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Abstract

Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC).
Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as
an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period
activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible
mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex.
We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect
during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal
response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in
perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term
memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs
by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent
images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and
present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched
filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across
time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results,
suggesting that area TE neurons store a synaptic memory trace during short-term visual memory.
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Introduction

Visual short-term, or working, memory is often tested with a

sequential delayed match-to-sample (DMS) task. First an image to be

remembered (the sample) is presented. Then a sequence of images

(the tests), separated by short delays, is presented. The subject is

supposed to respond when the remembered image reappears (the

match trial). The comparison between images presented at different

times requires the brain to compare its current neuronal response

with the one that occurred earlier. How this memory task is

performed is not well understood, but where it is performed is well

known. Analysis of behavior following selective ablations has shown

that two large brain regions are important for performing this task:

inferior temporal cortex (ITC) and prefrontal cortex (PFC) [1–4].

Selective ablations within ITC, particularly perirhinal cortex,

interfere with visual memory [5–9], but ablations of area TE have

different effects than ablations of perirhinal cortex [10,11]. For

example, after area TE ablation, memory at both short and long

delays is impaired, whereas after ablations of perirhinal cortex only

memory at long delays is impaired [11].

Neurons in both area TE and perirhinal cortex are selective for

visual patterns [12–15]. In match-to-sample or stimulus-stimulus

association tasks, the selective neuronal activity representing the

sample or pair-associate image persists during the interstimulus

interval for a minority of neurons in both area TE and in

perirhinal cortex [16–19]. This delay period activity has been

thought to play a critical role in maintaining short-term memory.

However, the delay-period activity in perirhinal neurons is less

consistently selective for the sample stimuli after distractors are

presented [15,20].

Delay period activity during the DMS task is also found in

lateral PFC, but in less than half of the neurons [20]. This activity

persists and keeps its selectivity for the sample despite distractors

[20]. The delay-period activity in prefrontal cortex has also been

linked to motor-response selection [20–29].

Stimulus-selective delay-period activity has been hypothesized

to be the memory trace, and consequently short-term memory has

been extensively modeled with attractor networks or feedback

networks that maintain their activity after the stimulus goes away

[30–37]. In contrast, Eskandar et al. [38] developed a multipli-
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cative neural network model that successfully predicted the

responses (of ITC neurons in area TE) to both matching and

nonmatching test images. In their experimental data few neurons

showed stimulus-selective delay-period activity [12]. Thus, their

model did not depend on a reverberating circuit, and in fact did

not propose any mechanism for storing the memory trace. Instead,

it proposed a generic model that used correlation of a stored

sample response that was somehow ‘‘played back’’ and compared

with each test response. Here we report data from a DMS task

showing that single neurons in area TE, but not perirhinal cortex,

of inferior temporal cortex, have significant trial-by-trial correla-

tions in the fluctuation of their activity (noise) across sample and

match periods. These correlations suggest that some proportion of

the neuronal response elicited by the sample stimulus is stored

locally, and acts on subsequent stimulus elicited activity.

We present a computational model, based on single-trial

learning in a matched filter, showing that the observed correlations

could arise from storage of a working memory trace using rapid,

short-term synaptic plasticity, and show how the outputs of these

neurons could be utilized to detect the match. In this model, the

brain does not detect the noise correlations themselves, but simply

looks at the total level of activity in the TE neurons to perform the

DMS task. Nonetheless, the noise correlations are important

because many models of brain function could reproduce the DMS

behavior of the monkeys, hence correct performance by itself is

not a good criterion for selecting a model. For example, consider

recording music on either an analog magnetic tape or on a digital

memory stick. If you play back either recording, they will both

reproduce the music. And, if you repeat the recordings hundreds

of times, the average sound reproduction across these trials will be

the same from both. However, if you carefully analyze the sound

from each trial, certain systematic anomalies will arise. The analog

tape will not move at constant speed, giving rise to shifts in

frequencies (wow and flutter), and the digital recording will show

only a finite set of levels (quantization). These imperfections have

nothing to do with the task of reproducing the sound, but are a

unique signature of the recording mechanism and can be used to

differentiate between them. Similarly, we argue that the noise

correlations are a clue to the mechanism used in short-term visual

memory. The matched filter is performing the DMS task by

noticing when the overall response is high, but it is also leaving the

signature of its mechanism on the responses in the correlated

noise. Thus, we can use the correlated noise to infer something

about the mechanism, even though it is an epiphenomenon

unnecessary for the DMS task.

Results

We collected responses from two different parts of ITC: 35 TE

neurons and 11 perirhinal neurons from two monkeys performing

a visual DMS task (Figure 1A) using eight familiar stimuli

(Figure 1B). About 45% of trials had no nonmatch stimuli

(sample-match) and about 45% of trials had one nonmatch

stimulus (sample-nonmatch-match); the other 10% of trials had

two nonmatch stimuli (sample-nonmatch-nonmatch-match) to

keep the monkeys attentive to the task. Each picture from the

stimulus set was presented as the sample 7–82 times for TE

neurons, and 3–82 times for perirhinal neurons. The sample

stimulus elicited responses between 0 and 115 spikes/s (medi-

an = 10 spikes/s) for TE neurons, and between 0 and 78 spikes/s

(median = 10 spikes/s) for perirhinal neurons. In TE, responses

were excitatory in 20 neurons, inhibitory in 2 neurons, and either

excitatory or inhibitory depending on stimulus pattern in 13

neurons (p,0.05, paired Wilcoxon test). In perirhinal cortex,

responses were excitatory in 7 neurons, and were either excitatory

or inhibitory depending on stimulus pattern in 4 neurons.

The stimulus-elicited responses of both TE and perirhinal

neurons were stimulus selective, as expected [12,13,39]. In area

TE, the effect of the stimulus identity was significant in the sample,

nonmatch, and match phases for 29, 34, and 32 of the 35 neurons,

respectively (Figure 2A; response variance explained; 1-way

ANOVA, p,0.05). In perirhinal cortex, the effect of the stimulus

identity was significant in the sample, nonmatch, and match

phases for 9, 9, and 8 of the 11 neurons, respectively. Stimulus

selectivity explained 26% (mean) of the response variance in TE,

and 13% in perirhinal neurons (Figure 2A).

