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Abstract

Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the
kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-
grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the
dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a
structural network among clusters of conformations from the simulations. From the structural network, two major
ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching
mechanism of interactions among the aC helix, the activation-loop, and the b strands in the N-lobe of the catalytic domain.
In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic
domain. We also characterize the switching mechanism for the aC helix and the activation-loop in detail. Finally, we test the
performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational
changes. Taken together, these results provide a broad framework for understanding the main features of the
conformational transition taking place upon Src activation.
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Introduction

The nonreceptor tyrosine kinases of the Src-family are large

allosteric enzymes involved in signaling pathways, regulating cell

growth and proliferation [1–4]. These enzymes have the ability to

undergo large conformational changes, thereby ‘‘switching’’

between different inactive and active ‘‘states’’ in response to either

intracellular or extracellular signals. The key role that these kinases

play in the onset of many human diseases, particularly cancer,

makes them important targets for therapeutic intervention [5].

The nine members of the Src kinase family share a common

structural organization, which consists of two regulatory SH3 and

SH2 binding modules, followed by the catalytic domain [6–9]. A

number of high-resolution crystal structures from three members

of the Src-family (Hck, Lck, and c-Src) in different conformations

have been captured, offering a great opportunity for a detailed

view of the mechanism of allosteric regulation [10–15]. In its

down-regulated inactive form, the three domains are assembled

into an auto-inhibitory complex [10–12]. In its up-regulated active

form, the complex is disassembled. The kinase catalytic domain is

highly conserved among all protein kinases and its overall

architecture resembles very closely that of other kinases such as

protein kinase A [16–18] and Csk [19–21]. The catalytic domain

comprises an N-terminal lobe (N-lobe) and a C-terminal lobe (C-

lobe) (Figure 1). The active site is located between these two lobes,

where the c-phosphoryl group of ATP can be transferred to

tyrosine residues of substrate peptides during the phosphorylation

process [6,22]. One important difference between the inactive and

active form is the alternative conformations of the central

activation-loop (A-loop), which controls accessibility to the active

site [13,15,23]. In the down-regulated form, the A-loop is compact

and blocks the active site to the substrate [11,14]. Additional

differences lie in the internal rotation of the aC helix and the

relative orientation between the N- and C-lobes [24].

Structural studies of Src kinases by many groups have suggested

some mechanisms for the regulation of the catalytic activity

inferred from two ‘‘end-point’’ structures, although picturing how

the protein dynamically switches from one state to another has

remained elusive. One challenge for experiments to obtain the

dynamic information is that the conformational switching process

is inherently transient. Computer simulations based on physical

models could provide a complementary approach to addressing

these issues. To relate these static structures to the function, the

dynamics of protein motion is required to fully monitor the

conformational change process [25–28].

Theoretical studies based on standard all-atom simulations are

prohibitive because the timescale of the transition is on the order of

msec [29]. A possible strategy to overcome timescale difficulties is to

carry ‘‘targeted’’ or ‘‘steered’’ simulations [24,30–32], though there

is always the concern that the presence of nonphysical restraints may

bias the transition pathway during the conformational change. This

might be especially true when the transition involves multiple

competing pathways. To overcome the timescale limitation of all-

atom simulations and also avoid the nonphysical restraints used in

biased simulations, we employ a coarse-grained model of Src kinase

Hck. The model incorporates two individual experimental structures
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and allows switching between them. This is accomplished by using

the recently developed multi-state model, or ‘‘two-state Gō model’’,

in which both experimental end-point structures are explicitly

encoded in the energy function [33–41]. The present model differs

from the ‘‘symmetrized-Gō model’’ used previously for studying

domain swapping, in which the alternative conformation was

implicitly in the monomeric conformation [42–44].

In the present study, we use this simplified model to explore the

conformational activation of the Src catalytic domain. Notably,

the regulatory modules SH2 and SH3 are not included in the

present model. While the complete enzyme is obviously required

to simulate the allosteric regulation mechanism, the activation

process of the catalytic domain of Src, by itself, raises a number of

important issues. For instance, the isolated catalytic domain is

constitutively active [30], and it is plausible that it can adopt either

the active or inactive conformation. For this reason, exploring the

intrinsic dynamics of the isolated catalytic domain without its

regulatory modules is of fundamental interest. The transition

dynamics are simulated and characterized in the context of both a

two-dimensional (2d) free energy landscape based on native

contacts and a detailed structural network built from the

simulations. The simulation trajectories are also mapped onto a

discrete Markov model. Such a framework, proposed by Swope

and collaborators [45], has been used to estimate long time-scale

dynamics in protein folding. To test whether the Markov

framework can be exploited in the context of an allosteric change,

a similar analysis is performed for our coarse-grained simulations.

Furthermore, the model suggests that there exist two parallel

pathways, in one of which the conformational switching is coupled

with local unfolding of the N-lobe of the catalytic domain. The

results from this simplified model will serve as a first step toward

understanding the thermodynamics and kinetics of conformational

activation of the catalytic domain.

