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Abstract

The transcriptional regulatory machinery of a gene can be viewed as a computational device, with transcription factor
concentrations as inputs and expression level as the output. This view begs the question: what kinds of computations are
possible? We show that different parameterizations of a simple chemical kinetic model of transcriptional regulation are able
to approximate all four standard arithmetic operations: addition, subtraction, multiplication, and division, as well as various
equality and inequality operations. This contrasts with other studies that emphasize logical or digital notions of
computation in biological networks. We analyze the accuracy and precision of these approximations, showing that they
depend on different sets of parameters, and are thus independently tunable. We demonstrate that networks of these
‘‘arithmetic’’ genes can be combined to accomplish yet more complicated computations by designing and simulating a
network that detects statistically significant elevations in a time-varying signal. We also consider the much more general
problem of approximating analytic functions, showing that this can be achieved by allowing multiple transcription factor
binding sites on the promoter. These observations are important for the interpretation of naturally occurring networks and
imply new possibilities for the design of synthetic networks.
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Introduction

In grappling with the biochemical complexity of gene regulation,

some have turned to computational metaphors for explaining gene

behavior (e.g., [1–5]). The lac operon, for example, is often described

as implementing a simple logical rule—the gene is on when lactose is

present and glucose is absent [6]. Theoretically, a variety of

nonlinear chemical systems, including gene regulatory systems, are

capable of implementing arbitrary logical rules [7–11]. Networks of

such systems can implement finite state machines [12], and families

of such networks of increasing size can be said to implement

arbitrary Turing-computable functions [13,14]. In practice, logical

models have proven capable of accounting for the qualitative

dynamics of a variety of genetic systems [15–23]. Models that

combine logical rules with concentration thresholds for the action of

regulatory molecules, as in the French-flag model of Wolpert [24] or

Glass networks more generally [25], satisfactorily describe other

systems either qualitatively [26–28] or quantitatively [29]. Synthetic

biologists have constructed gene networks that perform elementary

logical operations, such as storing a bit of memory [30] or turning off

and on with a fixed period [31].

However, detailed analysis of transcriptional regulatory net-

works reveals a behavior richer than logical responses. Yuh et al.’s

model of the sea urchin developmental gene Endo-16 contains

logical as well as additive and multiplicative operations [32].

Recent measurements of lac transcription rate as a function of the

concentrations of cAMP and an analogue of allolactose show four

plateaus of different rates connected by smooth boundaries [4,5].

Even ‘‘logical’’ models of gene regulation often require more than

two qualitatively distinct levels of gene expression (e.g., [19]),

recognizing that some genes cannot be treated simply as on or off.

Besides logical or digital computation, several other notions of

computation have been explored. Analog computations made by

artificial neural networks can in principle be implemented by

chemical systems [8,12,33]. Deckhard and Sauro experimented

with evolving reaction networks to compute square and cubic roots

of an input [34] and have since evolved networks to compute a

variety of other arithmetic functions. This work shares the greatest

commonality withours, the differences being that we specifically

study single-gene transcriptional regulatory networks and that our

designs are arrived at prescriptively, by analysis of the steady state

equations, rather than by a computational search.

A different line of reasoning has focussed on the robustness of

biochemical networks to variability in inputs and parameters—

intuitively important features for real systems [35–37]. Reduction in

noise by development gene networks was experimentally observed

[38,39] and confirmed as a property of mathematical models

[20,40]. In this background, control theoretic concepts, especially

noise filtering, were studied more carefully [41] and found in a wide

variety of systems (see [37] for a summary). More recently, the

behavior of several genes has been viewed in the context of

information theory [42] and Bayesian decision theory [43].

The present work focuses on the general steady-state analog

computational capacities of genes. Most of the paper considers a
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simple chemical kinetic model of transcriptional regulation for a

single gene with two transcription factors. We assume that

concentrations of proteins represent non-negative real numbers,

with the transcription factor concentrations acting as inputs to the

gene and the steady state expression of the gene acting as the

output. Different choices for the kinetic rates allow the gene to

approximate different binary arithmetic operations: addition,

subtraction, multiplication, division, and testing for equality and

various inequalities. Variations on the model allow alternative

implementations of the same functions as well as other functions,

such as the square root. In the model, these operations can be

reproduced with arbitrary accuracy, although in reality, biological

limits on the parameters would limit accuracy. We analyze the

accuracy of these approximations in terms of the deviation

between the steady state output and the desired output. We also

analyze the precision of the approximations, in terms of the

variability of the output over time in a stochastic interpretation of

the model. Through theoretical analysis and simulations we show

that such ‘‘arithmetic genes’’ can be combined in networks to

compute more sophisticated functions. As an example, we describe

an eight gene network that tracks the mean and standard deviation

of a time-varying signal and detects times at which the signal is

statistically significantly elevated. We also consider a model of a

gene regulated by a single type of transcription factor but having

multiple binding sites on the promoter. With such a gene, arbitrary

analytic functions can be approximated up to a fixed order based

on power series expansions. We demonstrate by designing a gene

that approximates the cosine function.

Results

A chemical-kinetic model of transcriptional regulation
Figure 1 presents a diagram of the model of transcriptional

regulation and gene expression that we analyze. It models a single

gene regulated by two transcription factors, A and B. These factors

may bind irreversibly to form an inertdimer, or they may bind to

the DNA, where they affect the rate of transcription. Transcripts

are translated into proteins at a fixed rate, and both transcripts and

proteins decay at fixed rates. The reaction equations below

formalize the model. (Please note that Tables 1, 2, and 3 show the

symbols employed in this paper and their meanings.)

AzB?
rd

C ð1Þ

P0 '
KoaA

PA ð2Þ

P0 '
KobB

PB ð3Þ

PB '
KbaA

PAB ð4Þ

PA '
KabB

PAB ð5Þ

P0 ?
ro

P0zT ð6Þ

PA ?
ra

PAzT ð7Þ

PB ?
rb

PBzT ð8Þ

PAB ?
rab

PABzT ð9Þ

T ?
rtz

TzZ ð10Þ

T ?
dt 1 ð11Þ

Z ?
dz 1 ð12Þ

For the bidirectional reactions, equilibrium association constants

are ratios of forward to backward rates (e.g., Koa = foa/boa). We use

[X] to denote the steady state concentration of molecular species

X. None of the reactions create or destroy the factors A or B. We

assume that the binding of single molecules of these factors to the

DNA does not significantly affect the concentration of free A or B,

so that [A]+[C] = [Atot] and [B]+[C] = [Btot], where [Atot] and [Btot]

denote the total concentration of molecules A and B respectively,

either bound or unbound.