The responses of 16 out of 35 TE neurons had a signi-

ficant contribution from task phase, i.e. factors indicating

sample, nonmatch, and match, (variance explained using

Figure 1. Sequential delayed match-to-sample task. (A) Event
sequence. First, a gray fixation spot appears in the center of the screen.
Once the monkey fixates on the spot, a sample image replaces the
fixation spot for 0.5–1.0 s, after which the spot is restored. After a
variable delay-period, the image/spot sequence is repeated 0, 1, 2, or 3
times with nonmatching patterns. Finally, the original (matching)
pattern reappears; the monkey has to release the bar within 2 s to get a
drop of water as a reward. (ITI, inter-trial interval). (B) Stimuli.
doi:10.1371/journal.pcbi.1000073.g001

Author Summary

To know whether one is looking at an object seen a few
seconds ago or not depends on visual short-term memory.
To study short-term memory, we recorded single neuronal
activity from two brain areas of monkeys, the TE and the
perirhinal cortex of the temporal lobe, known to be
important in visual pattern recognition and memory. The
monkeys performed a short-term visual memory task, a
sequential match-to-sample. The monkeys had to signal
when a sample stimulus reappeared in a short sequence of
stimuli. In area TE only, small fluctuations occurring for a
sample-elicited response were correlated with the re-
sponses when a match stimulus reappeared, as if a
snapshot of the sample-induced response was stored
and recalled. In our modeling, we propose that each TE
neuron stores and compares the signals during short-term
memory by storing the response to the sample in local and
rapidly adapting synapses. Subsequent stimulus-elicited
responses are then automatically multiplied by the locally
stored signal. Here, we show that the match can be
detected when the sum of the outputs of the population
of TE neurons crosses a threshold. Correlated fluctuations
will be a signature this type of local memory storage
wherever it occurs in the brain.

Memory Trace in Synaptic Weights of IT Neurons
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2-way ANOVA with factors ‘‘stimulus identity’’ and ‘‘task

phase’’, R2 = 4.160.5%, mean6standard error of the mean,

p,0.05), consistent with other studies [12,13]. For 3 out of the

11 perirhinal neurons the contributions of task phase were

significant (R2 = 3.861.7%).

In the inter-stimulus delay periods, for the 35 TE neurons, the

contribution of the sample stimulus identity was small but

significant for 12 neurons in the delay-period between sample

and nonmatch stimulus presentation (a 200-ms period before

nonmatch stimulus presentation), and for 2 neurons in the delay

period between nonmatch and match stimulus presentation (a

200-ms period before match stimulus presentation) (Figure 2B,

left). The effect of the sample stimulus identity was not

significant for any of the 11 perirhinal neurons in the two

delay-periods (Figure 2B, right). Thus, in our sample of neurons

in two parts of IT cortex, area TE, but not perirhinal cortex,

had delay-period activity that was (weakly) related to the sample

stimulus.

To quantify the response variation (noise), the phase- and

stimulus-dependent mean spike count for each neuron was

subtracted from the spike count on each trial in the corresponding

task phase. These residuals (noise) were not dependent on the

stimulus (1-way ANOVA). However, the deviations during

different task phases were correlated with each other, that is,

when the response to the sample was above the mean, the response

to the match was also likely to be above the mean. On a cell-by-

cell basis, the correlations between the sample vs. match deviations

were greater than the correlations between the sample vs.

nonmatch deviations for most (28/35 = 80%) of the TE neurons

(cf. example neuron in Figure 3A). In the sample-nonmatch-match

trials, the correlation between deviations for sample and nonmatch

images (variance accounted for by linear regression,

R2 = 7.561.8%, N = 35) was weaker than the correlation between

deviations in sample-match trials with no intervening nonmatch

image (R2 = 13.462.5%, N = 35; Figure 3C; paired t-test,

p,0.05). Thus, for periods separated by the same amount of

time, sample-match correlations are stronger than sample-

nonmatch correlations.

In sample-nonmatch-match trials, the correlations between

sample and match (R2 = 11.962.4%, N = 35) were still stronger

than those between sample and nonmatch, even though the time

between sample and match was longer and interrupted by a

nonmatch stimulus. Together, these comparisons show that the

correlations are not caused by a time-dependent process unrelated

to the DMS task. In contrast, the fluctuations in perirhinal neurons

(cf. example in Figure 3B) were not significantly different between

any conditions (for all pairs: R2,4.5%, N = 11, Figure 3D; paired

t-test not significant).

For TE neurons, in the sample-nonmatch-match trials, the

correlation between the sample response deviations and activity

during the delay-period between sample and nonmatch stimulus

presentation (R2 = 4.361.2%, N = 35, significant for 23/35) was

weaker than the correlation between deviations for sample and

nonmatch images (paired t-test, p,0.01). The correlation between

the sample response deviations and activity during the delay-

period between nonmatch and match stimulus presentation

(R2 = 3.460.7%, N = 35, significant for 18/35) was weaker than

the correlation between deviations for sample and match images

(paired t-test, p,0.001). The correlations for these two delay

periods against the sample response deviations were not

significantly different (paired t-test).

To check whether the observed correlation effects might have

arisen by chance, we shuffled the match responses within stimulus

pattern group to break the serial relationships between responses

within single trials of the DMS task. This shuffling retained the

mean response for each stimulus, but broke temporal relations

within single trials. All of the response correlations across time fell

to nearly zero after shuffling (R2 = 0.660.1%), and were

significantly different from the correlations before shuffling (paired

t-test, p,0.001).

Finally, to investigate whether the duration of the delay interval

affected the noise correlations, the data were partitioned by delay

length. The sample-match noise correlations in sample-match

trials with the delays in the range 0.3–0.5 seconds were

indistinguishable from those with delays in the range 0.5–0.8

seconds (paired t-test, not significant).