Results/Discussion

Model Description
To characterize the dynamical process of slow conformational

changes involved in the Src catalytic domain activation, we

construct a multi-state model with coarse-grained molecular

representations [33–41]. Figure 1 shows the experimental

structures of the kinase catalytic domain from Hck and c-Src,

respectively, from which we first build and prepare the inactive

and active states of the catalytic domain of Hck (see Materials and

Methods). We create two energy potentials, corresponding to each

of the reference structures, and combine these two potentials in

such a way to preserve the shape of the energy surface near their

own energy minimum while transitions are allowed between them.

In practice, we adopt the strategy proposed by Hummer, Garcı̀a

and collaborators [33,35] and use an exponential averaging of two

energy functions to construct the multi-state energy function

Author Summary

Src tyrosine kinases are large protein molecules that play
an important role in the regulation of cellular growth and
proliferation. In doing so, Src kinases have the ability to
affect the activity of other proteins inside the cell by
turning them ‘‘on’’ or ‘‘off.’’ Dysfunctional Src kinase
activity has been associated with many human diseases,
most importantly cancer, which makes them important
targets for therapeutic intervention. To understand how a
Src kinase molecule is able to change its shape (confor-
mation) and switch between its active or inactive states,
we constructed a computer model. The results from the
model provide a broad conceptual framework for inter-
preting the main features of the change of protein
conformation taking place upon Src activation. It is our
hope that these results will help design new experiments
to refine our understanding of the activation of Src kinases.

 Rms deviation from inactive
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Figure 1. Experimental structures of the Src catalytic domain
and cartoon representation for the multi-state model using
switching by exponential averaging. (A) Crystallographic struc-
tures are taken from the inactive Hck (left, PDB ID: 1QCF) and the
partially active c-Src (right, PDB ID: 1Y57), respectively [12,15]. The
primary conformational changes occur in a central activation loop (with
Tyr416), as well as the relative orientation between the upper and lower
portion (N-lobe and C-lobe), and the aC helix in the back. The color
code in the active state (right) shows that the RMS-deviation from the
inactive state for each residue. (B) A multi-state model: Switching by
exponential averaging. Two reference structures supplied by the
inactive and active Src are described by their own energy functions

1 and 2 (see Materials and Methods). Then these two potentials are
combined in a way such that they preserve the shape of energy surface
near the energy minima while transitions are allowed between two
minima, using an exponential averaging [33,35]. The resulting energy

function H~{
1

b
ln e{bH1 ze{b H2zdð Þ
� �

(Equations 1 and 5) encodes

two experimental structures. The topological entropy of each reference
structure is reflected by the width of the potential well. The adjustable
parameter of b is used in simulations to tune the energetic barrier
height to achieve a reasonable transition rate between two minima.
doi:10.1371/journal.pcbi.1000047.g001
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(Equations 1 and 5, and Figure 1; see details in Materials and

Methods). The mixing parameter of b in Equation 1, which should

not be confused with a physical temperature, is chosen to adjust

the barrier height between two potential wells. All the parameters

of the multi-state model are tuned to provide a quasi-realistic

model of the Src conformational dynamics (see Materials and

Methods). In summary, this simplified multi-state model takes into

account the following factors: (i) the chain connectivity, (ii) the

native contact interactions presented in two experimental

structures, (iii) the excluded volume of each residue by using

short-range repulsive interactions, (iv) the reference structures

which, by definition, are the lowest-energy states, and (v) the

conformational entropy reflected by the width of each potential

well (Figure 1).

As a semi-validation of the model, the RMS fluctuations for Ca

atoms are computed from the coarse-grained simulations with the

mixing parameter b= 1 and then compared with that from all-

atom simulations with explicit solvent, and experimental B-factors

of the corresponding crystal structures. Figure 2 shows that the

multi-state model reproduces the experimental trend of thermal

fluctuations for both inactive and active states, indicating that it is

able to capture the basic features of the protein motion.

Two-Dimensional Free Energy Landscapes
To test the switching capability of this multi-state model, two-

dimensional free energy landscapes are used to monitor the

conformational changes. Two sets of simulations with mixing

parameters of b= 1 and b= 0.05, respectively, are carried out to

achieve different barrier heights between two energy minima.

Figure 3 shows the 2d potentials of mean force (2d-PMF) W(Q i,Q a),

where Q i and Q a are the number of native contacts formed using the

inactive and active state, respectively, as a reference state. In this 2d

projection, there are two free energy minima: one is the ensemble of

the inactive state (Figure 3A) and the other is the ensemble of the

active state (Figure 3B). With a high separating barrier (b= 1,

Figure 3 top), the protein conformation stays within the local free

energy minimum, since the barrier is too high to escape. As the

barrier is lowered (b= 0.05, Figure 3 bottom), the free energy

surfaces show that the catalytic domain can adopt alternative

conformations corresponding to the two minima. To ensure that the

system reaches the equilibrium, both the inactive and active

conformations are used as initial conditions. Two free energy

surfaces or W (Q i,Q a), each of which started with one of two starting

points, are very similar, indicating that the simulations have

converged and equilibrium is reached (Figure 3 bottom).