Most of our analysis concerns the steady state behavior of this

system. We use to, ta, tb, and tab to denote the fractions of time

that the promoter spends unbound or bound by different

combinations of transcription factors. We assume that the

reactions for transcription factors binding to the promoter are at

equilibrium.

ta~Koa A½ �to ð13Þ

Author Summary

The biochemistry of the cell is daunting in its complexity.
In order to understand this complexity, we are often forced
to use metaphors or construct analogies to systems that
we understand better. One long-standing analogy is to
digital computers, with their large networks of interacting
components that manage to act in coherent and useful
ways. Indeed, we know from both theoretical models and
empirical observations that biological entities such as
genes can sometimes be described accurately by digital, or
logical, expressions—turning on or off in response to
regulatory signals. However, far more sophisticated
computations can also take place, as has been document-
ed in the responses of genes such as the lac operon or
Endo-16. We analyze chemical kinetic models of transcrip-
tional gene regulation and show that even simple models
are capable of nearly arbitrary analog computations,
ranging from elementary arithmetic operations to general
analytic functions. Understanding the computational
capacities of genes, and of biochemical systems more
generally, tells us what to look for when studying natural
systems and tells us what we can hope to build by
biological engineering.

BA
Z

Ø

Ø
T

BA C

Figure 1. Schematic of a chemical model of a gene regulated by
two transcription factors. Transcription factors A and B may
irreversibly form an inert dimer, C, or they may bind individually or
simultaneously to the promoter region of the gene, where they affect
the transcription rate. Transcripts, T, are translated into proteins, Z. Both
T and Z decay at fixed rates.
doi:10.1371/journal.pcbi.1000064.g001
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tb~Kob B½ �to ð14Þ

tab~Kba A½ �tb ð15Þ

tab~Kab B½ �ta ð16Þ

From this system of equations, one can deduce that KoaKab =
KobKba. However, the system is degenerate and does not lead to a

solution for the occupancy times until we recognize that the

occupancy times must sum to one.

toztaztbztab~1 ð17Þ

With the addition of this equation, we obtain four linearly

independent equations, which can be manipulated to solve for the

occupancy times.

to~1= 1zKoa A½ �zKob B½ �zKoaKab A½ � B½ �ð Þ ð18Þ

ta~Koa A½ �= 1zKoa A½ �zKob B½ �zKoaKab A½ � B½ �ð Þ ð19Þ

tb~Kob B½ �= 1zKoa A½ �zKob B½ �zKoaKab A½ � B½ �ð Þ ð20Þ

tab~KoaKab A½ � B½ �= 1zKoa A½ �zKob B½ �zKoaKab A½ � B½ �ð Þ ð21Þ

This allows us to calculate the net rate of transcription.

rt~rotozratazrbtbzrabtab ð22Þ

The steady state concentration of protein Z then follows.

Z½ �~ rtzrt

dtdz

ð23Þ

~
rtz

dtdz

|
rozraKoa A½ �zrbKob B½ �zrabKoaKab A½ � B½ �

1zKoa A½ �zKob B½ �zKoaKab A½ � B½ � ð24Þ

Because KoaKab = KobKba, the term KoaKab can be replaced by

Table 1. Symbols that pertain throughout the paper and that
are used in particular for the the description and analysis of
arithmetic genes.

SymbolMeaning

A Transcription factor A

B Transcription factor B

C Inert heterodimer of A and B

T Transcript

Z Protein

P0 Promoter complex unbound

PA Promoter complex bound by A

PB Promoter complex bound by B

PAB Promoter complex bound by A and B

rd Rate of dimerization of A and B

Koa Association constant for A binding to promoter

Kob Association constant for B binding to promoter

Kab Association constant for B binding to promoter after A

Kba Association constant for A binding to promoter after B

fij Forward (binding) rate for one of the above association constants

bij Backward (unbinding) rate for one of the above association constants

ro Transcription rate when promoter unbound

ra Transcription rate when promoter bound by A

rb Transcription rate when promoter bound by B

rab Transcription rate when promoter bound by A and B

rt Net rate of transcription

rtz Translation rate

dt Transcript decay rate

dz Protein decay rate

[X] Steady state concentration of species X

Xtot Total amount of species X in the system

X(t) Concentration of species X at time t

to Fraction of time promoter unbound

ta Fraction of time promoter bound by A

tb Fraction of time promoter bound by B

tab Fraction of time promoter bound by A and B

Zon Target ‘‘on’’ concentration for Z for comparison operations

rz Dimerization rate of protein Z, for the square root function

Z2 Homodimer of protein Z

r Scale factor for A and B binding and unbinding rates used in noise
simulations

doi:10.1371/journal.pcbi.1000064.t001

Table 2. Symbols that are used in the context of the network
for detecting significant elevation in a time-varying signal.

Symbol Meaning

I Input signal

mI Mean of I over time

sI Standard deviation of I over time

c Number of standard deviations above mean deemed significantly
elevated

Ti Concentration of transcripts for gene Gi

Zi Concentration of protein for gene Gi

doi:10.1371/journal.pcbi.1000064.t002

Table 3. Symbols that are used in the context of the gene for
approximating analytic functions.

Symbol Meaning

N Number of binding sites for A on promoter

Pi Promoter bound by i copies of A

K Association constant for A binding to promoter

ri Transcription rate when promoter bound by i copies of A

doi:10.1371/journal.pcbi.1000064.t003

Analytic Operations by Transcriptional Regulation
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KobKba in any of the equations above. These equations are also

true for more restricted binding scenarios, including: A and B

cannot be bound to the DNA simultaneously (signified by

Kab = Kba = 0); A must bind before B binds, and B must unbind

before A can unbind (Kob = Kba = 0); and B cannot bind the DNA

at all (Kob = Kba = Kab = 0). In these alternative scenarios,

however, it no longer holds that KoaKab = KobKba.

