes equality for k = 1.

In a recent study we showed that the matching law is a natural

consequence of synaptic plasticity that is driven by the covariance

of reward and neural activity [11]. The goal of this paper is to

understand the behavioral consequences of deviations from

idealized covariance-based plasticity by investigating the behav-

ioral consequences of incomplete subtraction of the mean in the

plasticity rule. By studying an analytically solvable neural decision

making model, we show that although the effect of small deviations

from the idealized covariance-based plasticity on synaptic

efficacies is large, the behavioral effect is small. Thus we

demonstrate that matching behavior is robust to the mistuning

of the parameters of the covariance-based plasticity rule.

Furthermore, we show that the mistuning of the mean subtraction

leads to undermatching, in line with experimental observations.

Our study also reveals that the mistuning of the mean subtraction

in the plasticity rule makes matching behavior sensitive to

mistuning of the properties of the decision making network. Thus

there is a tradeoff between robustness of matching behavior to

changes in the plasticity rule and robustness to changes in the

properties in the decision making network.

Results

The Decision-Making Model
Decision making is commonly studied in experiments in which a

subject repeatedly chooses between two alternative actions, each

corresponding to a sensory cue. For example, in many primate

experiments, the stimuli are two visual targets, and the actions are

saccadic eye movements to the targets [20,21]. In our model, the

responses to the sensory stimuli are represented by two populations

of sensory neurons, whose level of activity is denoted by N1 and N2

(Fig. 1A). We assume that the two activities Ni are independently

drawn from the same Gaussian distribution with a positive mean

and a coefficient of variation s (standard deviation divided by the

mean). We further assume that the level of variability in the

activity of Ni is low, s%1. This assumption is reasonable if Ni

corresponds to the average activity of a large population of

uncorrelated neurons. Input from these sensory neurons deter-

mines the activities of two populations of premotor neurons via

Mi = Wi?Ni where Wi corresponds to the synaptic efficacy of the

sensory-to-premotor synapses. Competition between the two

premotor populations determines whether the model will choose

alternative 1 or 2 in a trial. Unless otherwise noted, alternative 1 is

chosen in trials in which M1.M2. Otherwise alternative 2 is

chosen. This process of competition between the two premotor

populations can be achieved by a winner-take-all network with

lateral inhibition [22], which is not explicitly modeled here. Thus,

the larger the value of a synapse Wi is, the more likely it is that

alternative i will be chosen.

Synaptic Plasticity
Consider the following plasticity rule, in which the change DWi

in synaptic efficacy Wi in a trial is described by

DWi~g R{aE R½ �ð Þ: Ni{bE½N�ð Þ ð2Þ

Figure 1. The model. (A) The decision making network consists of
two populations of sensory neurons Ni, corresponding to the two
targets, and two populations of premotor neurons Mi, corresponding to
the two actions. Choice is determined by comparing the activities of the
two populations of premotor neurons (see text). (B) The effect of the
synaptic plasticity rule on synaptic efficacy. The decision making model
was simulated in a concurrent VI reward schedule (see Materials and
Methods) with equal baiting probabilities, and the efficacy of one of the
synapses is plotted as a function of trial number. During the first 300
trials (blue), the synaptic efficacies evolved according to Eq. (2) with
a = 0 and b = 1 (and thus c = 0), resulting in small fluctuations of the
efficacy around the initial conditions. A 10% mistuning of the mean
subtraction after 300 trials (red arrow) to b = 0.9 (c = 0.1) resulted in a
linear divergence of the efficacy (red line). The addition of a linear decay
term to the plasticity rule (Eq. (4) with r = 1) after 600 trials (black arrow)
resulted in small fluctuations of the efficacy around 0.04 (black line).
doi:10.1371/journal.pcbi.1000007.g001

Author Summary

It is widely believed that learning is due, at least in part, to
modifications of synapses in the brain. The ability of a
synapse to change its strength is called ‘‘synaptic
plasticity,’’ and the rules governing these changes are a
subject of intense research. Theoretical studies have
shown that a particular family of synaptic plasticity rules,
known as covariance rules, could underlie many forms of
learning. While it is possible that a biological synapse
would be able to approximately implement such abstract
rules, it seems unlikely that this implementation would be
exact. Covariance rules are inherently sensitive, and even a
slight inaccuracy in their implementation is likely to result
in substantial changes in synaptic strengths. Thus, the
biological relevance of these rules remains questionable.
Here we study the consequences of the mistuning of a
covariance plasticity rule in the context of operant
conditioning. In a previous study, we showed that an
approximate phenomenological law of behavior called
‘‘the matching law’’ naturally emerges if synapses change
according to the covariance rule. Here we show that
although the effect of slight mistuning of the covariance
rule on synaptic strengths is substantial, it leads to only
small deviations from the matching law. Furthermore,
these deviations are observed experimentally. Thus, our
results support the hypothesis that covariance synaptic
plasticity underlies operant conditioning.

Robustness of Covariance-Based Plasticity
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where g is the plasticity rate, R is the reward harvested in the trial,

E[R] is the average of the previously harvested reward, Ni is the

activity of sensory population i in the trial, and E[N] is the average

activity of the sensory population. The index i is omitted from the

latter average because we assume that the activity of the two

populations is drawn from the same distribution; a, b are parameters.