To further dissect the mechanism of the conformational

transition we characterize the free energy landscape for the

movements of important structural elements, namely the A-loop

(part of the activation segment from residues A403 to T429 in c-

Src numbering), the aC helix (residues V304 to K315) and the N-

terminal region (residues P253 to L273). The order parameters,

DQ aC, DQ A-loop, and DQ Nterm are defined as the difference of the

number of native contacts between the inactive and active

conformation for the corresponding structural elements. This

choice is appropriate for distinguishing different conformations for

each structural element. The 2d-PMF W(DQ aC), shown in Figure 4

(top), indicates that the A-loop can fluctuate between an inactive-

like conformation (DQ A-loop = 230) and a near active-like

conformation (DQ A-loop = 0), while the aC helix remains very

stable in the orientation of the inactive state. According to the free

energy surface, the A-loop must first leave the inactive conforma-

tion before the aC helix is able to switch to its orientation in the

active state. There is a larger barrier for the aC helix to rotate

when the A-loop is in its closed inactive-like state. This two-step

mechanism reported here is consistent with previously results

obtained from umbrella sampling MD simulations with explicit

solvent (Figure 3 in [24]). From a functional point of view, this

suggests that the A-loop could easily fluctuate to conformations

where it would be accessible for phosphorylation, while the aC

helix is still in the inactive orientation. Previous work using

umbrella sampling simulations also characterized the conforma-

tional freedom of the N-terminal end of the catalytic domain [31],

suggesting that this region of the protein could be responsible for

the bidirectional flow of allosteric information between the

catalytic domain and the SH2 and SH3 binding modules.

Specifically, it was shown that, when the aC helix was in the

inactive orientation, the N-terminal was predominantly in an

inactive-like conformation but could undergo fluctuations to the

active-like conformation [31]. It was also shown that when the aC

helix was in its active orientation, the N-terminal was then

predominantly in an active-like conformation, but could also

undergo fluctuations to inactive-like conformation. Here we check

this notion with the simplified coarse-grained model. As shown in

Figure 4 (bottom), the 2d-PMF as functions of DQ Nterm and DQ aC

indicates that the N-terminal end is significantly less restricted than

the aC helix, in qualitative accord with the previous results [31].

The Structural Network: A Closer Look in a High-
Dimensional Configurational Space

In an attempt to provide a detailed picture of the topology of the

conformational landscape, we use a graphic network analysis for

Src conformational changes (e.g., [46–52]). The configurational

space from all the simulation data with b= 0.05 (as shown in

Figure 3 bottom) is discretized into a series of clusters. A total of

925 Ca pairwise distances, corresponding to all possible native

interactions as defined in the energy function, is considered for

partitioning the configurational space into N discrete clusters using

a standard K-means clustering algorithm [53] (see Materials and

Methods). The choice of the number of clusters was determined by

examining the dependence of the number of ‘‘reactive’’ transitions

(where the number of cluster is too small, the apparent number of

transition is spuriously overestimated). A (forward) reactive

trajectory is defined as one which left the inactive cluster and

reached the active cluster. Figure 5 shows the number of reactive

trajectories from the inactive to active state as a function of N. In

the case of the Src catalytic domain, the configurational space can

be divided into finer and finer clusters until the number of reactive

trajectories is converged at around 16, when the cluster partition is

N = 25. As a control, an additional set of K-means clustering

analysis was performed with a fewer number of Ca distances

restricted to those contacts that are not shared between the active

and inactive states. Both confirm that the number of reactive

trajectories converges at N = 25 as shown in Figure 5. For

completeness, the clustering with distances from all possible native

contacts was used for further analysis.

To visualize the detailed progress of conformational changes in

the high-dimensional configurational space, a transition probabil-

ity matrix is built among these N clusters as a function of a lag time

t from the trajectories [54] (see Materials and Methods). From the

transition matrix, one can construct a structural network to

describe the conformational landscape (see Materials and

Methods). Figure 6 shows the structural networks based on the

transition matrix of T(t) at different lag times from t = 2 to 100 (in a

unit of 5 ns). For the purpose of visualization, the size of each

circle is linearly proportional to the cluster population in the

simulations, and the distance between each pair of circles is

inversely proportional to the interconversion rate between clusters.

The circles are also color-coded according to the committor

Src Kinase Conformational Activation
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probability qi (from blue with qi = 0, to red with qi = 1), calculated

within the context of a Markov model analysis (more details are

provided below). There is a similar trend among these network

layouts. Two ensembles of clusters, each of which has the reference

state inside, are highly connected within their local minima, and

some intermediate-state clusters lie in-between. When the lag time

is small (e.g., t = 5), as required by the short-time properties for

describing the local landscapes, T(t) gives rise to a robust

connectivity of the network. When the lag time gets larger

(t = 100), the clusters become highly connected because the kinetic

information starts to be averaged out.

It is possible to relate the high-resolution structural network with

the 2d free energy surface. Figure 7 shows the projection of the

network from T(5) into the W(Q i,Q a) (data from 200 msec

simulations with b= 0.05 as shown in both Figure 3C and 3D).

As expected, each cluster in the network falls very nicely into its

corresponding location in the 2d free energy surface, indicating

that our construction of the structural network is consistent with

the low-dimensional free energy surfaces or PMFs based on native

contacts.