Approximating arithmetic operations
By employing subsets of the allowed reactions and setting kinetic

parameters appropriately, different arithmetic operations can be

approximated, with [Atot] and [Btot] treated as the inputs. (See

Figure 2 for a summary.) For example, consider Equation 24

under the conditions: (i) rd = 0, (ii) Kab = Kba = 0, (iii) ro = 0, (iv)

rtzraKoa = rtzrbKob = dtdz, (v) Koa[A]%1, and (vi) Kob[B]%1. These

conditions can be interpreted as: (i) A and B do not dimerize, (ii) A

and B cannot both be bound to the DNA at the same time,

perhaps because their binding sites overlap, (iii) there is not

transcription if neither A nor B are bound to the DNA, (iv) there is

a certain balance between the production and decay rates of

mRNA and protein, and (v),(vi) either A and B bind to the DNA

comparatively weakly or else we are considering only compara-

tively small concentrations of A and B. Then Equation 24 tells us

that [Z]<[Atot]+[Btot], so that the gene approximates the addition

operation. (See Figure 2B for the exact steady state expression.)

The error in the approximation is analyzed in more detail in the

next section.

Alternatively, suppose that A and B bind the promoter

sequentially, perhaps because A is a cofactor without which B

cannot bind, and that transcription is activated only when both are

bound. If production and decay are balanced as rtzrabKoa

Kab = dtdz and if Koa[Atot]%1 and KoaKab[Atot][Btot]%1, then

[Z]<[Atot][Btot] so that the gene approximates the multiplication

operation. To achieve [Z]<[Atot]/[Btot] one can assume that A and

B can bind individually to promoter, and that A activates

transcription whereas B represses. This approximation is most

accurate when B binds strongly, so that Kob[Btot]&1, and A binds

comparatively weakly, so that Koa[Atot]%Kob[Btot].

As [Z] is always non-negative, one cannot approximate ordinary

subtraction, [Atot]2[Btot], when [Btot].[Atot]. Instead, we consider

Figure 2. Regulatory architectures and parameters for approximating various arithmetic and comparison operations. (A) Diagrams
depict the reactions employed to achieve each operation. The A–B dumbbell is bold if A and B dimerize and gray if they do not. The four circles
connected as a diamond represent different binding states of the promoter. In bold are achievable binding states, with bold connecting bars
indicating the allowed transitions. A bold arrow leaving a circle to the right indicates a binding state in which transcription occurs. (B) Steady state
expression and parameter constraints. Each row of the table corresponds to one operation. The [Z] column gives the exact and approximate
steady-state expression of the gene. The exact steady state is obtained from Equation (24), assuming parameters conform to the formulae in the
‘‘Production-decay balance’’ column and setting to zero those parameters implied to be zero by the diagrams in (A). The final column of the table
describes under what conditions each operation is well approximated. The symbol i denotes zero-truncated subtraction, defined as
xiy = max(x–y, 0).
doi:10.1371/journal.pcbi.1000064.g002
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zero-truncated subtraction.

Atot½ �7 Btot½ �~max Atot½ �{ Btot½ �,0ð Þ~

Atot½ �{ Btot½ � if Atot½ �§ Btot½ �

0 if Atot½ �v Btot½ �

(
ð25Þ

If A and B dimerize irreversibly with forward rate rd.0, then at

steady state C = min([Atot],[Btot]). Thus, [A] = [Atot]2[C] = [Atot]2

min([Atot],[Btot]) = [Atot]fi[Btot]. Dimerization itself, then, solves the

zero-truncated subtraction problem. If we desire [Z]<[Atot]fi
[Btot], we need only assume that undimerized A binds to the

promoter and activates transcription. For an accurate approxima-

tion, binding should be weak, so that Koa[A]%1.

For the comparison operations, the goal is [Z] = 0 if the

comparison is false and [Z] = Zon if the comparison is true, for

some chosen Zon.0. The operation [Atot].[Btot] can be imple-

mented with the same set of reactions as subtraction, but A should

bind the promoter strongly so that [Z]<Zon in the presence of any

amount of undimerized A. For [Atot] = [Btot] we assume that A and

B dimerize, that A and B can individually bind the promoter,

acting as repressors. If [Atot] = [Btot], then there will be no

undimerized A or B, and [Z] = Zon. Otherwise, there will be some

undimerized A or B, and, if it binds the promoter strongly, will

turn off transcription so that [Z]<0.

These arithmetic operations can be implemented in other ways,

even restricting attention to the model in Figure 1. For example,

the addition gene could allow A and B to bind simultaneously, as

long as there is no transcription when both are bound. Similarly,

the multiplication gene could allow A and B to bind to the

promoter in either order, as long as there is only transcription

when both are bound. However, these alternate versions are less

accurate than the designs in Figure reffig:diagrams because they

introduce unnecessary promoter binding states. Mathematically,

the decrease in accuracy corresponds to extra terms appearing in

the denominator of the second term in Equation 24. Variations on

these models can produce other useful functions. Trivial

modifications allow the other comparison operations: greater-

than-or-equal, less-than, and less-than-or-equal. More interesting-

ly, consider a model with a single transcription factor A, which can

be obtained by dropping all equations from the model that involve

B. Suppose that A activates transcription. Further, suppose that Z
dimerizes at forward rate rz and that the dimer itself is inert and

degrades at some rate dz, but that Z on its own does not decay.

Then Equation 12 is replaced by

ZzZ ?
rz

Z2 ð26Þ

Z2 ?
dz 1 ð27Þ

If rtzKoara = dtrz and Koa[Atot]%1, then at steady state

Z½ �&
ffiffiffiffiffiffiffiffiffiffiffi
Atot½ �

p
. Genes that approximate other fractional powers

can be constructed by assuming more complicated promoter-

binding or degradation schemes.

Accuracy depends on promoter occupancy
The accuracy with which the models in Figure 2 approximate

the desired operations depends on the kinetic parameters as well as

the transcription factor concentrations [Atot] and [Btot]. We analyze

accuracy in terms of relative error. For the arithmetic operations of

addition, multiplication, division, and zero-truncated subtraction,

we define relative error as
f Atot½ �, Btot½ �ð Þ{ Z½ �j j

f Atot½ �, Btot½ �ð Þ , where f is the

desired operation. This is not well defined when f is zero.