This plasticity rule corresponds to reward-modulated presynaptic

activity-dependent plasticity [23,24,25]. If a = 1 and/or b = 1 then

Eq. (2) describes a covariance-based synaptic plasticity rule because

synaptic changes are driven by the product of two stochastic

variables (Ni and R) where the mean of one or both of these variables

is subtracted. In order to gain insights into the behavior of Eq. (2), we

consider the average trajectory approximation, also known as mean synaptic

dynamics [26,27,28,29], which is the dynamics of the expectation

value of the right hand side of Eq. (2). If the plasticity rate g is

sufficiently small, the noise accumulated over an appreciable number

of trials is small relative to the mean change in the synaptic efficacies,

called the synaptic drift [26,27] and

DWi&g Cov R,Ni½ �zc:E R½ �:E N½ �ð Þ ð3Þ

where we define a mistuning parameter c = (12a)?(12b). c = 0

corresponds to the idealized covariance rule. Incomplete mean

subtraction corresponds to c.0. Our analysis focuses on choice

behavior when mean subtraction is incomplete (c.0). Similar results

are obtained when mean subtraction is overcomplete (c,0; see

Materials and Methods). In principle, even a small mistuning of the

mean subtraction may have a substantial effect on choice behavior

for the following reason: Consider the dynamics of Eq. (3) for the

simple case in which reward R and neural activity Ni are

independent. This corresponds to a case where the neural activity

Ni does not participate in the decision making process or to the case

where reward is independent of choice. In both cases, Cov[R, Ni] = 0

and therefore Eq. (3) becomes DWi<g?c?E[R]?E[N]. If

E[R]?E[N].0, the synaptic efficacy Wi is expected to grow

indefinitely. The divergence of the synaptic efficacies is also expected

in the more general case in which the reward and neural activities

are not independent. This is illustrated in Fig. 1B, where we

simulated the plasticity rule of Eq. (2) in a concurrent variable-

interval schedule (VI; see Materials and Methods) and plotted the

efficacy of one of the synapses as a function of the trial number.

When the covariance rule is finely tuned such that c = 0 (here we

assumed that a = 0, b = 1), the synaptic efficacy, after a transient

period (not shown), is approximately constant (blue line). After 300

trials (red, down-facing arrow), the mean subtraction in the plasticity

rule was mistuned by 10% such that c = 0.9 (a = 0, b = 0.9), resulting

in the linear divergence of the synaptic efficacy (red line).

In practice, synaptic efficacies are bounded and such divergence

is prevented by synaptic saturation. We model the synaptic

saturation by adding a polynomial decay term to the synaptic

plasticity rule such that Eq. (2) becomes

DWi~g R{aE R½ �ð Þ: Ni{bE N½ �ð Þ{ Wi=Wboundð Þrð Þ ð4Þ

where r.0 is the saturation stiffness parameter. The effect of the

decay term on the dynamics of the synaptic efficacy is illustrated in

Fig. 1B. After 600 trials (black, left-facing arrow), the plasticity rule

of Eq. (2) was replaced with the plasticity rule in Eq. (4) with r = 1,

resulting in a convergence of the synaptic efficacy to a value that is

significantly different from the result of the pure covariance rule

(black line).

The synaptic saturation is modeled here using a saturation

stiffness parameter, r. When r = 1, as in Fig. 1B (black line),

synaptic efficacies decay linearly. The larger the value of r, the

stiffer the bound. In the limit of rR‘, as long as Wi,Wbound Eq.

(4) is equivalent to Eq. (2), but the saturation term prevents Wi

from exceeding the value Wbound.

Incomplete Mean Subtraction
The dynamics of Eq. (4) are stochastic and therefore difficult to

analyze. If the plasticity rate g is small then many trials with

different realizations of choices and rewards are needed in order to

make a substantial change in the value of the synaptic efficacies.

Therefore intuitively, the stochastic dynamics of Eq. (4) can be

viewed as an average deterministic trajectory, with stochastic

fluctuations around it, where we expect that this average

deterministic dynamics becomes a better approximation to the

stochastic dynamics as the plasticity rate g becomes smaller. The

conditions under which this intuitive picture is valid are discussed

in [29]. The fixed point of the average trajectory of Eq. (4) is

W �
i ~Wbound c:E N½ �:E R½ �zCov R,Ni½ �ð Þ

1
r ð5Þ

and we study choice behavior when synaptic efficacies are given by

Eq. (5). Assuming that p1, p2?0, and c.0, we show (Materials and

Methods) that in the limit of low noise s%1, the model

undermatches [19]; that is, when pi,0.5 then pi.ri whereas when

pi.0.5 then pi,ri. Furthermore, the level of deviation from

matching scales with the product of the mistuning and synaptic

saturation parameters,

Dp1{Dr1~O rcð Þ ð6Þ

Finally, expansion of Eq. (6) around Dpi = 0 yields Eq. (1) with

k~ 1z
p

2
cr

� �{1

ð7Þ

Importantly, we show that overcomplete mean subtraction c,0

also leads to undermatching with the same scaling of the deviations

from matching with the mistuning and synaptic saturation

parameters (Materials and Methods).

Consider Eq. (7). When cr = 0, k = 1 and the fractional choice is

equal to the fractional income yielding matching behavior. Note

that when the mistuning of mean subtraction is small, c%1, the

deviation of the susceptibility index k from 1 is small. This occurs

despite the fact that such mistuning has, in general, a substantial

effect on the values of the synaptic efficacies (Fig. 1B). Thus,

matching behavior is robust to the mistuning of the mean

subtraction, even though the synaptic efficacies are not.

The role of c. For insights into the dependence of the

susceptibility on c, it is useful to consider the differential

contributions of the covariance term, and the bias and saturation

terms in Eq. (5). The smaller the value of c, the larger the

contribution of the covariance term, making it more similar to the

idealized covariance-based plasticity rule that yields k = 1 [11]. In

contrast, when the value of c is large, the contribution of the

covariance term is small and the efficacies of the two synapses, W1

and W2 become similar independently of the fractional income. In

the limit of cR‘, the efficacies of the two synapses become equal and

the alternatives are chosen with equal probability. Thus, the larger

the value of c in Eq. (7), the smaller the susceptibility of behavior.