Figure 2. Response variance explained by stimulus identity,
demonstrating that these cells were stimulus selective. (A)
Percentage of variance explained by stimulus identity in the sample,
nonmatch, and match task phases for the population of 35 TE neurons,
and for the population of 11 perirhinal cortex neurons. In box plots, the
middle line indicates the median. The notches indicate the 95%
confidence interval for the median. The whiskers extend to the most
extreme data point which is no more than 1.5 times the inter-quartile
range from the box. Population distributions across both TE and
perirhinal cortex explained the same amount of variance in the sample,
nonmatch and match phases. However, in some cells, the behavioral
phase significantly influenced the response magnitude. (B) percentage
of variance explained by sample stimulus identity in a 200-ms delay
period before nonmatch stimulus presentation (Delay(NM)), and before
match stimulus presentation (Delay(M)).
doi:10.1371/journal.pcbi.1000073.g002
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Model Structure
The experimental results described above lead us to hypothesize

that the noise correlation is related to short-term memory, i.e., that

the correlated noise is a side-effect of the mechanisms of short-

term memory. Our new hypothesis of short-term memory storage

and recognition processes is similar to an engineering tool called a

matched filter, which is commonly used (e.g., in radar, radiology,

etc.) to compare an unknown signal with a known signal [40].

Signal encoding and learning mechanisms are required in any

episodic memory model, but we do not speculate about them here.

We also deal only with the information processing required, and

not with details (architecture, connections, and dynamics) of how a

neuronal circuit in cortex could perform the processing. We

concentrate instead on the model’s memory architecture. When

the image is the sample to be remembered, a learning command

(Learn in Figure 4) causes each input synapse of a TE neuron to set

its weight proportional to its current input (the learning

mechanism is not specified here, but any short-term process that

made the synaptic excitability high after strong inputs and low

after weak inputs would be sufficient.) During the sample

presentation of the i-th pattern, the image is sparsely encoded

across all N axons that project to TE neurons. A non-exclusive

subset of these N axons then project to a given TE neuron

(Figure 4). We model the connections from the encoder population

to the TE neuron with algebraic synapses (i.e., inputs are graded,

and can be positive or negative). The nature of the encoder is not

specified here. It is simply assumed that after the presentation of

the i-th pattern the spike count on the m-th axon branch is cmi.

Our results deal with two aspects of the data, the average

response of the neurons in the DMS task, and the noise on

individual responses. To analyze these two aspects, we present the

model in two forms, a deterministic model that predicts the

average responses of the neurons, and a stochastic model that

predicts the noise correlations. In the deterministic model no noise

is added to the encoder’s activity, so the input to the m-th synapse

on the k-th neuron after the i-th pattern is simply:

xkmi~cmi, m~1,:::,M ð1Þ

where M is the total number of synapses on the k-th neuron.

In the stochastic model, which is used to predict the correlated

noise seen in our experiments, several types of noise are added to

Figure 3. Correlations of response deviations. (A, B) Correlations between sample versus match (filled circles, solid line) and sample versus
nonmatch response deviations (open circles, broken line) for one TE (A) and one perirhinal neuron (B). The correlation for sample vs. match is
significantly different than for sample versus nonmatch deviations in (A) (Z statistic = 2.11, df = 366, p = 0.018). (C, D) Mean6SE of variance of response
deviations explained by TE (C) and perirhinal (D) populations. Differences between sample vs. match and other comparisons (either gray versus either
white bar) were significant only in TE (paired t-test, p,0.05).
doi:10.1371/journal.pcbi.1000073.g003

Memory Trace in Synaptic Weights of IT Neurons
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the encoder’s output. First, there is a common noise term (d) that is

added to each encoder output, representing a level of arousal.

Each encoder also has two independent noise contributions drawn,

for each synapse, from a distribution common across synapses: a

multiplicative (a) and an additive (b) noise. The input to the m-th

synapse on the k-th neuron is then:

xkmi~akmcmizbkmzd, m~1,:::,M ð2Þ

where akm, bkm, and d are samples of independent noise sources

(ahas mean 1 and b and d have mean zero), and M is the number

of synapses on the downstream neuron. All noise in the stochastic

model is referred to the output of the encoder neurons. The

samples of noise are drawn each time they are needed (e.g., three

times for sample-nonmatch-match trials). The cmi thus represent

the average, or expected value of each encoder output for a given

stimulus, and the xkmi represent the particular (noiseless or noisy)

sample.

The Synaptic Weight Memory Trace
When no learning is present in the model (e.g., for perirhinal

neurons), the synaptic weights at the m-th synapse of the k-th

neuron are all set to unity gain:

wkmi~1, m~1,:::,M: ð3Þ

When the i-th pattern is shown and learning is triggered, the

weight (strength) of the m-th synapse of the k-th neuron receiving

that input is set to:

wkmi~xkmi, m~1,:::,M: ð4Þ

These synaptic weights are the memory trace. For each

subsequent image the output of the TE neuron will be the

product of the encoder output elicited by the test stimulus and the

synaptic weights that hold the memory trace. Thus, the output of

each TE or perirhinal neuron is a correlation: the sum of the

product of the input activity with the stored weights. The response

of the k-th neuron to the pattern pair (sample i, test j) is simply the

sum over all M synapses:

Rk(i,j)~
XM
m~1

wkmixkmj ð5Þ

In the matched filter theory, the test image is considered as a

match if the activity summed across neurons is above a threshold.

Some subset of neurons will respond strongly (on average) to a

given sample pattern. When a nonmatch stimulus is later

presented, not all of these neurons will fire strongly, so the

product of weights and inputs (Equation 5) for at least some of

those neurons will be low (even though the weight is high), and the

sum of all those responses will not exceed the threshold for

recognizing a match. When a match stimulus is presented, each

neuron in the subset will again fire strongly, and be multiplied by

the high weight, giving a sum of responses across neurons that

exceed the threshold for recognizing a match. Thus, to recognize

matches, the matched filter relies on the fact that a neuron that

responded strongly to a given stimulus once will, on average,

respond strongly to that stimulus again. The matched filter simply

relies on standard stimulus selectivity–different stimuli evoke

different average responses.