However, for the models in Figure 2, [Z] = 0 whenever f is zero, so

we can take the relative error to be zero. For the comparison

operations we define relative error as
f Atot½ �, Btot½ �ð Þ{ Z½ �j j

Zon

. The

relative error can be calculated by substituting the formula for [Z]
in Figure 2B into the definition for relative error. Figure 3 shows the

relative errors of the six gene models from Figure 2. An advantage to

studying this notion of accuracy is that the relative error can be easily

expressed in terms of the fraction of time the promoter spends in

different binding states (Figure 3, third column).

For the arithmetic operations, relative error is generally increasing

in [Atot] and [Btot] as well as the equilibrium association constants for

the binding of A and B to the DNA (Figure 3, second column). Thus,

the approximations are most accurate when the concentrations of the

transcription factors are small or when they bind weakly to the

DNA—as already emphasized in the third column of Figure 2B.

Intuitively, this keeps the transcriptional response in the linear regime.

Saturation of the transcription rate, due to high concentration of

transcription factor(s) or strong transcription factor binding, reduces

accuracy. Indeed, the relative error of the addition, multiplication

and zero-truncated subtraction genes is simply the fraction of time

that the DNA is bound by either transcription factor. The division

gene is a partial exception to these rules. First, its relative error is

decreasing in Kob and [Btot], not increasing. Second, the relative error

is equal to the fraction of time the DNA is not bound by B.

The effects of these parameters cannot be considered in

isolation, however, because the parameters as a group must satisfy

the production-decay balance shown in Figure 2B. For the

addition gene, for example, small transcription factor association

constants, which result in an accurate approximation, must be

balanced by large rates of transcription and/or translation or small

rates of transcript and/or protein decay.

For the comparison operations, accuracy is highest when A and

B bind strongly to the promoter. If Koa and Kob are small and if

[Atot] and [Btot] are just slightly different, then there is only a small

amount of undimerized transcription factor binding weakly to the

promoter, and this does not provide sufficient transcriptional

activation (in the case of .) or repression (in the case of = ). For

either gene, the relative error is either zero or to, depending on

whether the comparison is true or false.

Noise in the output is independent of accuracy
In a stochastic kinetics interpretation of the model in Figure 1

(Equations 1 to 12), the output protein concentration varies over

time even if [Atot] and [Btot] are fixed. Let X(t) denote the

concentration of molecular species X at time t. Noise in Z(t),
defined as the standard deviation of Z(t) over time divided by the

mean of Z(t) over time, can be attributed to three sources: (i)

inherent fluctuations due to the stochastic birth-death process for

Z, (ii) variability in T(t) due to its own inherently stochastic birth-

death process, which in turn creates variability in the production

rate of Z, and (iii) variability in the promoter state, which affects

the production rate of T, and by extension, of Z. If one assumes

that the transcription factor binding reactions are at steady state,

then the third source of noise is absent, and the noise in Z(t) is

equivalent to that in the simpler system

1?
rt

T ð28Þ

T ?
rtz

TzZ ð29Þ

Analytic Operations by Transcriptional Regulation
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T ?
dt 1 ð30Þ

Z ?
dz 1 ð31Þ

where rt is the net rate of transcript production.

rt~
rozraKoa A½ �zrbKob B½ �zrabKoaKab A½ � B½ �

1zKoa A½ �zKob B½ �zKoaKab A½ � B½ � ~

rotozratazrbtbzrabtab

ð32Þ

For this system, the moments of Z can be calculated exactly from

the chemical master equation, and the noise is [44]

g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z½ � 1z
rtz

dtzdz

� �s
ð33Þ

Importantly, the noise in Z(t) bears no necessary relationship with

the accuracy with which [Z] approximates a desired function,

because accuracy and noise depend on different sets of parameters.

For the addition gene, for example, accuracy is determined by

Koa and Kob. These could be large or small regardless of the noise

level, which is determined by rtz, dt and dz. This is true even

considering the production-decay balance constraint for the gene,

rtzraKoa = rtzrbKob = dtdz. The parameters ra and rb do not occur

in the formulas for either accuracy or noise and can be used to

ensure that the constraints are satisfied. This is essentially the same

as the observation by Thattai and van Oudenaarden that the

mean and variance of gene expression levels are controlled by

independent sets of parameters [44].

If the transcription factor binding reactions are not at steady

state, then the third source of noise in Z(t) returns. Intuitively,

however, the faster the binding and unbinding reactions are

compared to the rate of transcription, the more this noise is filtered

out by the slower transcription process. For example, consider the

addition gene with inputs [Atot] = 30 molecules and [Btot] = 70

molecules. We used the Gillespie algorithm [45] to simulate the

stochastic chemical kinetics defined by Equations 1 to 12, but

replacing the transcription factor-DNA binding and unbinding

rates (foa, fob, boa, bob) by scaled versions (rfoa, rfob, rboa, rbob).

By varying r, we could change the rates of binding and unbinding,

while leaving Koa and Kob constant. (See Materials and Methods

for the full set of kinetic parameters.) Figure 4A shows three

sample traces of Z(t) for three different choices of r, in which the

noise in Z(t) can be seen to decrease for increasing r. Figure 4B

shows the noise in the simulated Z(t) for a wider range of r. For

sufficiently large r, the steady state approximation for the

promoter is good, and the noise is seen to converge to the value

predicted by Equation 33, indicated by the dashed line. Figure 4C

shows that the empirical mean concentration [Z] is at nearly the

correctly value of 100, and is independent of r. Independence of

accuracy from promoter state fluctuations has been shown

analytically via Master equation analysis for some binding

scenarios [46], but should hold in general for our models, as

noise depends on both the binding and unbinding rates of

transcription factors, whereas accuracy depends only on the ratios

of the rates.

Example: A network for detecting statistically significant
elevation in a time varying signal

Arithmetic genes can be combined into networks to perform

more sophisticated computations. As an example, consider a cell in

which the concentration of a molecule I varies with time. Suppose

it is important for the cell to detect times at which I(t) is

significantly elevated. For example, the cell might be a bacterium

and I(t) might be correlated to the concentration of an

extracellular sugar. If the bacterium encounters a high-sugar

environment, it may want to begin expressing the genes needed to

transport and metabolize the sugar. Or, I may be a toxin, and high

toxin levels might trigger a defensive or developmental decision,

such as sporulation, to protect the bacterium. In a synthetic

biology context, I might be a signal sent by the experimenter to

trigger a response or a marker for a diseased cell that should be

destroyed.