The role of r. Consider the case of an infinitely hard bound,

rR‘ in Eq. (4). As long as W *,Wbound, (W */Wbound)
r = 0. Because

of the incomplete mean subtraction, the two synapses are expected

to grow continuously until they reach Wbound. For W *.Wbound,

Robustness of Covariance-Based Plasticity
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(W */Wbound)
rR‘. Thus both synaptic efficacies are expected to

become equal to the synaptic bound Wbound. In this case there is

equal probability of choosing either alternative, independently of the

fractional income, yielding k = 0. In contrast, a soft bound enables

the saturation term to balance the bias term without occluding the

covariance term. Thus, the smaller the value of r, the larger the

contribution of the covariance term in the synaptic plasticity rule and

the smaller the deviation from matching behavior.

The role of s. In the limit of low noise in the activity of the

sensory neurons s%1, choice behavior is independent of the value

of s. For insight into this independence we consider the dual role

of trial-to-trial fluctuations in the neural activity of the sensory

neurons in our model. Information about past incomes is stored in

the synaptic efficacies such that the stronger synapse corresponds

to the alternative that yielded a higher income in the past, biasing

choice toward that alternative. For this reason we denote the

difference in synaptic efficacies as ‘signal’. The trial-to-trial

fluctuations in the neural activity of the sensory neurons underlie

the stochasticity of choice. In the absence of such fluctuations, the

synaptic efficacies determine choice such that the chosen

alternative is the one that corresponds to the larger synaptic

efficacy. The larger these fluctuations are the more random choice

is. We refer to this effect as ‘noise’. However, these fluctuations

also play a pivotal role in the learning process. Changes in synaptic

efficacy are driven by the covariance of the reward and the neural

activity of the sensory neurons. The larger the fluctuations in the

activity of these neurons, the larger the covariance and therefore

the larger the learning signal, increasing the difference between the

synaptic efficacies that correspond to the ‘‘rich’’ and ‘‘poor’’

alternatives. Thus, an increase in the stochasticity in the activities

of the sensory neurons increases both the signal and the noise. We

show that when s%1, the ratio of the signal to noise is

independent of s (Materials and Methods) and therefore the

susceptibility of behavior k is independent of s.

Numerical Simulations
Eq. (7) is derived assuming that the stochastic dynamics, Eq. (4)

has converged to the fixed point of the average trajectory, Eq. (5)

and that s%1 (Materials and Methods). In order to study the

validity of this approximation, we numerically simulated the

decision making model with s= 0.1 and a stochastic synaptic

plasticity rule, Eq. (4) in a concurrent VI reward schedule

(Materials and Methods). These simulations are presented in Fig. 2.

Each symbol in Fig. 2A corresponds to one simulation in which

the baiting probabilities of the two targets were kept fixed. The

fraction of trials in which action 1 was chosen is plotted against the

fractional income earned from action 1. As predicted by Eq. (7),

the dependence of the fractional choice on the fractional income is

linear, and susceptibility depends on the values of both c and r
(red squares, c = 0.05, r = 1; blue diamonds, c = 0.5, r = 1; gray

triangles c = 0.5, r = 4; colored lines are the analytical approx-

imation, Eq. (7); the black line is the expected behavior according

to the matching law). In order to better quantify the relation

between the stochastic dynamics and the analytical approxima-

tion, we simulated Eq. (4) for different values of c and r and

measured the susceptibility of behavior. The results of these

simulations appear in Fig. 2B (blue dots, r = 5; red dots, r = 1;

black dots, r = 0.2) and show good fit with the expected behavior

from Eq. (7) (lines).

Mistuning of Network Parameters
In the previous section we analyzed the behavioral consequenc-

es of mistuning of the plasticity rule in a particular network model.

The question of robustness is equally applicable to the parameters

of the decision making network as it is to the parameters of the

synaptic plasticity rule. Therefore, in this section we study the

robustness of matching behavior to the mistuning of the

parameters of the network.

There are various ways in which the decision making network

can be mistuned. We chose to study the effect of a bias in the

winner-take-all network, because this is a generic form of error

that is likely to significantly affect choice behavior. It is plausible

that a winner-take-all network will be able to choose the

alternative that corresponds to the larger activity of the two

premotor populations in trials in which M1 and M2 are very

different. However, if M1 and M2 are similar in their level of

activity it is likely that a biological implementation of a winner-

take-all mechanism, which is not finely tuned, will be biased to

favoring one of the alternatives. Formally we assume that

alternative 1 is chosen in trials in which (M12M2)/(M1+M2).e
where e is a bias. The unbiased case studied in the previous section

corresponds to e = 0. In contrast, e.1 or e,–1 correspond to a

strong bias such that choice is independent of the values of M1 and

M2. With the same assumptions as in the derivation of Eq. (7), p1,

Figure 2. Incomplete mean subtraction and deviations from matching behavior. (A) The probability of choice as a function of fractional
income. Each point corresponds to one simulation of the model, Eq. (4), in a concurrent VI reward schedule with fixed baiting probabilities. The level
of deviation from matching behavior (black line) depends on the level of incomplete mean subtraction, c and synaptic saturation stiffness, r. Red
squares, c = 0.05, r = 1; blue diamonds, c = 0.5, r = 1; gray triangles c = 0.5, r = 4; colored lines are the analytical approximations, Eq. (7). (B)
Susceptibility of behavior as a function of c. In order to quantify the effect of c on deviation from matching behavior, we repeated the simulations of
A for many values of c and measured the susceptibility of behavior (the slope of the resultant curve, see text and Materials and Methods). Blue dots,
r = 5; red dots, r = 1; black dots, r = 0.2. Lines correspond to the expected slope from the analytical approximation, Eq. (7).
doi:10.1371/journal.pcbi.1000007.g002

Robustness of Covariance-Based Plasticity
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p2?0 and s%1, we show (Materials and Methods) that a bias in

the winner-take-all mechanism results in a bias in choice that is

O(rc?e/s). Furthermore, analyzing choice behavior for small value

of |Dpi| yields

Dp1&kDr1zb1 ð8Þ

where k is given by Eq. (7) and

b1~{
1ffiffiffi
p
p 1{kð Þ: e

s
ð9Þ

is the offset. The offset b1 is proportional to the deviation of the

susceptibility of behavior from unity, 12k. As discussed in the

previous section, this deviation depends on the level of incomplete

mean subtraction as well as the synaptic saturation term (Eq. (7). If

c = 0 then k = 1 and the offset term vanishes, b1 = 0 for any value of

bias e. This robustness of matching behavior to bias in the winner-

take-all network is due to the fact that the idealized covariance

based plasticity rule can compensate for the bias in the decision

making network in almost any neural architecture [11]. In

contrast, if c.0 then the offset b1 is proportional to the bias e.