Mechanisms of Src Conformational Activation
To explore the transitions in configurational space, we examine

all 16 reactive trajectories and projected them onto the structural

network of T(5). Figure 8 shows the probability distribution of the

first passage times from simulation trajectories ranging from t = 18

to t = 1859 (in a unit of 5 ns); the very broad distribution of the

first passage times shows that there are multiplicity of pathways,
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Figure 2. Semi-validation of the multi-state switching model. Comparison of thermal fluctuation between experiments, atomic simulations,
and multi-state model (MSM) simulations. Shown are the data for the inactive (A) and active (B) states, respectively (top row). Experimental B-factors
are taken from the full-length Hck and c-Src, respectively. For the active form, the Hck model structure was built from homology modeling of c-Src
(see Materials and Methods). The RMS fluctuations (RMSf) (bottom row) were computed from the last 4 ns atomic simulations for the full-length Hck,
and 109-step MSM simulations with b= 1, respectively. Results show that the multi-state model correctly captures overall features of thermal
fluctuation presented in both experiments and atomic simulations. For clarity, secondary structural elements of a-helices are indicated by black
boxes.
doi:10.1371/journal.pcbi.1000047.g002
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each exploring different parts of the transition energy landscapes.

We also project several representative reactive trajectories onto the

network (Figure 8). It shows that actual realizations of reactive

trajectories can be very diverse. Some go directly from the inactive

to active cluster (Figure 8B, 8C, and 8F), and some take alternative

routes by visiting the intermediate (yellow with qi = 0.5) clusters

(Figure 8D and 8E). It also shows, clearly, even with direct

transition without visiting the yellow region, the process could be

very slow (t = 1259, Figure 8F).

Two parallel transition pathways can be assessed from the

conformational landscapes and the reactive paths. The first

pathway, represented by the ensemble of paths in Figure 8B,

8C, and 8F, displays direct transitions from the inactive to active

state. The contact probability maps show that several locations

undergo conformational changes upon activation (Figure 9). The

first structural change taking place is an opening of the A-loop

correlated with a loss of contacts with the aC helix (marked by

green arrows in Figure 9). This can also be understood in the

perspective of the 2d-PMF shown in Figure 4 (top). This initial

process is followed by a loss of contact between helix aC and b
strands in the N-lobe (e.g., b-strand 5 from residues Y335 to T338,

marked by purple arrows in Figure 9). The latter movement may

be viewed as mirroring the switched electrostatic network

involving residues in b-strand 3 (residues T290 to M297) and

aC, particularly between K295 and E310, which have been

previously noted [32]. Here, these two processes are coupled

(Figure 9). As suggested by Figure 10, the interaction networks

between the helix aC (via E310), the A-loop (via R409), and the b-

strand 5 (T338), b-strand 3 (K295) play an important role in the

conformational transition upon activation [12,14,32]. This is

consistent with experiments where a single residue mutation (T338

in c-Src and I338 in v-Src) destabilizes the inactive conformation

[55]. Along this pathway, we also observe that a helix-coil

transition occurs first in the solvent exposed region of the A-loop

(residues N414 to A418), before all these interactions start to

switch (Figure 9).

An alternative pathway is represented by an ensemble of paths,

which crosses the intermediate-state clusters (e.g., Figure 8D and

8E). In this pathway, the lower portion (C-lobe) remains

structurally intact, while a partial unfolding of b-sheets (residues

L267-M297) in the N-lobe occurs as shown by the contact map

(marked by black arrow in Figure 9). Figure 9 also indicates that

this partial unfolding of the N-lobe region is coupled with the

functional conformation changes in the A-loop, in contrast to the

direct transition pathway where it remains folded while confor-

mational transition takes place. This is consistent with the fact that

both the conformational transition [29] and the b-sheet formation

[56,57] can take place on a timescale of msec. In other words, the

partial unfolding pathway, kinetically, could be competitive with

more direct transitions (e.g., Figure 8B and 8F). There are
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Figure 3. Free energy surfaces of Src conformational changes in the Src activation. Two-dimensional potentials of mean force W(Qi,Qa) are
shown as functions of Qi (the number of contacts made using the inactive state as a reference state) and Qa (the number of contacts made using the
active state as a reference). Each W(Qi,Qa) was computed from 100 msec Langevin simulations with the multi-state model at 315 K. At a higher barrier
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(bottom row). The simulations were started with initial conformations in the inactive (left) and active (right), respectively.
doi:10.1371/journal.pcbi.1000047.g003
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indications that the two mechanisms might be coupled, as

illustrated by the reactive trajectories in Figure 8E, in which the

system travels back and forth and alternates its route between the

first and second pathways. The structural features for these two

pathways are shown in Figure 11, where the partial unfolding of

the N-lobe is observed in the second pathway.

The notion that local unfolding may be linked to a

conformation change playing a functional role is somewhat

provocative, though it is consistent with previous results for

adenylate kinase [34,39] and for calmodulin [40]. Specific

experiments could be designed to test this hypothesis in Src. For

example, the relative propensity of the two pathways could

perhaps be altered by changing the temperature, such that to alter

which one dominates. In addition, it might be possible to use

NMR hydrogen/deuterium exchange experiments [58–60] to

detect the occurrence of partially unfolded intermediates during

the conformational activation of Src.