Figure 4. Matched filter model. The matched filter model calculates the correlation between a stored pattern and an incoming pattern. A local
memory trace is stored in synaptic weights (Wkm) of TE neurons (blue) when a behaviorally determined learning command (red) is sent to the
neurons. The image is encoded by a rich array of neurons in the visual encoder (gray circles). The Ckm represents the output from a sparse
subpopulation of the encoder cells. The green and brown circles represent two overlapping subpopulations that project to different TE neurons. The
yellow blocks represent noise between the encoder and the TE neurons; the akm are independent, multiplicative noise; the bkm are independent
additive noise; the gold block (d) represents noise common to all neurons constant throughout one trial (e.g., due to arousal). Thus, on each trial for
each stimulus presentation, a new value of a and b are drawn for each synapse, but only a single value of d is drawn. The xkm represents the input to
the synapses, after the noise has been added, and Rk represents the output of the k-th TE neuron.
doi:10.1371/journal.pcbi.1000073.g004
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The matched filter mechanism for detecting matches does not

make use of, but does give rise to, the ‘‘noise’’ correlations

observed in TE neurons in our data. As just explained, the

matched filter relies on differences in the average response to

different stimuli to detect a match. But the weight stored after

presentation of the sample image depends not on the average

response to the sample image, but on the individual response to

that presentation. The response of a neuron to an individual

presentation of the sample image can be higher or lower than the

average across presentations for that image. If, on a given trial, the

response of a TE neuron to the sample image is higher than

average, the synaptic weight will be set higher than the average

during that trial. When the match is presented, the encoder signal

can be lower, higher, or the same as the average. However, the

multiplicative interaction between the input and the weight will

bias the average of many such interactions to be higher than

average if the stored weight is higher than average. Similarly,

lower sample responses lead to lower synaptic weights and a lower

than average response to the match. Put another way, the

deviations of the responses from their means for the sample and

test patterns will be correlated within a trial. Note that whereas

individual neurons can be above or below average for any given

trial, these fluctuations will average out, and the total activity

across the population will only be above threshold for the repeat of

the sample image.

We test this model in two ways. First, a single-synapse (scalar)

version of the deterministic model was applied to the average data

collected in the experiment, to test the model’s ability to perform

the DMS task, on average, like the neurons. Tests with the average

responses can not evaluate the correlation of the response noise

across conditions, so a second test was needed. We used a

stochastic vector model (shown in Figure 4) with a simple visual

encoder and two types of noise (additive and multiplicative) on the

input to the downstream neuron’s synapses. We also added a noise

source shared by all synapses, to test the hypothesis that changes in

arousal could explain the noise correlations in our TE data. The

model was simulated and the noise parameters were adjusted to

best fit the correlation between the noise in the responses to the

sample and the noise in the responses to the test stimuli found in

the experimental data. It is important to emphasize that this

tuning only sets the relative size of the correlations; the fact that

there is a correlation depends upon the matched-filter model’s

structure. Indeed, the same tuning did not create correlations in

the stochastic model of the perirhinal neurons, because they have

no memory trace.

Deterministic Model Simulation
The inputs to the model are unknown and must be estimated. It

is possible to train a neural network to find the xki that solves

Equation 5 (not shown). However, this approach yields a model

with a very large number of free parameters, and thus provides

only weak support for our hypothesis. We can make a stronger test

of our hypothesis by noting that in the DMS task there is a special

case, the response of a neuron to the matching image, which has

the response:

Rk(i,i)~Wki
:Xki~

X
m

x
sample
kmi xmatch

kmi ð6Þ

To compare our model to the data, we can only consider scalar

variables, because the single-unit recordings give only the spike

count in the response to a stimulus. The individual encoder

outputs are not known. Thus, a scalar approximation of the

encoder output, eki, the unknown input to the k-th neuron for the i-

th pattern, can be estimated as the square root of the average of

the responses across N repetitions of the match stimulus:

eki~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n~1

rkn(i,i)

vuut ð7Þ

where rkn is the spike count on the k-th neuron on the n-th

experimental trial. This corresponds to a model where each

neuron has only a single synapse. This is obviously a major

simplification of the model, but it is necessary because we can not

observe the output of the encoder by recording from single

neurons. Furthermore, Equation 7 is only a rough approximation,

because it takes the square root of the sum, instead of the sum of

the square roots, of the individual rkn. The advantage of this

approach, which offsets the coarseness of the approximation, is

that we have a parameter-free, deterministic model that performs the DMS

task, with all of the assumptions explicit in the structure of the

matched filter.

The predicted response, r*, of a neuron for the nonmatching j-th

pattern following the sample i-th pattern with a memory effect

would then be:

r�k(i,j)~ekiekj ð8Þ

Similarly, the predicted response of a neuron to the matching i-

th stimulus would be:

r�k(i,i)~ekieki ð9Þ

For completeness, the predicted response of the matched filter

model to the sample j-th image is calculated based on the

assumption that the memory trace is still set to the previous

sample, say the p-th image (i.e., this assumes the previously stored

signal persists until a new learning command occurs). The old

memory trace probably decays away over time, but this

assumption lets us calculate a conservative estimate of the sample

response:

r�k(p,j)~ekpekj ð10Þ

The encoder output is estimated from the response of the

neuron to the match stimulus (Equation 7). Thus, the deterministic

model can only be used to predict the responses to sample and

nonmatch stimuli (Figure 5). For the population of TE neurons,

the correlations between sample response and prediction

(R = 0.74) and nonmatch response and prediction (R = 0.73) are

significant (Figure 5A; p,0.001; R2 = 0.54 for TE sample

predictions, and 0.53 for TE nonmatch predictions). For the

population of perirhinal neurons, the correlations are lower, but

still significant (Figure 5B; p,0.001, R2 = .31 and 0.39, sample

and nonmatch, respectively). This is consistent with our expecta-

tions, because both types of neurons showed stimulus selectivity

(see Figure 2A). Thus, the scalar matched filter model, with no free

parameters and with the simplistic approximation of Equation 7,

successfully predicts the responses of the neurons during the DMS

task, accounting for a bit more than 50% of the variance in the TE

data.