The larger the deviation of the plasticity rule from the idealized

covariance rule, the larger the proportionality constant. Thus,

there is a tradeoff between the robustness of matching behavior to

changes in the plasticity rule and robustness to changes in the

parameters of decision making. The larger the mistuning of the

plasticity rule, the smaller the robustness of matching behavior to

mistuning of the parameters of the decision making network.

Importantly, the level of noise in the sensory populations strongly

affects the bias in behavior through e/s. This contrasts with the

independence of the susceptibility parameter k of s. To

understand the reason for this result it is useful to note that as

discussed in the previous section, the magnitude of trial to trial

fluctuations in the activity of the sensory neurons determines the

magnitude of the fractional income signal stored in the synaptic

efficacies (the difference in the two synaptic efficacies). The smaller

the value of s is, the weaker the fractional income signal and

therefore the stronger the relative contribution of the bias in the

winner-take-all network to choice. If Ni corresponds to the average

activity of a large population of uncorrelated neurons, s is

expected to be small and therefore the effect of even small bias in

the winner-take-all network on behavior is expected to be large.

Numerical Simulations
To study the validity of Eq. (8) numerically, we simulated the

synaptic plasticity rule of Eq. (4) in the decision making model of

Fig. 1A with a bias e in the winner-take-all network. Similar to

Fig. 2A, Fig. 3A depicts the fraction of trials in which alternative 1

was chosen, which is plotted against the fractional income earned

from that alternative. The level of deviation from matching

behavior (solid black line) depends on the value of e (red squares,

e = 23s; blue diamonds, e = 0; gray triangle, e = 3s; c = 0.05,

r = 1). Colored lines are the analytical approximation, Eq. (8). In

order to better quantify the relation between the stochastic

dynamics and its deterministic approximation, we numerically

computed the value of p1 that corresponds to dr1 = 0 for different

values of e and c (Fig. 3B; red, c = 0.05; blue, c = 0.5). The results

are in line with the expected behavior from Eq. (8) (solid lines).

Discussion

In this study we explored the robustness of matching behavior to

inaccurate mean subtraction in a covariance-based plasticity rule.

We have shown that (1) although this deviation from the idealized

covariance rule has a substantial effect on the synaptic efficacies,

its behavioral effect is small. (2) The direction of the behavioral

effect of incomplete mean subtraction is towards the experimen-

tally observed undermatching. (3) When the plasticity rule is

mistuned, matching behavior becomes sensitive to the properties

of the network architecture. Thus, there is a tradeoff between the

robustness of matching behavior to changes in the plasticity rule

and robustness to changes in the parameters of the decision

making network.

Robustness of Covariance-Based Plasticity
Covariance-based, Hebbian synaptic plasticity dominates mod-

els of associative memory. According to the popular Hopfield

model, the change in the synaptic efficacy between pairs of

neurons is proportional to the product of their activities in the

training session, measured relative to their average activity [1,2,3].

Figure 3. Bias in the winner-take-all mechanism and deviations from matching behavior. (A) The probability of choice as a function of
fractional income. Each point corresponds to one simulation of the model (Eq. (4) with r = 1) in a concurrent VI reward schedule with fixed baiting
probabilities. The level of deviation from matching behavior (black line) depends on the bias in the winner-take-all mechanism. Red squares, e = 23s;
blue diamonds, e = 0; gray triangle, e = 3s; c = 0.05; colored lines are the analytical approximation, Eq. (8). (B) Choice bias. The simulation of A was
repeated for different values of e for two values of c (blue dots, c = 0.5; red dots, c = 0.05), and the probability of choosing alternative 1 for a fractional
income of r1 = 0.5 was measured. Lines correspond to the expected probability of choice from the analytical approximation, Eq. (8).
doi:10.1371/journal.pcbi.1000007.g003

Robustness of Covariance-Based Plasticity
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If the mean subtraction is not finely tuned in this model, the

synaptic efficacies diverge with the number of patterns stored. If

this divergence is avoided by adding a saturation term to the

plasticity rule, the capacity of the network to store a large number

of memory patterns is lost [2,30]. Thus, fine tuning of the mean

subtraction in the plasticity rule is crucial for covariance-based

associative memory models. This contrasts with the robustness of

matching behavior to the mistuning of the mean subtraction

demonstrated here. The difference in robustness stems from the

difference in the solution space of the two tasks. Consider a general

decision making network model consisting of n synapses. If n.1

the decision making model is expected to be redundant. There are

many possible combinations of synaptic efficacies that yield the

same probability of choice and thus are behaviorally indistin-

guishable. The dimension of the hyperspace of synaptic efficacies

that corresponds to a single probability of choice is, in general,

n21. Consider now the hyperspace of synaptic efficacies that

corresponds to the matching solution p1 = r1. Any set of synaptic

efficacies that resides within this hyperspace is a fixed point of the

family of synaptic plasticity rules that is driven by the covariance of

reward and neural activity (in the average trajectory approxima-

tion) [11]. In contrast to this manifold of solutions, the

approximate covariance plasticity rule with saturation is expected

to have a single fixed point. In order for this fixed point to

correspond to an approximate matching solution, it should reside

near the matching hyperspace. The distance of the fixed point

solution from the matching hyperspace depends on the decision

making model and the level of mistuning of the covariance

plasticity rule. However, because of the high dimensionality of the

matching solution, there is a large family of decision making

models in which the solution to the approximate covariance

plasticity rule resides near the matching hyperspace for that

model, for example, the model analyzed here with e = 0. In

contrast, in associative memory models, the volume in the synaptic

efficacies hyperspace that can retrieve a large number of particular

memories is small [31] and therefore even small deviations from

the covariance plasticity rule will lead to a solution that is far from

the memory retrieving hyperspace, resulting in a large reduction in

the performance of the network.