Figure 3. Accuracy with which the genetic designs in Figure 2 approximate the intended operations. We quantify accuracy in terms of
relative error—|f([Atot],[Btot])2[Z]|/f([Atot],[Btot]) for the arithmetic operations, and |f([Atot],[Btot])2[Z]|/Zon for the comparison operations, where f is the
operation being approximated. The second column in the table gives relative error in terms of the kinetic parameters. The third column gives the
relative error in terms of the fraction of time the promoter spends bound by different combinations of transcription factors at steady state.
doi:10.1371/journal.pcbi.1000064.g003
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A single threshold-activated gene, for example the ‘‘greater

than’’ gene of Figure 2, provides a simple solution to this problem.

However, such a gene requires a predefined notion of how large a

signal is considered elevated. Further, a chance fluctuation in the

signal or in the transcriptional machinery itself might trigger a false

response. The feedforward motif [47] is one way to reduce

incorrect responses due to fluctuations. This motif describes a set

of three genes in which gene 1 regulates gene 2, and both genes 1

and 2 regulate gene 3. The feedforward motif appears far more

often than chance in natural genomes [48,49], and presents a

variety of temporal information processing possibilities [50,51].

Among them is the ability to detect sustained, rather than merely

transient or accidental, increases in an incoming signal. However,

the level of signal that is considered elevated is still preordained.

We consider a more challenging version of the problem in which

the statistics of the signal are not known ahead of time. This may be

because the operating environment of the cell is not known a priori or

because the signal itself is difficult to measure experimentally.

Whether or not the signal is elevated at a given moment thus

depends on the the signal’s mean value and typical fluctuations—

properties which may themselves change over time. More formally,

if the statistics of I(t) are relatively constant for some period, then a

natural definition of elevated is I(t).mI+csI, where mI is the mean of

I(t) over time, sI is the standard deviation, and c is a constant

specifying how large an elevation is of interest. To solve the problem,

the cell must identify the signal statistics mI and sI, and then compute

whether the signal is elevated at any particular time.

Figure 5A depicts a network of arithmetic genes that

accomplishes this task. The circles represent genes and an arrow

from one gene to another means that the first gene’s protein acts as

an input to the second gene. The network comprises arithmetic

genes for multiplication, addition, subtraction, taking the square

root, and comparison, as well as two genes labeled by m. The

arithmetic and comparison genes are assumed to reach steady

state at a faster time scale than variations in the input signal I(t).

The two m genes are simply activated proportional to their input

and are assumed to reach steady state at a slower time scale than

variations in the input signal. Thus, the m genes effectively

compute a recency-weighted time-average of their inputs, the

exact nature of which depends on the details of the kinetic

parameters. Gene G1 multiplies I(t) by itself, and because G1

operates at a faster time scale than I, we can approximate the

expression of its protein as Z1(t) = I(t)2. Gene G2 averages Z1(t)
over time, so we can approximate its expression as Z2(t) =
Et(Z

1(t)) = Et(I(t)2), where Et denotes averaging over time. By

similar reasoning, the expression of genes G3 and G4 is

Z3(t) = Et(I(t)) and Z4(t) = (Z3(t))2 = (Et(I(t)))2. Genes G5 and

G6 compute
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 tð Þ{Z4 tð Þ

p
~sI . (See Equations 26 and 27 and

surrounding discussion for the square root function.) G7 is a

modified addition gene which computes Z7(t) = mI+csI, for

constant c, and G8 compares this result to I(t), turning on when

the latter is greater than the former.

To test this network, we simulated a differential equation model

of transcript and protein dynamics subject to a time-varying input

(see Figure 5B and Materials and Methods). The simulation

covered 20 days during which the signal’s mean or standard

deviation changed three times. There were also six brief spikes in

the signal. We chose c = 3, so that G8(t) should turn on, to an

expression level of 100 nM, whenever I(t) exceeded its mean plus

three standard deviations. Details of the simulation, including the

exact equations and kinetic parameters, can be found in the

Materials and Methods section.

Figure 5C–E shows the results of our simulation. The simulation

covers 20 days of simulated time, though we do not show the first

3 days during which a transient due to the initial conditions

disappears. Figure 5B shows the input signal, and Figure 5C shows

the overall response of the network to that signal. The network

responds at the times that it should and at no other times. Its

response to the input spikes and the increase in oscillation

amplitude on day 14 are brief and do not reach the fully-on level

of 100 nM, mainly because the elevations themselves are brief.

When the signal jumps higher on day 8 and remains there, the

network responds for longer and reaches a fully-on level. However,

this response too vanishes as the network adjusts to the change in

signal statistics. (The problem statement requires adjustment to

changing signal statistics, so that elevation is relative to the recent

mean and standard deviation of the signal. If a more sustained

response is desired, G8 could be augmented with a positive

feedback loop to keep it activated once triggered.) Figure 5D,E

show the mean and standard deviation of the signal’s oscillations

and the network’s recency-weighted estimates of signal mean and

standard deviation. Interestingly, changes to the signal mean on

days 8 and 11 are initially interpreted by the network as changes in

the standard deviation of the signal. Only over the course of

several days is the mistake rectified, with the mean estimate

shifting to the correct value and the standard deviation estimate

returning to its previous, correct level.

Approximating analytic functions
The elementary arithmetic operations provide a basis for analog

computation, in that these operations can be combined to

compute more complex functions. However, from the standpoint

Figure 4. Stochastic kinetics simulation of an Addition gene, for varying rates of transcription factor binding and unbinding. Larger
values of r correspond to both faster binding and unbinding, with no change in the equilibrium association constant. (A) Sample traces of the
output, Z(t). (B) Empirical noise (standard deviation divided by mean) in the output. Dashed line gives the expected noise under the steady state
assumption for the promoter. (C) Mean output, which is independent of r. See Materials and Methods for details, including kinetic parameters.
doi:10.1371/journal.pcbi.1000064.g004
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of the cell, it seems desirable to perform computations with as little

biomolecular machinery as possible. From the form of

Equation 24, it is not clear how other elementary operations,

such as exponentiation, logarithms, or trigonometric functions,

might be implemented. Whether these particular functions are of

useto cells can be debated, but certainly cells need to compute

more complicated functions than elementary arithmetic. One way

to approximate more complicated operations is by power series

expansions. The focus of this section is on analytic functions—

functions with Taylor series expansions that converge pointwise to

the correct values, at least for some range of inputs. For simplicity,

we consider single-input functions. Generalization to multiple-

input functions is straightforward.