A Markov Analysis for Src Conformational Activation
Markov models can be used to harvest information from short

time simulation trajectories and extrapolate to long timescale

behavior [45,61–65]. To test a Markov treatment in the case of the

Src conformational changes, its ability to accurately describe the

thermodynamics and kinetics was examined (see a brief summary

for the Markov model in Materials and Methods). One underlying

assumption of a discrete state Markov model is that the system

should ‘‘forget’’ the state it came before making a transition to the

next state. Failure to establish a lag time enabling one to satisfy this

assumption may preclude the direct use of the model.

One necessary condition to test for this Markov behavior is to

compute the second largest eigenvalue l from the transition matrix

T. If a process is Markovian, then the corresponding mode will

exponentially decay as a function of the lag time t [45,54].

Alternatively, the normalized relaxation time t* = 2t/ln l should

be nearly constant. As an indicator, the normalized relaxation time

t* provides a characteristic measure of the ‘‘memory’’ time needed

to construct a valid Markov model. As shown in Figure 12, the

time t* approaches a constant of .450 around a lag time of t.100.

In the regime where t,100, the system behaves as non-

Markovian. Often, the timescale for satisfying a Markovian

behavior is beyond the accessible range of all-atom simulations,
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the A-loop first opens up while the aC helix remain in the inactive
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inactive and active states. QI
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DQA-loop and DQNterm are used for the A-loop and the N-terminus,
respectively. Residues P253 to L273 are used to define the N-terminus.
The color bar in these contour plots represents the relative free energy
in kBT.
doi:10.1371/journal.pcbi.1000047.g004

5 10 20 25 30 50

16

78

114

N (# of clusters)

# 
of

 re
ac

tiv
e 

tra
je

ct
or

ie
s

 

 

all−contact
distances (925)

nonshared−contact
distances (370)

Figure 5. The choice of the number of clusters in the
configurational space. The number of reactive trajectories is shown
as a function of N (the number of clusters). Structural clustering was
carried out based on pairwise Ca distances, by using the K-means
algorithm implemented in MATLAB (see Materials and Methods). Two
clustering schemes were carried out, using the Ca distances from all
possible contacts present in both states (Q1+Q2+Qshared) and non-
shared contacts (Q1+Q2), respectively. Both show that the number of
reactive trajectories converges at the number of clusters of N = 25. A
reactive trajectory is defined as one which leaves the inactive cluster
(which the inactive conformation belongs to) and reaches the active
cluster (which the active conformation belongs to).
doi:10.1371/journal.pcbi.1000047.g005

Src Kinase Conformational Activation

PLoS Computational Biology | www.ploscompbiol.org 6 March 2008 | Volume 4 | Issue 3 | e1000047



simply because t* corresponds to the time of the motion associated

with the slowest degree of freedom.

Assuming the system is Markovian, we analyze the transition

probability matrix of T(t), especially with a short and atomic-

simulation accessible lag time of t%t*. Following Pande and

collaborators (e.g., [61,62]), we compute the forward committor qi,

i.e., the probability of first reaching the active state before the

inactive state having started from state i (see Equation 6, Materials

and Methods). On the structural network, the qi effectively

measure the ‘‘probabilistic distances’’ between cluster i and its

destination. As already shown by the color bar in Figure 6, the

computed qi (Equation 6) are projected onto the structural

networks. Clearly, it helps to identify the cluster membership on

the transition landscapes. For example, the clusters in yellow with

qi,0.5, indicating that they have a 50% chance of being reactive

or non-reactive, sit in the middle of the allosteric transitions

(Figure 6B). It is encouraging to note that, even though qi vary as

the lag time changes, the ensemble of transition states consisting of

the yellow clusters appears to be conserved across different
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Figure 7. Projecting the structural network onto the 2d free
energy surface. The 2d free energy surface W(Qi,Qa) was generated
from a total of 200 msec simulation data present in Figure 3 (bottom).
The structural network was taken from the T(5) and the color code for
each cluster is the same as in Figure 6. Each cluster falls nicely on top of
the 2d free energy surface. Two representative reactive paths (as shown
later in Figure 8) are also shown in green (Figure 8B) and magenta
(Figure 8D), respectively.
doi:10.1371/journal.pcbi.1000047.g007
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 Figure 6. The structural network of Src catalytic domain
conformational changes. Shown are the 2d force-directed layout
of the networks of T(2), T(5), T(20), and T(100). The (forward) committor
functions qi (Equation 6) (from inactive to active) for each cluster are
shown by the color bar. Node 18 is the inactive cluster and node 2 is the
active. q18 and q2 were set to be 0 and 1, respectively. The size of each
node represents the cluster population as shown in Figure 13. For
clarity, a cutoff of Lij.0.007 was used for the plot. The network of
interconnecting clusters may be displayed as a 2d force-directed layout.
Within this system, pairs of clusters (i and j, i?j) are linked by elastic

springs with spring constant Lij~p
{1=2
i Tijp

1=2
j , where pi is the

stationary distribution of any cluster i and {pi} is the eigenvector with
unit eigenvalue of T. To achieve the 2d graphic layout, practically, we
used a Monte Carlo search to find a local favorite combination, which
resembles one state of the connectivity of these N interacting clusters
(see Materials and Methods).
doi:10.1371/journal.pcbi.1000047.g006
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networks, e.g., T(5) and T(20), indicating these relative distances

yield a qualitatively robust measurement for identifying each

cluster on the network.