Several studies have reported stochastic gradient learning in a

model in which changes in the synaptic efficacy are driven by the

product of the reward with a measure of past activity known as the

‘eligibility trace’ [4,5,6,7,8,9,10]. The mean of the eligibility trace is

zero and therefore synaptic plasticity in these models can be said to

be driven by the covariance of reward and a measure of past activity.

Violation of the zero mean condition is expected to produce a bias in

the gradient estimation and could potentially hinder learning. The

consequences of mistuning of the mean subtraction in the estimation

of the eligibility trace have not been addressed. We predict that the

relative volume in the model parameter hyperspace that corresponds

to the maximum reward solution will be an important factor in

determining whether these gradient learning models are robust or

not to the mistuning of the mean subtraction.

Tradeoff between Sensitivity of Plasticity Rule and
Network Architecture

The level of fine-tuning required for normal brain functioning is

unknown and robustness represents a major open issue for many

models of brain systems. For example, the fine-tuning of neural

parameters involved in the short term memory of analog quantities

such as eye position in the oculomotor neural integrator

[32,33,34,35] or the frequency of a somatosensory stimulation

[36,37] have been studied extensively. It has been suggested that

synaptic plasticity keeps the synaptic efficacies finely-tuned

[38,39]. However, in those models it is assumed that the

parameters of the plasticity rule are finely tuned. In this study

we demonstrated a tradeoff between the robustness of behavior to

changes in the parameters of the network architecture and the

robustness to changes in the parameters of the plasticity rule. This

tradeoff is likely to be a property of many models of brain function.

Deviations from Matching Behavior
Undermatching in our model is the outcome of inaccurate

mean subtraction, whether it is incomplete or overcomplete. This

result is expected to hold in other symmetrical decision making

models: when the mean subtraction is inaccurate, synaptic

efficacies are determined by a combination of a covariance term,

and bias and saturation terms. The bias and saturation terms are

not influenced by the correlation between the neural activity and

the reward. Therefore they drive the synaptic efficacies to values

that are independent of the fractional income. If the architecture

of the decision making network is symmetrical with respect to the

two alternatives (as is the case in our model for e = 0), they will

drive the synaptic efficacies in the direction of a symmetrical

solution for which the two alternatives are chosen with equal

probability, which corresponds to k = 0. In contrast, the

covariance term drives the efficacies to the matching solution,

k = 1. The combined effect of the covariance term and a small bias

and saturation terms is expected to be a behavior for which the

susceptibility index k is slightly smaller than 1, in line with the

experimentally observed slight undermatching. Importantly, the

experimentally observed undermatching is consistent with ap-

proximate covariance-based synaptic plasticity but does not prove

it. Undermatching is also consistent with other models that do not

assume this particular synaptic plasticity rule (see below).

Experimental Predictions
We hypothesize that the observed matching behavior results

from a synaptic plasticity rule that is driven by an approximation

to the covariance of reward and neural activity. In this case,

behavior adapts because synapses in the brain perform a statistical

computation and ‘attempt’ to decorrelate the reward and the

fluctuations in neural activity. However, a very different class of

matching models has been proposed, in which the brain performs

computations that are ‘‘financial.’’ According to these models,

subjects keep track of financial quantities such as return or income

from each alternative and make choices stochastically according to

the difference or ratio of the financial quantities between the two

alternatives leading to matching [20,40,41], or undermatching

[42,43]. A common feature of these models is the implicit

assumption that financial computations and probabilistic choice

are implemented in two separate brain modules. One brain

module records past reward and choices to calculate quantities

such as income and return and the other brain module utilizes

these quantities to generate stochastic choice. A covariance-based

plasticity rule can be distinguished experimentally from the

financial models by making the reward directly contingent on

fluctuations in the stochastic neural activity. This could be done by

measuring neural activity in a brain area involved in decision

making, using microelectrodes or brain imaging, and making

reward contingent on these measurements, as well as on actions.

This sort of contingency has previously been employed by

neurophysiologists, though not in the context of operant matching

[44,45]. If, by the construction of the reward schedule, reward

directly depends on fluctuations in neural activity, then it would be

impossible to decorrelate the reward and the neural activity.

According to our covariance hypothesis, the ‘attempt’ of the

synaptic plasticity rule to do just this will lead to a change in the

Robustness of Covariance-Based Plasticity
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dependence of choice on the financial quantities (formally, this will

lead to violation of Eq. (21) in Materials and Methods). In contrast,

in the financial models, neural fluctuations and learning are

mediated through different modules and therefore this contingen-

cy will not alter the dependence of choice on financial quantities

(see also [11]).

Materials and Methods

Synaptic Efficacies and Choice Behavior
As was described above, the identity of choice in the network of

Fig. 1 is determined by a competition between two premotor

neurons Mi = Wi?Ni. In the Incomplete mean subtraction section

we assume that alternative 1 is chosen in trials in which M1.M2.

Otherwise alternative 2 is chosen. Thus, the fraction of trials in

which alternative 1 is chosen, or the probability that it is chosen is

given by

p1:Pr A~1½ �~ Pr M1{M2w0½ �~ Pr W1
:N1{W2

:N2w0½ � ð10Þ

where AM{1,2} denotes the alternative chosen, or

p1~ Pr ZdzZs
:Tw{T½ � ð11Þ

where Zd;(dN12dN2)/(2?E[N]), Zs;(dN1+dN2)/(2?E[N]), dNi =

Ni2E[N], T;Wd/Ws, Ws;(W1+W2)/2, Wd;(W12W2)/2.