Figure 6A shows a schematic of a model describing a single gene

regulated by one type of transcription factor, denoted by A. We

assume N binding sites for A on the gene’s promoter, each acting

independently with equilibrium association binding constant K.

We assume that transcription rate depends only on the number of

binding sites occupied by A. This model is formalized by the

reaction equations below.

Pi '

K N{ið ÞA
iz1

Piz1 ð34Þ

Pi ?
ri

PizT ð35Þ

T ?
rtz

TzZ ð36Þ

T ?
dt 1 ð37Þ

Z ?
dz 1 ð38Þ

Here, Pi denotes the promoter bound by i copies of factor A. T

denotes transcript, and Z denotes protein. The steady state

expression of protein Z is

Z½ �~ rtz

dtdz

|

r0zr1KN A½ �z . . . zriK
i

N

i

� �
A½ �iz . . . zrN KN A½ �N

1zK A½ �ð ÞN
ð39Þ

This can also be written as Z½ �~ rtz

dtdz
|
PN

i~0 riti, where

ti~Ki N

i

� �
A½ �i
.

1zK A½ �ð ÞN is the fraction of time i binding

sites for A are occupied. Now, consider an analytic function f(x)

with power series expansion

f xð Þ~c0zc1xzc2x2
�

2zc3x3
�

6z . . . ð40Þ

Suppose first that all the ci are nonnegative. Then the gene can

Figure 5. (A) Diagram of a network of arithmetic genes that computes the mean and standard deviation of a time-varying signal,
I(t), and responds when the signal is statistically significantly elevated. Circles represent genes. An arrow between genes Gi and Gj means
that Gi’s protein is an input to (transcription factor for) Gj. Symbols inside the circles denote the operation computed. m denotes a gene that is
activated proportional to its input, but operates at a slower time scale than the other genes, resulting in a recency-weighted temporal average of its
input. (B–E) Simulation results. (B) The input signal is primarily a sinusoidal oscillation with Gaussian noise added. The mean changes on days 8 and
11, and the amplitude changes on day 14. There are short spikes in the signal on days 5, 6, 7, 17, 18 and 19. See Materials and Methods for details. An
‘‘X’’ marks each time the signal is significantly elevated compared to its recent mean and standard deviation. (C) The overall response of the network
is given by the expression level of gene G8. It correctly flags each significant elevation of the signal and does not respond at any other time. The
responses to the input spikes do not last long because the spikes themselves do not last long. The responses to the changes in the oscillations on
days 8 and 14 are short because the network quickly adjusts to the changed statistics of the input signal. (D,E) The mean and standard deviation of
the sinusoidal oscillations, and the network’s recency-weighted estimates of the mean and standard deviation of the signal, as encoded by the
concentrations of the proteins for genes G3 and G6.
doi:10.1371/journal.pcbi.1000064.g005

ð39Þ
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approximate the function up to order N by assuming K[A]%1, so

that the term (1+K[A])N is approximately one, and matching the

coefficients in Equations (39) and (40).

rtzriK
i

dtdz

N

i

� �
~

ci

i!
ð41Þ

If some ci are negative, then the series can be divided into positive

and negative components.

f xð Þ~cz
0 zcz

1 xzcz
2 x2

�
2zcz

3 x3
�

6z . . .

{c{
0 {c{

1 x{c{
2 x2

�
2{c{

3 x3
�

6{ . . .
ð42Þ

where ci
+ = max(ci,0) and ci

2 = 2min(ci,0). Two genes of the type in

Figure 6A can then combine to compute the function, one

computing the positive part of the series and one computing the

negative part. The difference in the protein concentrations of the

two genes approximates f.

For example, suppose the cell wanted to approximate the cosine

function using a pair of genes of the type in Figure 6A with five

binding sites. The Taylor series expansion for cosine, centered at

zero, has coefficients c0 = 1, c1 = 0, c2 = 21, c3 = 0, c4 = 1, … The

blue and green curves in Figure 6B show, respectively, the cosine

function and its 5th order Taylor series approximation. Using

biologically plausible parameters for the transcription factor

binding affinity, translation rate, and rates of transcript and

protein decay (see Materials and Methods), Equation 41 can be

solved for the necessary transcription rates, ri. The red curve in

Figure 6B shows [Z] = [Z+]2[Z2], where [Z+] is the steady state

protein concentration for the gene approximating the positive

portion of the series, and [Z2] is the steady state protein

concentration for the gene approximating the negative portion

of the series. The Taylor series approximation and [Z] match each

other closely, though neither is a good approximation to cos([A])

above a concentration of about [A] = 2 nM. If the cell places

importance on approximating the function at higher concentra-

tions, then different parameters are need. The cyan curve in

Figure 6B shows shows [Z] for the same two-gene system when

parameters are optimized to minimize the mean square error

between [Z] and cos([A]) over the range [A]M[0,2p] Nm. (See

Materials and Methods for details.) Sacrificing quality only slightly

near zero allows the gene pair to capture a full period of the

function, while retaining biologically plausible parameters.

Discussion

We have shown that different parameterizations of a simple

model of transcriptional regulation can reproduce binary arith-

metic operations (addition, zero-truncated subtraction, multiplica-

tion, division), various inequality comparisons, and fractional

powers. Unary, ternary, quaternary, etc. operations can be

similarly implemented at a biochemical level. These models are

not the only way, and may not be the best way, that these

operations can be implemented. For example, we have not

considered models with cooperativity between binding sites,

allosteric features for transcription factors, regulation of translation

or degradation, or chromatin-related mechanisms. One way to

explore the utility of these mechanisms would be to perform an

explicit computational search through some appropriate space of

allowed reaction systems (as in Deckard and Sauro [34], for

example), searching for systems with superior performance in

terms of various metrics (such as accuracy, noise, robustness,

evolvability, or energy consumption). Nevertheless, our simple

models demonstrate the possibility of arithmetic computations at

the level of transcriptional regulation.