Next, we compute the stationary population of each cluster pi by

the eigenvector with unit eigenvalue of T as mentioned earlier (see

Materials and Methods). Figure 13 shows the comparison of the

cluster population between the computed pi and that obtained

from the brute-force simulations. Within the non-Markovian

regime (e.g., t = 5), the Markov model recovers the true

thermodynamics in terms of the cluster population on the

networks. This is expected, because the T(t) are built by enforcing

detailed balance and time reversal, which guarantees that the
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Figure 8. Reactive transition paths of the Src conformational activation. (A) The histogram of first passage times (t) shows a broad
distribution of a total of 16 reactive trajectories, implying there are multiple transition pathways. (B–F) Several representative reactive trajectories are
projected on the network of T(5). All times shown here are in a unit of 5 ns. All the reactive paths readily suggest that there are two parallel transition
pathways on the structural network.
doi:10.1371/journal.pcbi.1000047.g008

Src Kinase Conformational Activation

PLoS Computational Biology | www.ploscompbiol.org 8 March 2008 | Volume 4 | Issue 3 | e1000047



stationary distribution should be directly taken from the

population from the simulations.

To test the kinetics prediction from the Markov model, we also

compute mean first passage times (MFPT) ti from T using

Equation 7. Note that the definition of ti used here is slightly

different with what was used in [66]. Figure 14 shows the

comparison between the MFPTs (tA) obtained from brute-force

MD simulations (marked by circles) and that computed from

transition matrix T with the Markovian assumption (marked by

stars). This result clearly indicates that the results from the

Markovian analysis does not reproduce the transition time that

obtained from simulations, as expected within the non-Markovian

regime.

The current Markov model with macrostates based on a K-

means clustering for the configurational space partitioning scheme

is clearly limited. For instance, it does not successfully predict the

long-time kinetics such as the mean first passage time. It is likely

that the causes of this failure lie both in the lack of sampling from

finite trajectories, and in the shortcomings of the partitioning

scheme. Nevertheless, it is encouraging to note that the topology of

the connected kinetic network of macrostates as well as the ranking

with respect to committor probabilities are general features that

appear to be qualitatively robust. For this reason, the Markov

analysis, despite its limitations, remains a valuable tool to unmask

several aspects of the transition pathways in the present system.

We note that recent efforts have sought to develop strategies to

enhance the Markovity and improve the performance of the rate

prediction (e.g., [63,64,67]). Alternative approaches using a

diffusive model have also emerged to address this issue (e.g.,

[57,68–72]). It is possible that those developments will lead to

more effective Markov analysis tools.

Conclusion
The large-scale motions in the Src conformational activation

take place on a relatively slow timescale that is beyond the reach of

brute-force all-atom simulations. We develop a structure-based

coarse-grained model to investigate the Src conformational

changes on the free energy landscapes. We explore the detailed

conformational landscape by clustering the configurational space

and constructing a detailed structural network from simulations.

We also test the performance of a Markov model in the cluster-

partitioned space. Although the kinetics derived from the Markov

model does not recover the true transition rate, the topology and

connectivity of the kinetic network, inferred from the analysis
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Figure 9. Mechanisms of the Src conformational activation. Shown are the contact probability maps for the selected ensemble of clusters
from the network. Each dot in the map at (i,j) represents the interaction between residue i and j with contact formation probabilities p shown by the
color bar: there are no contact interactions made if p = 0 (yellow); there are contact interactions made in either the inactive state or the active state if
p = 1 (blue or red). The upper triangle is the probability map of contacts in the inactive state and the lower triangle is that in the active state. The
highlighted regions are the A-loop (part of the activation segment from residues A403-T429), the aC helix (residues V304-K315), and the b5 strand
(residues Y335-T338), representing three b strands in the N-lobe. Two parallel transition pathways can be identified from the reactive kinetic paths
shown in Figure 8. In the first ensembles of paths, the inactive state directly switches to the active, including the A-loop opening (marked by green
arrows) and the interaction switching among aC, A-loop, and b5 (marked by purple arrows). In the second ensembles of paths, there exists partial
unfolding of N-terminal b-sheets (residues L267-M297) (marked by black arrows).
doi:10.1371/journal.pcbi.1000047.g009
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seems to be robust. This important observation allows the

identification of two transition pathways of the Src activation. A

direct transition, a coordinated switch between a network of the A-

loop, the aC helix, and b strands in the N-lobe, is coupled with an

alternative pathway of partial unfolding of the N-lobe. The

connectivity of the network appears to be qualitatively robust. The

present results provide a broad framework for analyzing the

conformational transition taking place upon Src activation. It is

our hope that this framework shall guide the interpretation of

experiments probing the dynamics of Src in solution, as well as

additional simulation studies based on atomically detailed and

coarse-grained models.