Because N1 and N2 are independent Gaussian variables with a

coefficient of variation s, Zd and Zs are two independent Gaussian

variables with zero mean and s
. ffiffiffi

2
p

standard deviation.

Therefore, Zd+T?Zs is a Gaussian variable with zero mean and

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT2

p . ffiffiffi
2
p

standard deviation and

p1~

ð?
{T

sffiffi
2
p
ffiffiffiffiffiffiffi
1zT2
p

dZffiffiffiffiffiffi
2p
p e{Z2

2 ð12Þ

Note that the assumption that p1,p2?0 implies that in the limit of

sR0, T = O(s).

Next we use Eq. (11) to compute two quantities that will become

useful later:

p1
:E Zd A~1j½ �~

ð?

{?

dZsffiffiffi
p
p

s
e
{

Z2
s

s2

ð?

{T 1zZsð Þ

Zd
:dZdffiffiffi
p
p

s
e
{

Z2
d

s2 ~

s

2
ffiffiffi
p
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1zT2
p e

{ T2

s2 1zT2ð Þ

ð13Þ

and similarly

p1
:E Zs A~1j½ �~ s

2
ffiffiffi
p
p Tffiffiffiffiffiffiffiffiffiffiffiffiffi

1zT2
p e

{ T2

s2 1zT2ð Þ ð14Þ

Assuming that T = O(s),

p1
:E Zd A~1j½ �~O sð Þ ð15Þ

and

p1
:E Zs A~1j½ �~O s2

� �
ð16Þ

Incomplete Mean Subtraction
In this section we compute the dependence of deviations from

matching behavior on c, assuming that synaptic efficacies are

given by the fixed point of the average trajectory, Eq. (5). The

precise conditions for the correctness of the approach are discussed

in details in [29]. We further assume that synaptic saturation is

linear, r = 1. The latter assumption is relaxed in the Incomplete

mean subtraction and saturation stiffness section below.

According to Eq. (11), the probability of choice depends on the

ratio of the synaptic efficacies; thus the scaling of the synaptic

efficacies by a positive number does not change the probabilities of

choice. For clarity we scale the synaptic efficacies of Eq. (5)

(assuming r = 1) such that,

W �
i ~czCov R=E R½ �,Ni=E N½ �½ � ð17Þ

Rewriting Eq. (17) in terms of Wd and Ws yields

W �
d ~Cov R=E R½ �,Zd½ � ð18Þ

W �
s ~czCov R=E R½ �,Zs½ � ð19Þ

where the asterisk corresponds to the value at the fixed point. Next

we separate the covariance terms into trials in which alternative 1

was chosen and trials in which alternative 2 was chosen

Cov R=E R½ �,Zx½ �:E R=E R½ �:Zx½ �

~p1E R=E R½ �:ZxjA~1½ �zp2E R=E R½ �:ZxjA~2½ �
ð20Þ

The reward R is a function of the actions A and the actions are a

function of the neural activities Zs and Zd. Therefore, given the

action, the reward and the neural activities are statistically

independent and the average of the product of reward and neural

activity is equal to the product of the averages, E[R/E[R]?Zx|A =

i] = E[R/E[R]|A = i]?E[Zx|A = i]. Hence, Eq. (20) becomes

Cov R=E R½ �,Zx½ �

~p1
:E R=E R½ �jA~1½ �:E ZxjA~1½ �zp2

:

E R=E R½ �jA~2½ �:E ZxjA~2½ �

ð21Þ

Next we separate E[Zx] to trials in which alternative 1 was chosen

and trials in which alternative 2 was chosen and use the fact that

E[Zx] = 0

0~E Zx½ �~p1
:E Zx A~1j½ �zp2

:E Zx A~2j½ � ð22Þ

Substituting Eq. (22) in Eq. (21) yields

Cov R=E R½ �,Zx½ �~p1
:E ZxjA~1½ �:

E RjA~1½ �{E RjA~2½ �ð Þ=E R½ �
ð23Þ

In order to evaluate the second term in the right hand side of Eq. (23)

we note that by definition, ri = pi?E[R|A = i]/E[R] and therefore,

E R A~1j½ �{E R A~2j½ �ð Þ
E R½ � ~

1

p1
:p2

r1{p1ð Þ ð24Þ

where we assumed that p1,p2?0 and used the fact that p1+p2 = 1 and

r1+r2 = 1. Substituting Eqs. (13), (14), (23) and (24) in Eqs. (18) and

Robustness of Covariance-Based Plasticity
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(19) yields

W �
d ~

s

2
ffiffiffi
p
p :p�1

:p�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT�2
p e

{ T�2
s2 1zT�2ð Þ r�1{p�1

� �
ð25Þ

and

W �
s ~cz

s

2
ffiffiffi
p
p :p�1

:p�2

T�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT�2
p e

{ T�2

s2 1zT�2ð Þ r�1{p�1
� �

ð26Þ

where T�~W �
d

�
W �

s . Combining Eqs. (25) and (26),

T�~

s

2
ffiffiffi
p
p :p�1

:p�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT�2
p e

{ T�2
s2 1zT�2ð Þ r�1{p�1

� �

cz
s

2
ffiffiffi
p
p :p�1

:p�2

T�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT�2
p e

{ T�2
s2 1zT�2ð Þ r�1{p�1

� �

or

r�1{p�1~c:2
ffiffiffi
p
p

p�1
:p�2
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT�2
p

1{T�2
:T
�

s
:e

T�2
s2 1zT�2ð Þ ð27Þ

Eq. (27) is central to this manuscript. Together with Eq. (12) which

relates the probability of choice p1 with T it determines the level of

deviations from matching behavior at the fixed point, r�1{p�1 (The

relation between r1 and p1 is determined by the reward schedule).