Memory Trace in Synaptic Weights of IT Neurons
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In Figure 6, instead of predicting the responses of the neurons to

the sample or nonmatch stimulus on each trial, we predict the

deviation of that response from its mean. This roughly matches

what we found in the data (see Figure 3). The variance explained

in the prediction of the response deviation was much less than the

variance explained in the prediction of the response itself for

perirhinal neurons (R2 = 0.05 and 0.06 for sample and nonmatch

deviations in TE, and R2,0.001 for deviations in perirhinal

neurons).

Implications for Population Coding
Figure 7A shows the results of computing the match-nonmatch

performance for the set of 64 population responses for the 35 TE

neurons. Each row (sample) and column (test) begins with the

corresponding stimulus. The average population response is

printed for each nonmatch and match decision. The diagonal

values show the match responses (in spikes per 400 ms epoch). A

number colored in blue is a correct match decision (or hit, based

on a threshold of 6.15), and an orange number is a miss. The off-

diagonal elements show the nonmatch responses. A green number

is a correct rejection, and a red number is a false alarm. Overall,

the matched filter based on these 35 neurons scored 50% correct

(ROC d’ = 1.02; random would have been 1/64 or 1.56% correct)

on the DMS task. The same comparison is made in Figure 7B for

the perirhinal neurons, which scored 55% correct (d’ = 0.72). The

similarity in scores is not surprising, as TE neurons project to

perirhinal cortex. However, the d’ value (which is the separation of

the means of the probability density functions of occurrence, with

and without signal, divided by the standard deviation of the

distributions) is much smaller in perirhinal neurons. This suggests

that signals that were separate in TE have become confounded in

perirhinal cortex.

Stochastic Model Simulation
The second test of our model is whether it can give rise to noise

correlations, for which the noise on the visual encoder must be

modeled parametrically. In the stochastic vector model

(Equation 2), there are three parameters (to specify the variances

of the three noise processes a, b and d). Note that these three

parameters are fit independently in the model for both TE and

perirhinal neurons (see Methods), but their presence alone is not

sufficient to generate the noise correlations in our data. It is the

presence of learning that introduces the noise correlations, which

is clear because the perirhinal neurons do not learn, and do not

show this correlation.

Above, predicted responses were computed from the average

responses of the experimental data. To simulate the DMS task

with a matched filter model with noise on a trial-by-trial basis, we

need to generate an encoder output. For simplicity, we chose the

discrete Fourier transform (DFT) to represent the encoder. Each

868 stimulus was placed on a 16616 gray background. The

stimuli (Figure 8, top row) were first converted to their 16616

Figure 5. Predictions of responses by the deterministic model simulation. (A, B) Predictions of responses for TE neurons with inputs from
encoder stage estimates (Equations 1–10) (A), and by the model for perirhinal neurons (Equation 3 was applied) (B). Left column shows predictions of
sample responses compared to the actual sample responses. Right column shows predictions for nonmatch responses. Each colored dot represents
data points for each neuron, and each pattern with a colored outline indicates the mean response versus mean predicted response to the pattern for
the neuron. Variance explained is high in all cases, because the cells in both areas are stimulus selective.
doi:10.1371/journal.pcbi.1000073.g005
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DFTs (Figure 8, middle row). Each DFT image thus represents

activity in 256 encoder cells (represented as a vector of length 256).

The output of the model is just the dot product of the sample and

test responses (Figure 8, bottom row. NB: the luminance levels in

the figure are a poor indicator of their importance, because of the

log transformation used in plotting). The average output power

(calculated using root-sum-of-squares of population activity, with

the brightest pixel across all stimulus pairs normalized to 1.0)

across the entire population is given on the left (0.452 for the

match, and 0.149 for the nonmatch case).

The output results for all 64 combinations of stimulus and test

patterns are shown in Figure 9. As in Figure 7, the matches are on

the diagonal, and the nonmatches are on the off-diagonals. The

normalized output power is printed above each response image for

a population of 256 encoder neurons (shown as a 16616 icon).

Green numbers are correct hits, blue are correct rejections, orange

are misses (none in this example), and red are false alarms. With

the threshold set to 0.225, the model makes only two mistakes

(both false alarms). This gives the model a success rate of 97%

(d’ = 3.34; the correction for p(hit) = 1 was made using

p(hit) = 120.5/(Nhit+Nmiss), [41]). The average success rate of our

two monkeys was 98%. (These two rates are so close because the

noise in the model was tuned to match these monkeys, so it is a fit,

not a prediction; see Methods).

A quantitative comparison of the performance of the model

with that of the monkeys is shown in Figure 10. The average

correlations between the sample and match response deviations

are shown for actual and simulated TE neuronal responses

(Figure 10A and 10B, respectively). The response correlation was

larger between the sample and match phase than between the

sample and nonmatch phase (for simulated response: paired t-test,

p#0.00001; for actual response: p, = 0.001). As a control, the

same model was used to simulate a population of neurons in

perirhinal cortex by fixing the synaptic weights (Figure 4, Wkm) to

1.0. Without synaptic plasticity, noise correlations in the perirhinal

simulations were the same for all phase pairs (Figure 10D), as was

found in the experimental data (Figure 10C). Thus, our simple

matched filter model shows that the unexpected correlation

between noises at different times for sample vs. match responses is

an emergent property of a multiplicative matched filter model that

stores its memory trace locally with one-trial learning of synaptic

weights.

Figure 6. Predictions of response deviations by the deterministic model simulation. (A, B) Predictions of the deviations for TE (A) and
perirhinal (B) neurons. Left column shows predictions of the deviations from the mean in the sample responses compared to the actual sample
response deviations. Right column shows predictions for nonmatch response deviations. Variance explained is low in TE, but zero for perirhinal, which
is a rough match to our data. (Format as in Figure 5.)
doi:10.1371/journal.pcbi.1000073.g006
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Note that one parameter in the noise model, d, is shared by all

the TE neurons. It represents a kind of alertness level. If d varied

slowly over time, it could introduce a correlation between sample

and test responses. However, as the nonmatch response is always

equal to or closer in time to the sample response than is the match

response, the effect of the d noise must make the noise correlations

on sample-nonmatch responses the same or larger than the noise

correlations on the sample-match response. This is the opposite of

our data (sample-match noise correlations were larger, Figure 3).