Other functions, such as exponentiation, logarithms, and

trigonometric functions, could be computed by combinations of

the arithmetic operations. However, this would be energetically

wasteful and would require many genes. A more efficient

approach is toapproximate directly by using more complicated

regulatory machinery. We showed that a pair of genes, each with

N binding sites for a transcription factor, can approximate any

analytic function up to order N by reproducing its power series

approximation. We also showed that by adjusting the parameters

of such a gene pair, the analytic function can be approximated well

over a larger range of inputs. While this drastically reduces the

number of genes used to compute such functions, other

mechanisms may be yet more efficient, and this is an avenue for

future research.

Our emphasis on arithmetic computations stands in contrast to

work on logical or Boolean notions of computation in genetic

networks. Interestingly, Hjelmfelt et al. [12] and Magnasco [13]

both considered the problem of addition, but in the binary sense,

with different chemical species effecting each bit of the operation.

Figure 6. Approximation of analytic function. (A) Schematic of interactions for a gene regulated by a single transcription factor, A, via N
independent binding sites. (B) For varying input levels, [A], the four curves represent: cos([A]), the 5th order Taylor series approximation of cosine
centered at zero, the steady state output ([Z]) of a pair of genes computing the Taylor series approximation to cosine, and the steady state output
when kinetic rates are optimized so that [Z]<cos([A]), over the range [A]M[0,2p] nM.
doi:10.1371/journal.pcbi.1000064.g006
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In general, there is no relationship between an arithmetic

interpretation of a gene’s behavior—which is accurate for a

limited range of transcriptionfactor concentrations—and a logical

interpretation—which focuses on the extremes of low and high

transcription factor concentrations. For example, in our model for an

Addition gene, transcription occurs whenever factor A or factor B is

bound, keeping in mind that factors A and B cannot bind

simultaneously (Figure 2A). Such a gene could be interpreted as

implementing the logical OR function, because it would be

expressed if either factor A or factor B is in high concentration.

Recall, however, that an alternate design for an Addition gene allows

A and B to bind simultaneously, as long as there was no transcription

when both were bound. This gene would be interpreted as

implementing XOR, as it would be expressed if A or B, but not

both, were in high concentrations. Conversely, our designs for the

zero-truncated subtraction function and the greater than function

have identical logical structure (Figure 2A), but behave quite

differently as arithmetic operations. Thus, a gene’s arithmetic

behavior, if any, is not determined by its logical behavior and vice-

versa. This is an important caveat for the interpretation of empirical

measurements of gene response surfaces, which may be probed at

non-physiological concentrations of regulatory molecules.

For our gene models to accurately approximate the desired

operations, certain products of kinetic parameters must be equal.

For example, the multiplication gene requires that rtzrabKoaKab =
dtdz. Such a constraint may be biologically implausible or difficult

to maintain over different cellular conditions. If the constraint did

not hold, the expression of the multiplication gene would still be

proportional to the product of the transcription factor expression

levels—the role of the constraint is only to scale the output

expression correctly. Thus, violation of the constraint in a

particular situation need not invalidate the interpretation of the

gene as performing multiplication. The case is similar for all the

genes in Figure 2 except the addition gene. This gene requires

rtzraKoa = rtzrbKob = dtdz. If those equalities failed, but raKoa =
rbKob, then the expression of the gene would still be proportional

to the sum of the transcription factor expression levels. If the

latter equality failed as well, then the gene could be interpreted

as performing a weighted sum. Indeed, we took advantage of

this possibility in our design for the network that detects

significant elevations in a time varying signal (see gene G7 in

Figure 5A).

In our models, precision (noise) in the output depends on the

transcription factor binding and unbinding rates, while the accuracy

of the output depends only on the ratio of the rates. This implies that

there is no trade-off between precision and accuracy. Each can be

selected independent of the other, by evolution or by synthetic

biologists, subject to biological limitations on the parameters. We

have not analyzed the speed with which these networks reach

equilibrium, which could also be an important factor in some

settings. Indeed, in many processes, such as development,

expressing genes at the correct time is just as important as

expressing them at the right level. Further, some genetic networks,

such as circadian networks [52] or the feed-forward motif [50,51],

exist solely to keep time or process temporal signals. Our design and

analysis of a network that tracks the first and second moments of a

time varying signal and responds when the signal is statistically

significantly elevated demonstrates that genes performing arithme-

tic computations can be useful in temporal information processing.

An important avenue for further research is to consider more

dynamical notions of computation, including investigation of how

biochemical networks might implement computations from se-

quential signal processing or control theory.

We expect that notions of computation more sophisticated than

simple logical operations, already being documented experimen-

tally [4,5,32,53], will play an increasing role in our understanding

of transcriptional regulation and of biochemical systems more

generally. Our analysis of the analog computational abilities of

transcriptional regulatory networks is a step in this direction.

Materials and Methods

Our Gillespie simulations for the analysis of noise for the

Addition gene used a slightly simplified set of equations. Because

factors A and B cannot bind the promoter simultaneously, we

lumped the two bound states into one.

P0 ?
f AzBð Þ

P1 ð43Þ

P1 ?
b

P0 ð44Þ

where P1 denotes the promoter bound by either A or B, f is the

forward binding rate of A and B to the promoter, and b is the

unbinding rate. Transcription then follows the reaction

P1 ?
rt

P1zT ð45Þ

Translation, degradation of transcripts, and degradation of

proteins remained the same, following Equations (10) to (12).

We used the parameters [Atot] = [A] = 30 nM, [Btot] = [B] = 70 nM,

f ~r log2
3600

nM21?sec21, b = r sec21, rt = 1 nM?sec21, rtz~
log2

6

sec21, dt~
log2
60

sec21, dz~
log2
360

sec21, where r is the dimensionless

parameter we used to control the binding and unbinding rates of A

and B to the promoter, while leaving the equilibrium association

constant unchanged. For different values of r, the system was

simulated from the initial condition P0 = 1, P1 = T = Z = 0, for one

million reactions. Figure 4A plots initial portions of several of those

trajectories, but Figure 4B,C are based on the full one million

reactions.

Our simulations of the network for detecting elevated signals

involved 17 variables: the exogenous input I(t), and a transcript

concentration Ti(t) and protein concentration Zi(t) for each gene

i. All variables have units nanomolar (nM). The input signal was

primarily a sinusoidal oscillation with a period of four hours.