Next we use Eq. (27) to show that:

(1) In the limit of sR0 the model undermatches.

(2) The level of undermatching is proportional to c, (Eq. (6)).

(3) Expanding Eq. (27) around p1 = 0.5, yields a closed-form

solution for p1 (Eq. (7)).

(1) As was discussed above, the assumption that p1,p2?0 in the

limit of sR0 implies that T = O(s)and therefore 12T2.0. Thus,

sgn r�1{p�1
� �

~sgn T�ð Þ. Using Eq. (12) and the notations of Eq. (1),

sgn Dp1{Dr1ð Þ~{sgn Dp1ð Þ ð28Þ

(Dp1 and Dr1 in Eq. (28) are the values at the fixed point and

therefore a more accurate notation would have included an asterisk.

However, in order to keep notations in the text simple and notations

in the Materials and Methods section consistent with the text we

omitted the asterisk). When p�1w0:5, p�1{r�1v0 whereas when

p�1v0:5, p�1{r�1w0. Thus we have shown that in the limit of sR0

the model undermatches.

(2) Taking the dominant terms in s in Eq. (27) yields

r�1{p�1~c: 2
ffiffiffi
p
p

p�1p�2
T�

s
e

T�2
s2

� �
ð29Þ

T* = O(s) and thus the second term in the right hand side of Eq.

(29) is O(1); therefore, the level of deviations from matching

behavior is O(c), Eq (6).

(3) In order to obtain a closed form approximation to Eq. (29)

we expand Eq. (12) around Dp1 = 0 yielding

Dp1~
T�ffiffiffi
p
p

s
ð30Þ

Expanding Eq. (29) around Dpi = 0 and using Eq. (30) yields Eq. (7).

Bias in Winner-Take-All Mechanism and Choice Behavior
In order to study the effect of bias in the winner-take-all network

on choice behavior, we assume that that alternative 1 is chosen in

trials in which (M12M2)/(M1+M2).e where e is a bias. Formally,

p1:Pr A~1½ �~Pr M1{M2ð Þ= M1zM2ð Þwe½ � ð31Þ

Rewriting Eq. (31) in terms of Zs and Zd yields

p1~ Pr ZdzZs
:T 0w{T 0½ � ð32Þ

where

T 0:T{e 1zTð Þ ð33Þ
or

p1~

ð?
{T 0

sffiffi
2
p
ffiffiffiffiffiffiffiffi
1zT 02
p

dZffiffiffiffiffiffi
2p
p e{Z2

2 ð34Þ

The assumption that p1,p2?0 implies in the limit of sR0

T9 = O(s). As in the derivation of Eqs. (13) and (14)

p1
:E Zd A~1j½ �~ s

2
ffiffiffi
p
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zT 02
p e

{ T 02
s2 1zT 02ð Þ ð35Þ

and

p1
:E Zs A~1j½ �~ s

2
ffiffiffi
p
p T 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zT 02
p e

{ T 02
s2 1zT 02ð Þ ð36Þ

Assuming that T9 = O(s),

p1
:E Zd A~1j½ �~O sð Þ ð37Þ

and

p1
:E Zs A~1j½ �~O s2

� �
ð38Þ

From here we follow the same steps as in the derivation of Eq. (27)

yielding

r�1{p�1~c:2
ffiffiffi
p
p

p�1
:p�2
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT 0�2
p

1{T�T 0�
:T
�

s
:e

T 0�2
s2 1zT 0�2ð Þ ð39Þ

or

r�1{p�1~c:2
ffiffiffi
p
p

p�1
:p�2
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zT 0�2
p

1{T 0� T 0�ze
1{e

� � : T 0�ze

s 1{eð Þ
:e

T 0�2
s2 1zT 0�2ð Þ ð40Þ

Assuming that T9* = O(s) and taking the limit sR0 yields

r�1{p�1~c:2
ffiffiffi
p
p

p�1
:p�2
: T 0�ze

s 1{eð Þ
:e

T 0�2
s2 ð41Þ

Because r12p1 = O(1), the assumption that p�1,p�2=0 implies that

c?e/s= O(1). Thus in the limit of sR0, e%1. Taking O(e) terms in

Eq. (41) yields

r�1{p�1~c:2
ffiffiffi
p
p

p�1
:p�2
:T
0�

s
:e

T 0�2
s2 z

e

s
:c:2

ffiffiffi
p
p

p�1
:p�2
:e

T 0�2
s2 ð42Þ
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The first term in the right hand side of Eq. (42) is equal to the right

hand side of Eq. (29) and yields O(c) deviations from matching

behavior in the direction of undermatching. The bias in the

decision making process, e affects choice preference through the

second term in the right hand side of Eq. (29). For T9 = O(s),

p1
:p2
:e

T 02
s2 ~O 1ð Þ and the contribution of the bias term e to

deviations from matching is O(c?e/s).

Expanding Eqs. (34) and (42) around Dpi = 0 yields Eq. (8).

Incomplete Mean Subtraction and Saturation Stiffness
Rewriting Eq. (5),

W �
i

Wbound

~ cE N½ �:E R½ �ð Þ
1
r: 1z

1

c
:Cov R=E R½ �,Ni=E N½ �½ �

� �1
r

ð43Þ

Next we show that in the limit sR0 and assuming that p�1,p�2=0,

Cov[R/E[R],Ni/E[N]]/c%1 and therefore the second term in the

right hand side of Eq. (43) can be expanded around 1. In order to

see this, we follow the same route as in the derivation of Eq. (23)

and separate the covariance term into trials in which alternative 1

was chosen and trials in which alternative 2 was chosen

Cov R=E R½ �,Ni=E N½ �½ �:E R=E R½ �:dNi=E N½ �½ �

~p1
:E R=E R½ �:dNi=E N½ � A~1j½ �zp2

:

E R=E R½ �:dNi=E N½ � A~2j½ �

ð44Þ

As before, the reward R is a function to the actions, which in turn,

are a function of the neural activity. Therefore, given the action A,

R and dNi are statistically independent and therefore

Cov R=E R½ �,Ni=E N½ �½ �~

~p1
:E R=E R½ � A~1j½ �:E dNi=E N½ � A~1j½ �z

p2
:E R=E R½ � A~2j½ �:E dNi=E N½ � A~2j½ �

ð45Þ

By construction, E[dNi/E[N]] = 0 and therefore,

0~E dNi=E N½ �½ �~p1
:E dNi=E N½ � A~1j½ �z

p2
:E dNi=E N½ � A~2j½ �

ð46Þ

Substituting Eq. (46) in Eq. (45) yields

Cov R=E R½ �,Ni=E N½ �½ �~p1
:E dNi=E N½ � A~1j½ �:

E R A~1j½ �{E R A~2j½ �ð Þ=E R½ �
ð47Þ

Note that

p1
:E dNi=E N½ � A~1j½ �~p1

:E Zs A~1j½ �+p1
:E Zd A~1j½ � ð48Þ

Substituting Eqs. (16) and (15) in Eq. (48) yields,

p1
:E dNi=E N½ � A~1j½ �~O sð Þ ð49Þ

Using Eq. (24), the assumption that p�1,p�2=0 and taking the limit

sR0, such that s/c%1 yields Cov[R/E[R],Ni/E[N]]/c%1. In

fact, substituting Eq. (6) in Eq. (24), Cov[R/E[R],Ni/E[N]]/c%1

even when s/c 0 as sR0. Therefore, using self consistent

arguments, the derivation of Eq. (50) is valid even when c scales

like s. Expanding the second term in the right hand side of Eq.

(43) yields,

W �
i

Wbound

~ cE N½ �:E R½ �ð Þ
1
r: 1z

Cov R,Ni½ �
rcE N½ �:E R½ �

� �
ð50Þ

According to Eq. (11), the probability of choice depends only on

the ratio W1/W2. Therefore, the first term in the right hand side of

Eq. (50) does not affect the probabilities of choice. The saturation

stiffness parameter r affects the probability of choice through the

second term and this effect is equivalent to the scaling of the

mistuning parameter c by r. Thus, assuming that synaptic

efficacies converge to the fixed point of the average trajectory,

Eq. (5), the effect of deviations of the saturation stiffness parameter

from unity on choice is equivalent to the scaling of c by r.

The synaptic saturation term also changes the effective plasticity

rate, which will change the conditions of applicability of the

average trajectory approximation. This analysis goes beyond the

scope of this manuscript and will be discussed elsewhere. In short,

changing the value of r changes the effective plasticity rate to

gr cE N½ �:E R½ �ð Þ1{1
r. Therefore in the simulations in Fig. 2 we used

g~g0

.
r cE N½ �:E R½ �ð Þ1{1

r ð51Þ

Overcomplete Mean Subtraction and Saturation Stiffness
According to Eq. (3), when c,0, Wi is expected to depress until

it becomes negative. In reality, synaptic efficacies are bounded and

synaptic saturation prevents them from changing their sign. We

model the synaptic saturation by replacing the synaptic plasticity

rule of Eq. (2) by

DWi~g R{aE R½ �ð Þ: Ni{bE N½ �ð Þz Wlow=Wið Þrð Þ ð52Þ

where r.0 is the saturation stiffness parameter. The larger the

value of r, the stiffer the bound. In the limit of rR‘, as long as

Wi.Wlow Eq. (52) is equivalent to Eq. (2), but Wi is bounded from

going below Wlow.

The fixed point of the average trajectory of Eq. (52) is

W �
i

Wlow

~ {cE N½ �:E R½ �ð Þ{
1
r 1z

1

c
:Cov R=E R½ �,Ni=E N½ �½ �

� �{1
r

ð53Þ

Following the same steps as in the derivation of Eq. (50), the limit

sR0 with the assumption that p�1,p�2=0 yields

W �
i

Wlow

~ cj jE N½ �:E R½ �ð Þ{
1
r 1z

1

r cj j
:Cov R=E R½ �,Ni=E N½ �½ �

� �
ð54Þ

Thus, assuming that synaptic efficacies converge to the fixed point

of the average trajectory, Eq. (5), the behavior of a model with

overcomplete mean subtraction is similar to that of a model with

incomplete mean subtraction. In both cases the synaptic efficacies

are given by

W �
i !~cczCov R=E R½ �,Ni=E N½ �½ � ð55Þ

where ~cc~ cj j:r

Numerical Simulations
The reward schedule. The analytical results presented in

this paper hold for a general diminishing-return reward schedule.

Robustness of Covariance-Based Plasticity
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They are demonstrated in the simulations using a concurrent VI

reward schedule [19,20]. On each trial, the subject chooses between

two targets. If the chosen target is baited with reward, the subject

receives it, and the target becomes empty. An empty target is

rebaited probabilistically, according to the toss of a biased coin.

Once baited, a target remains baited until it is chosen. Rewards are

binary and no more than a single reward can reside in each target.

Therefore, the reward schedule has two parameters: the biases of

the two coins used to bait the targets. These biases, or baiting

probabilities, control whether a target is ‘‘rich’’ or ‘‘poor.’’ A VI

reward schedule has diminishing returns because a target is less

likely to be baited if it has been chosen recently, as a consequence of

the fact that reward persists at a target once the target is baited.
Simulation parameters. The sum of baiting probabilities in

all simulations was kept constant at 0.5; s= 0.1; E[N] = 1;

plasticity rate in Fig. 1B is g = 0.05; plasticity rate in Figs. 2 and

3 is scaled according to Eq. (51) with g0 = 0.001. Each symbol in

Figs. 2A and 3A corresponds to the average of 106 trials of fixed

baiting probabilities. Susceptibility was measured by computing

the least-square-error linear fit.
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