Hence, in this model the d noise process contributes to the height

of the correlations in Figure 10B and 10D, but not to the height

differences in either panel. The magnitude of the correlation is also

adjusted by tuning the a- and b-noise processes. However, without

the multiplicative effects of the matched-filter model there would

be no difference in heights of the bars for area TE (Figure 10B).

They would be like the bars for perirhinal cortex (Figure 10D).

Delay Period Activity
The usual interpretation of the average delay period activity in a

DMS task is that it reflects activity in a reverberatory circuit

(attractor network) that is holding the memory. It is interesting to

ask what happens to a matched filter between stimulus

presentations. If all inputs are set to zero, then there is no output

from the matched filter. However, if there is noise on the inputs to

the matched filter during the interstimulus interval, the matched

filter would produce an output (Figure 11, top row). The output

looks like the template, but with a much reduced signal-to-noise

ratio (SNR). If this response to noise were averaged over several

trials, the SNR would improve (as the
ffiffiffiffiffi
N
p

, where N is the number

of trials in the average; see Figure 11, bottom row). This example

shows that another interpretation of the delay-period activity is

possible: it may be the response of a matched filter to noise, which

reflects the current setting of the synaptic weights.

Discussion

As information has been collected about localization of memory

functions in the brain over the past decade, it has become clear

that different architectonic regions of inferior temporal cortex have

different functional roles in memory, specifically the lateral inferior

temporal area TE has different roles in memory than the more

medial inferior temporal perirhinal cortex [10,11,42,43]. Among

other differences bilateral ablation of the more lateral area TE

interferes with memory at all delays whereas damage to the more

medial perirhinal cortex interferes with memory only after longer

delays in monkeys [11]. This suggests that area TE is involved in

the initial encoding of information for memory formation in

general. Relevant to the present study, neurons in both areas show

stimulus selectivity, and activity related to stimulus-stimulus

associations [43]. However, the stimulus-stimulus association

related activity in TE is dependent on perirhinal cortex [44].

Latencies of the visual stimulus elicited responses are considerably

Figure 7. Performance on the DMS task of the deterministic
matched filter model. (A) Performance of the deterministic matched
filter model using the data from the recorded sample of 35 TE neurons.
The left column shows the eight stimuli presented to the model as the
sample, and the top row shows the eight stimuli presented as the test
image. At the intersection of each row and column is the average
response of all the estimates across 35 TE neurons using the matched
filter model. The upper-left to lower-right diagonal shows the matched
filter outputs for the eight sample-match pairs. The off diagonals show
the matched filter outputs for the 56 sample-nonmatch pairs. The
model gave the best discrimination performance with the threshold set

to 6.15 spikes per 400 ms epoch, i.e., the model made the fewest
mistakes. The blue values show correct matches (hits), and the green
responses show the correct nonmatches (correct rejections). The
orange values show misses, and the red values show false alarms. This
model got 32/64 = 50% of the trials correct. (B) Performance of the
matched filter model for perirhinal neurons with inputs from encoder
stage estimate. At the intersection of each row and column is the
average response of all the estimates across 11 perirhinal neurons using
the matched filter model. With the threshold set to 4.55 spikes per
400 ms epoch, the model achieved its best performance, getting 35/
64 = 55% of the trials correct.
doi:10.1371/journal.pcbi.1000073.g007
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shorter in area TE than in perirhinal cortex, and stimulus-elicited

reward schedule related selectivity arising from associative learning

is seen in perirhinal neurons, but not in area TE neurons [13].

Here, we found that the stimulus-elicited responses recorded

between anterior middle temporal sulcus and superior temporal

sulcus, area TE (Figure 12), have a short-term memory related

signal, and that neurons recorded medial to anterior middle

temporal sulcus and lateral to rhinal sulcus, perihinal cortex and

perhaps medial area TE, do not have this signal. Our findings in

perirhinal cortex are consistent with previous findings in perirhinal

cortex [19,45].

Our recordings from TE neurons during a sequential delayed

match-to-sample task show that trial-by-trial neuronal response

variability (i.e., noise) is better correlated between sample and

match than between sample and nonmatch responses. This can

not be because of exogenous factors (e.g., slowly varying arousal)

introducing correlated noise into the responses, because the noise

was also better correlated between sample and match responses

even when there was an intervening nonmatch stimulus, which

thus increased the temporal separation of the sample and match

stimuli. This suggested that the individual response to the sample

picture, and not some average response, was being stored

somehow and then recalled at the time that the match stimulus

was presented. To interpret this finding, we hypothesize a synaptic

storage and recall mechanism: the memory trace of the response to

the sample image is held in rapidly adapting weights on the

synapses of each TE neuron. TE then acts as a matched filter to

compare the new signal with the old one. In a matched filter

model, a new picture is broken into pieces by the encoder and

distributed across a set of multiply-accumulator elements. Each

piece is multiplied by a weight that was set when the sample

stimulus was presented. These results are added and compared to

a threshold [40]. This converts the time-domain operation of

correlating two pictures shown sequentially (referred to as signals)

into a spatial operation on the second signal, with the first signal

being spatially distributed in the filter’s weights.

Exploiting an Epiphenomenon
The noise correlations arise because of the multiplication stage

in the matched filter. The brain cannot detect these noise

correlations; it only detects the total activity in the population

after the test image is presented. The experimenter can observe

the noise correlations in the data, and infer from them something

about the mechanism that is acting. That these correlations are

irrelevant to performing the task is obvious because of the large

number of neurons involved. To make a match or nonmatch

judgment, the brain must take some kind of average over a

population of neurons. Furthermore, this population must contain

about the same number of neurons responding above and below

their average responses. Thus, over the population the correlated

noise would average out.

Another inference follows from our observations: that the

synaptic weights holding the memory trace must be on the TE

neurons from which we are recording. The responses of TE

neurons can not simply be reflecting an input from a different

area, say prefrontal cortex, which was recalling the previous input.