Materials and Methods

Preparation of the Hck Catalytic Domains
For the full-length Hck, the inactive state structure was taken

from the assembled crystal structure (PDB ID: 1QCF); the active

state structure was obtained from the partially active structure of c-

Src (PDB ID: 1Y57) by sequence alignment (with 62% sequence

identity) using ClustalW [73] and homology modeling using

MODELLER [74]. These two structures were then solvated by a

150 mM KCl solution box and were simulated by NAMD 2.6 for

5 ns in the NPT ensemble [75]. Long range electronic forces were

computed every two times steps by using the Particle Mesh Ewald

algorithm with a time step of 2 fs. Atomic simulations were

performed under standard conditions of 300 K with the all-atom

PARAM27 CHARMM force field [76]. The structures of the

isolated catalytic domain, in both inactive and active forms, were

subsequently taken from the last frame of the all-atom simulations

of the full-length Hck.

The Multi-State Energy Function
Given two reference structures supplied by the inactive and

active states of the catalytic domain, two independent structure-

based potentials, 1 and 2, were first created at a simplified

residue level. These two potentials were then combined in a way

such that the shapes of the energy surface near their own energy

minimum are preserved while transitions between two minima are

allowed. We use a proposed approach based on an exponential

averaging of 1 and 2, each of which describes one of the

reference structures [33,35],

H~{
1

b
ln e{bH1ze{b H2zdð Þ
� �

ð1Þ

The resulting energy function encodes two experimental

structures of inactive and active states (see Figure 1). The

parameter b is used to tune the energetic barrier height to achieve

a reasonable transition rate between two minima. The parameter

d is the energy difference between two states. In the case of the Src

catalytic domain, d= 27 kcal/mol was used.

The energy functions for both reference states ( 1 and 2) are

defined as follows. We extended the structure-based (Gō-like)

models [69,77–81] to allow the switching occurs between two

minima. The energy functions at the residue level, i.e., each

Thr338

Arg409
Glu310

A B

C

Inactive Active

A-loop

β5
αC

Figure 10. The switching of a network of representative
interactions from simulations. Switching mechanism for the Src
activation among the A-loop (residues 403–429), the aC helix (residues
304–314), and the b5 strand (residues 335–338) in the N-lobe. This can
be represented by three highly conserved residues, Glu310, Thr338 and
Arg409, where Glu310 exchanges interaction parters from Arg409 to
Thr338 during the activation process from the inactive (A) to active (B)
state. (C) One representative reactive path shows the interaction switch
in the two-distance space (Glu310-Arg409, and Glu310-Thr338). The
blue and red dots represent the inactive and active states, respectively.
doi:10.1371/journal.pcbi.1000047.g010
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transition pathways were used to illustrate the transitions. The inactive
state is shown as a reference state in light blue. The activation loop is
highlighted in yellow and the aC helix in green. The partially unfolding
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residue is represented by its Ca atom, are

H1,2~EgenericzE1,2 ð2Þ

where Egeneric are the energy term presented in both 1 and 2,

including the bond, angle, and dihedral interactions between

adjacent residues, and the repulsive interactions for residue pairs

that are not in contact in either active or inactive states,

Egeneric~
X
bond

Ebondz
X
angle

Eanglez
X

dihedral

Edihedral

z
X

repulsive

Erepulsive

ð3Þ

The bond term Ebond = kr(r2ro)
2, where kr = 100 kcal/mol and ro

are the bond distances in the inactive state because the distance

difference in two states is negligible (data not shown). The angle

term

Eangle~ E
angle
1 zE

angle
2

� �,
2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

angle
1 {E

angle
2

� �.
2

� �2

zD2

r
,

where E
angle
1,2 ~kh h{h1,2ð Þ2. The angular force constant kh was set

to 20 kcal/mol. h1 and h2 are the corresponding angles in

reference structures. The coupling constant D is the coupling

constant, D= Eb2Emax and D= 0, if Eb,Emax, where

Eb = kh((h12h2)/2)2 and Emax was set to 0.5 kcal/mol. This

angle term was chosen in this way such as the barrier height

between two angles has a upper limit of Emax, in a spirit that

was used by Okazaki et al. [37]. The dihedral term

Edihedral~
P

n~1,3

kn
w 1z cos n w{w1ð Þð Þz 1z cos n w{w2ð Þð Þ½ �=2,

where k1
w~1:0 kcal=mol and k3

w~0:5 kcal=mol. Note that the

angle and dihedral terms in 1 and 2 are generalized here to

allow switching capability between two states. The repulsive term

is for the residue pairs that are not in contacts in either inactive or

active state, Erepulsive~e0 s
rij

� �12

, where s = 3.8 Å and

e0~0:001 kcal=mol. Residue pairs that make contacts in the

reference states are modeled as a Lennard-Jones potential, E1.2, for

the inactive and active states, respectively.

E1,2~
X

contacts

e 5
sij

rij

� �12

{6
sij

rij

� �10
" #

ð4Þ

where e = 0.5 kcal/mol. sij are the distances between two contact-

forming Ca atoms. Two residues (i and j ) are determined to be

form a contact if rij was within a factor of 1.2 of the corresponding

native distance after using the CSU package [82]. There are three

types of residue contacts [37]: (1) those residue pairs that made

contacts in both inactive and active states (shared contacts,

Q shared = 555); (2) those pairs that made contacts only the inactive

state (nonshared contacts, Q 1 = 192); (3) those pairs that made

contacts only the active state (nonshared contacts, Q 2 = 178).