Oscillations had mean 10 and amplitude 2 for the first eight of the

20 days simulated, mean 20 nM and amplitude 2 nM for the next

three days, mean 10 nM and amplitude 2 nM for another 3 days,

and mean 10 nM and amplitude 6 nM for the final six days. An

independent Gaussian disturbance with mean zero and variance

one was added to the signal during every 10 minute period. At the

starts of days 5, 6, 7, 17, 18 and 19, there were 10 minute spikes in

the signal at levels 16, 18, 20, 20, 22 and 24 nM respectively. We

assumed the transcription factor binding equations were at steady

state in order to speed the calculations. Transcription was driven

at the rate expected based on the transcription factor concentra-

tions. The exact differential equations simulated were:

_TT1~
r1

abK1
oaK1

abI tð Þ2

1zK1
oaI tð ÞzK1

oaK1
abI tð Þ2

{d1
t T1 tð Þ ð46Þ

_ZZ1~r1
tzT1 tð Þ{d1

z Z1 tð Þ ð47Þ
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_TT2~
r2

aK2
oaZ1 tð Þ

1zK2
oaZ1 tð Þ{d2

t T2 tð Þ ð48Þ

_ZZ2~r2
tzT2 tð Þ{d2

z Z2 tð Þ ð49Þ

_TT3~
r3

abK3
oaI tð Þ

1zK3
oaI tð Þ{d3

t T3 tð Þ ð50Þ

_ZZ3~r3
tzT3 tð Þ{d3

z Z3 tð Þ ð51Þ

_TT4~
r4

abK4
oaK4

abZ3 tð Þ2

1zK4
oaZ3 tð ÞzK4

oaK4
abZ3 tð Þ2

{d4
t T4 tð Þ ð52Þ

_ZZ4~r4
tzT4 tð Þ{d4

z Z4 tð Þ ð53Þ

_TT5~
r5

aK5
oamax Z2 tð Þ{Z4 tð Þ,0

� �
1zK5

oamax Z2 tð Þ{Z4 tð Þ,0ð Þ{d5
t T5 tð Þ ð54Þ

_ZZ5~r5
tzT5 tð Þ{d5

z Z5 tð Þ ð55Þ

_TT6~
r6

aK6
oaZ5 tð Þ

1zK6
oaZ5 tð Þ{d6

t T6 tð Þ ð56Þ

_ZZ6~r6
tzT6 tð Þ{d6

z Z6 tð Þ2 ð57Þ

_TT7~
r7

aK7
oaZ3 tð Þzr7

bK7
obZ6 tð Þ

1zK7
oaZ3 tð ÞzK7

obZ6 tð Þ
{d7

t T7 tð Þ ð58Þ

_ZZ7~r7
tzT7 tð Þ{d7

z Z7 tð Þ2 ð59Þ

_TT8~
r8

aK8
oamax I tð Þ{Z7 tð Þ,0

� �
1zK8

oamax I tð Þ{Z7 tð Þ,0ð Þ{d8
t T8 tð Þ ð60Þ

_ZZ8~r8
tzT8 tð Þ{d8

z Z8 tð Þ2 ð61Þ

The system of differential equations was simulated using the

ode45 function of MATLAB. Equations 46 through 61 employ

several simplifications compared to the equations one would

obtain from a direct translation of the kinetic equations in Figure 1,

mainly for the purpose of improving numerical stability. For

example, we do not explicitly model the heterodimer of Z2 and Z4

called for by gene 5, which subtracts one concentration from the

other. Rather, we drive gene 5 transcription at a rate

corresponding to what would be observed if any available Z2

and Z4 dimerized instantly and irreversibly. Similarly, we do not

model production and subsequent decay of the homodimer of Z6

suggested by our design for the square root operation. Rather, we

simply assume that Z6 dimerizes at rate dz
6 and instantly decays.

Table 4. Parameters for the simulation of the network for detected significant elevations in a time-varying signal.

Gene
dt

sec21
dz

sec21
rtz

sec21
ra

nM?sec21
rb

nM?sec21
rab

nM?sec21
Koa

nM21
Kob

nM21
Kab

nM21

1 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

10 log 2ð Þ
3

1

2 log 2ð Þ
60

log 2ð Þ
36,000

log 2ð Þ
6

1 log 2ð Þ
360

3 log 2ð Þ
60

log 2ð Þ
36,000

log 2ð Þ
6

1 log 2ð Þ
360

4 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

10 log 2ð Þ
3

1

5 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

10 log 2ð Þ
3

6 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

10 log 2ð Þ
3

7 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

10 10 log 2ð Þ
3

log(2)

8 log 2ð Þ
60

log 2ð Þ
300

log 2ð Þ
6

log 2ð Þ
30

10

doi:10.1371/journal.pcbi.1000064.t004

Table 5. Optimized parameters for a pair of genes approximating the cosine function.

Gene rtz dt dz K r0 r1 r2 r3 r4 r5

+ 0.1049 0.0761 0.0013 0.0972 0.0020 0.0018 0 0 1.1420 0.0003

2 0.1471 0.0031 0.0007 0.0419 0 0 0 0.0161 0.0214 0

Units for the parameters are the same as in Table 4.
doi:10.1371/journal.pcbi.1000064.t005
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The kinetic parameters are summarized in Table 4. The ‘‘fast’’

genes were given protein half-lives of 5 minutes and the ‘‘slow’’

genes were given protein half lives of 10 hours. These values are

somewhat extreme, but the short half-life is consistent with

measurements for actively degraded proteins [54] and both half-

lives are within the range of recent measurements in a genome-

wide study of yeast [55]. All other parameters are in typical ranges.

For our study of the cosine approximation, we used parameters

rtz~
log2

6
sec21, dt~

log2

60
sec21, dz~

log2

600
sec21, and

K = 0.01 nM21. For the direct Taylor series approximation,

Equation 41 implied transcription rates r0
+ = 5.7861025

nM?sec21, r2
2 = 2.8961022 nM?sec21, and r4

+ = 48.1 nM?sec21.

For the optimized curve, we allowed all the parameters to vary,

including the transcription rates of the positive and negative genes,

and their rates of translation and transcript and protein decay. We

use the matlab function ‘‘fminsearch’’ to optimize the parameters,

minimizing the mean squared error between steady state [Z] and

cos([A]). Because all parameters should be non-negative, they were

reformulated as pi = exp(bi) where pi is the ith parameter and bi is the

unconstrained parameter that we actually optimized. This resulted

in the constrained parameters shown in Table 5.
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