Figure 8. Example of matched filter output computation. The top row shows input images. The memory trace of the model is simulated with
the discrete Fourier Transform of the input, plus noise (middle row). (Noise is not very noticeable, because of the logarithmic scaling). Bottom row
shows the product of the memory trace and the match and nonmatch inputs. The output power is shown on the left.
doi:10.1371/journal.pcbi.1000073.g008
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If another area held the memory, then they would have to be

holding the previous output of area TE. The exact same cells that

projected to each neuron in the memory area would have to

receive a return projection from that neuron. In other words, the

mapping from TE to the memory area would have to be 1:1. No

cortical brain area we know of contains a 1:1 mapping. Instead,

neurons seem to have a large degree of fan-out and fan-in, so each

neuron connects with many others, and many others connect to it.

In such a many:many mapping the exact value of the response of

the TE neurons to the sample stimulus would be averaged out by

the time it returned to TE during recall. But that would destroy

the very noise correlations we observed. Thus, the synapses that

hold the memory trace must be on the TE neurons themselves.

In our model (Figure 4, and Materials and Methods), the

‘‘signals’’ are the neurons that provide inputs to TE, and the

weights are encoded by the strength of their synapses onto TE

neurons. Each neuron remembers only its own input, and thus

learning happens locally, by the modification of synaptic weights.

The model is biologically plausible–the multiplication, addition,

and threshold operations are easily available to neurons [46]–and

no signals need to be transmitted to, or recalled from, any other

part of the brain for comparison. Note that this model has only an

implicit recall; there is no actual reconstruction of the original

signal to compare with the current signal. However, one surprising

feature of the matched filter is that when excited by a random

signal (e.g., white noise inputs), the average of its response will be

an approximation of the original signal (cf. Figure 11).

Our model is similar to most others formulated to describe

memory in that it uses synaptic plasticity to create a stored memory.

Here we specifically propose using rapid synaptic plasticity gated by

a learning command. Although this rapid type of synaptic plasticity

has not been observed, its existence has been hypothesized by others

when considering how working memory might arise [47,48]. Our

hypothesis only requires that synapses of TE neurons are altered

Figure 9. Performance of the matched filter across full set of stimulus pairs by the stochastic model simulation. The left column shows
the 8 stimuli presented to the model as the sample, and the top row shows the 8 stimuli presented as a match or nonmatch. The intersection of each
row and column is a 16616 pixel image made up of the responses of the 256 model TE neurons. The diagonal (with slope -1) shows the matched
filter outputs for the eight sample-match pairs. The off diagonals show the matched filter outputs for the 56 sample-nonmatch pairs. The total power
(normalized to 1.0 for the peak of the 64 pair set, in this example, S7-S7 sample-match) is shown above each output. With the threshold set to 0.225,
the model made the fewest mistakes (false alarms, red values). The green values show correct matches, and the blue responses show the correct
nonmatches. With the noise in the model adjusted to match that in the monkeys, the model got 62/64 = 97% of the trials correct. The average
performance across the two monkeys was 98%.
doi:10.1371/journal.pcbi.1000073.g009
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according to their current input: if a particular input is high the

weight is set high and if a particular input is low the weight is set low.

The synapse therefore has a memory of the input, which consists of

both signal (mean response) and noise (deviation from the mean).

Every subsequent signal is multiplied by this adapted synaptic

weight. This multiplication correlates the response with the

remembered signal–the mean plus the deviation.

Delay-Period Activity
Our hypothesis of memory storage does not require delay

activity, which has been seen mainly in perirhinal cortex [15] and,

even there, only a relatively small proportion of neurons show this

property [16,18,19,49]. In our data, the noise correlation is

significant for most TE neurons, suggesting that most of these

neurons participate in this simple working memory. A conse-

quence of the matched filter model (Equation 5) is that the average

response over the population shows match enhancement and

nonmatch suppression. This is the basis for the filter’s discrimi-

nation. For an individual member of that population, however,

nonmatch responses can be larger than match responses,

depending upon the selectivity of the neuron. This can be seen

in the simulation by comparing individual pixels (i.e., simulated

neurons) down a column in Figure 9.

Systematic Enhancement or Suppression
A systematic match enhancement or suppression has been seen

in neurons in perirhinal cortex (see Figure 12) [14,15,49], a

cortical region that seems heavily involved in decisions about

remembered stimuli [7,8,10,13,50]. Our data do not show such

systematic changes in perirhinal cortex, so our model does not deal

with this behavior.

Our model also does not try to account for other effects of

novelty, recency or familiarity, in which the responses to

previously seen stimuli are sometimes smaller on subsequent

presentations, because this is an effect observed mainly in neurons

medial to the anterior middle temporal sulcus, in perirhinal cortex

[51]. Some cells in perirhinal cortex showed both match

suppression (a short term memory effect that decreased responses

to the matching stimulus) and a familiarity effect (a long term

response decrement) over long times when the stimuli were

repeatedly presented [52]. The neurons we recorded that showed

the noise-correlation effect were all in area TE, lateral to the

anterior middle temporal sulcus, where previous reports did not

find match-suppression [12,49]. The neurons we recorded that did

not show the noise-correlation effect were medial to this sulcus, in

perirhinal cortex.

Population Activity, Not Noise, Is Used to Detect the
Match

It is important to emphasize that in this model the brain does

not perform the DMS task by detecting the noise correlations. The

DMS task is performed by comparing the level of activity in a

population of TE neurons with a threshold. The threshold

determines the sensitivity of the detector, and thus is probably

Figure 10. Stochastic model’s noise correlations. Correlations for noise in sample versus match and sample versus nonmatch deviations are
similar to our data. (A, B) TE shows significantly higher noise correlations for sample versus match phases. (C, D) response deviations in the perirhinal
cortex are much less, and more uniformly, correlated. Data are from trials with no intervening nonmatch stimuli for sample versus match or from trials
with one nonmatch stimulus for sample versus nonmatch. Uniform correlations in perirhinal cortex are due to slowly varying input noise. Increased
sample versus match noise correlations depend on a multiplicative interaction between memory trace and current input.
doi:10.1371/journal.pcbi.1000073.g010
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under behavioral control. The noise correlations are observable

only by the experimenter after the task, and not by the brain

during the task. The noise correlations are thus a clue to the

mechanism used to solve the DMS task, in this case, a

multiplicative model.