Therefore, the total numbers of contacts in the inactive and active

states are Q 1+Q shared = 747 and Q 2+Q shared = 733, respectively.

Further details on the standard Gō-like model can be found in

previous publications (e.g., [42,69,77,78,83]).

Combining the two energy functions 1 and 2 (Equations 1

and 2), the total energy H can be simplified into

H~Egeneric{
1

b
ln e{bE1ze{b E2zdð Þ
� �

ð5Þ

Practically, this simplification, by exponential averaging over the

contact energy terms only, will in principle allow us to implement

this multi-state model into any molecular dynamics integrator.

Simulation Implementation
The multi-state energy function was implemented in the

molecular dynamics package CHARMM [84]. The Langevin

dynamics simulations were carried out with a friction coefficient of

50 ps and a time step of 0.01 ps. The value of friction coefficient

for Ca atoms was chosen to mimic the friction for the whole

atomic-detailed residues. The simulations were carried out at a
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Figure 12. The characteristic time of the transition probability
matrix T(t) Relaxation times (2t/ln l) as functions of lag times t
for N = 25. Shown are the second and third eigenvalues of the
transition matrix T. The relaxation time approaches a constant around a
lag time of t = 100 with a relaxation time of t*,450. In the regime where
t%100, the system behaves as non-Markovian.
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Figure 13. Thermodynamics from the Markov analysis. The
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temperature of 315 K and snapshots were saved every 10,000

steps. If not specified, a time unit of 5 ns was used throughout for

all multi-state model simulations.

Structural Clustering by K-Means Algorithm
Following others (e.g., [85]), we used the K-means clustering

algorithm [53] to partition the entire configurational space into N

discrete clusters. This was done based on the Ca distances that

made contacts in reference structure(s) for a total of 200 msec

simulations (data shown in Figure 3C and 3D). We used the two-

phase iterative algorithm to minimize the sum of point-to-centroid

distances as implemented in MATLAB. This procedure was

repeated three times and the cluster partition with the lowest value

of the sum of point-to-centroid distances was selected for the

further analysis.

Constructing Transition Probability Matrix T (t)
Among N clusters, we built a transition probability matrix

T(t) = T( j,to+t|i,to), whose (i,j) element is transition probabilities of

reaching cluster j after waiting for a lag time of t, given that the

system was in cluster i at time to [54]. In realistic molecular

dynamics simulations, the detailed balance may not be strictly

satisfied because of random sampling noise. Practically, we

introduced the detailed balance and used time reversibility for

the molecular dynamics simulations.

Construction and Visualization of Structural Networks
To visualize the conformational changes in configurational

space, a graph-like structural network may be constructed from

the transition probability matrix T(t). The transition network

among clusters may be viewed by a spring-and-charged N-particle

system. Each cluster is assigned a unit charge and pairs of clusters

(i and j, I?j ) are linked by elastic springs with spring constant

Lij~p
{1=2
i Tijp

1=2
j Lij~Lji

� �
, where pi is the stationary distribu-

tion of cluster i and {pi} is the eigenvector with unit eigenvalue of

T. Therefore, the total energy of this spring-and-charged system

includes Coulomb and spring-like interactions among N clusters. A

Monte Carlo (MC) algorithm was used to find the local energy

minimum and to obtain a 2d force-directed layout of the

interacting network. A total number of 100 million MC steps

were carried out for each layout.

A Markov Analysis
Recently, a Markov model has been widely used to analyze MD

simulation data (e.g., [45,61–65]). If a process (or the transition

represented by T(t) in this case) is Markovian [54], it has the

following features. (i) As a main feature of the Markov model for

time propagation, a Markov chain can provide the kinetic

information from simulations, i.e., T(nt) = T n(t) where the process

is still Markovian at a coarse-grainer time scale of nt [45]. (ii) As we

mentioned earlier, the stationary distribution or cluster population

of all N clusters is the eigenvector of the unit eigenvalue of T. (iii)

The second largest eigenvalue l provides the characteristic time t
(or the relaxation time constant of the single exponential decay) of

the largest time-scale motion, t* = 2t/ln l. (iv) The probabilities qi

(the forward committor functions) of going from any cluster i to the

final active cluster can be computed from T by

qi0~
X

j0
I{T 00ð Þ{1

� �
i0 j0

Tj0B ð6Þ

where I is an identity matrix and T0 is the (N22)6(N22) matrix

formed by removing the Ath and Bth rows and the Ath and Bth

columns from T. i0 and j0 are the corresponding indices for i and j

after removal. A and B are the inactive and active cluster indices,

respectively, and qA and qB were set to 0 and 1, respectively. (v)

Similarly, the mean first passage times ti from any cluster i to the

active cluster B can be computed by

ti0~Dt
X

j0
I{T 0ð Þ{1

� �
i0j0

X
k0

T 0j0k0 ð7Þ

where Dt is the time unit when the transition matrix was built and

is the (N21)6(N21) matrix formed by removing the Bth row and

the Bth column. Here, i0, j0, and k0 are the corresponding indices

after removal. Therefore, the mean first passage time from the

inactive to active cluster is t = tA.
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