Our findings and model here extend our previous work [12,38].

In those studies we found that ‘‘responses to the nonmatch stimuli

carried significant amounts of information about the pattern of the

previous sample stimuli.’’ This is consistent with our findings here,

because the response of an inferior temporal (IT) neuron would be

the product of the visual codes for the sample and test stimuli. We

hypothesized then that ‘‘the role of IT neurons in visual memory

tasks is to compare the internal representations of current visual

images with the internal representations of recalled images.’’ This

is exactly what we are proposing here, but now we have a specific

hypothesis for the memory mechanism that eliminates the need for

recalling the response to the sample image.

Other Types of Memory
This new theory is applicable in any area of the brain that

depends upon synaptic changes, rather than persistent activity, to

hold a memory trace. Other types of working memory should be

studied with this in mind. This work may even be relevant in areas

that hold a memory as delay-period activity in an attractor

network, such as prefrontal cortex, because synaptic plasticity is

required to create the attractor representing the object that is

being remembered [31,37].

There are many forms of memory, and DMS just tests one

particular type of explicit, or declarative, memory. For example,

Standing [53] studied free-recall or recognition tasks. He showed

that thousands of pictures or words could be recognized as

familiar after being seen only once. As Standing pointed out, this

is different from the limited ‘‘memory-span’’ (about seven items)

required to deal with ordered lists. Although the DMS task is

more like a memory-span task than a familiarity task, our

matched filter model may be applicable to recognition tasks as

well. Some part of the brain would have to be organized as many

little matched filters, and it would have to set the weights in a

different matched filter for every picture on which the subject

concentrated. Obviously, this area would need a huge capacity,

but it would be much more efficient to build a large capacity

memory out of synaptic weights than out of reverberating

circuits. Then, during testing, the matched filter would implicitly

test the incoming picture against all stored pictures simulta-

neously. If any little filter responded with a total power above

some threshold, the familiar object would be recognized.

Another advantage of this approach to recognition memory is

that the recall is implicit, and thus in a sense, free. There is no

computation other than the weighted sum of inputs performed

by the biophysical properties of the soma. This could be vitally

important to the animal, which otherwise would have to actively

search through thousands of memories to find a match. No

matter how large the number of matched filters, the time to test

an incoming pattern is fixed regardless of memory size. In search

schemes, the time would grow with memory size.

Synaptic Versus Reverberating Memory Trace
Delay period activity in prefrontal cortex during memory tasks,

which is proposed as playing a critical role in storing sensory

signals, has been an important discovery for unraveling neuronal

mechanisms of working memory since the 1970s [21,54,55].

However, delay period activity in prefrontal cortex is related to

storing the sensory signal, and that signal can be modulated

depending on whether the stored signal would be used to execute

Figure 11. Noise-driven output of a matched filter. Top row shows a sample image made up of white noise uniformly distributed on [0, 1], the
template, and the product of the two. The second row shows the effect of averaging across many such representations. Clearly, the signal-to-noise
ratio is rapidly improving as the size of the pool being averaged increases, but even the output from a single sample (top row) looks somewhat like
the filter. The response to the noise input has revealed some cells with selectivity for the template image. Similarly, neuronal activity seen between
stimulus presentations may be the result of noisy inputs to matched filter cells.
doi:10.1371/journal.pcbi.1000073.g011
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or suppress an action, that is, for response selection, indicating that

the delay activity is also, or even mainly, related to executive

function [26,56]. A recent study shows that prefrontal cortex holds

the decision during a memory task, while the middle temporal

visual area computes comparisons between sample and test visual

motion [56]. Our proposal supports the suggestion that stimulus-

selective working memory signals are held in higher sensory areas

(area TE in our case, MT for Zaksas and Pasternak [56]).

Theory of Working Memory
Our study shows evidence for working memory storage with a

silent storage mechanism using rapidly adapting synaptic weights,

and a matched filter provides a specific proposal of how to utilize

the outputs of TE neurons to detect a match. Our new model

explains the noise correlations across time in our data. The

matched filter theory also formulates and answers many important

questions about the mechanism of visual working memory: what is

remembered (the entire output of the encoder population); how

and where it is remembered (as synaptic weights of TE neurons);

how it is recalled (recall is not needed in a matched filter

mechanism); and how the memory trace is compared with a new

response (correlation by multiplication of input activity and

synaptic weights). The output of TE could thus be used to make

the match/nonmatch decision, simply by applying a threshold to

the total population activity.

Conclusion
Our hypothesis arose from the need to explain the noise

correlation seen in our experimental data from area TE of inferior

temporal cortex. If the correlations in our data were due to an

artifact arising from some stimulus-dependence that remained

after the mean was subtracted, we might have seen a similar

pattern of correlations in perirhinal cortex. Also, breaking the

serial relationships within single trials by shuffling the match

responses within each stimulus pattern group should not have

destroyed the correlations (cf. Results). If the correlations arose

from a slowly varying signal having nothing to do with memory or

the stimulus (e.g., due to arousal) the correlations should be higher

between sample and nonmatch than between sample and match in

sample-nonmatch-match trials. Thus, our explanation for the

correlations between noise in sample and test responses in TE

neurons is that they are a consequence of the multiplicative

mechanism in a local, synaptic, short-term memory.

This model does not specify how a neuronal circuit might

perform matched-filtering. Cortical architecture, connections and

dynamics are all ignored. Nonetheless, this model does more than

merely provide a representation of the data. Our data show only

that cells are selective for stimuli, respond differently depending

upon the condition (sample, nonmatch, match), and that there is

correlated noise on their responses across sample-test presenta-

tions. The filter model demonstrates (thus, it is an existence proof)

that the responses themselves (not the noise) could come from a

multiplicative interaction between a synaptic memory trace and a

current input. Note that this part of the model is parameter-free:

there is no tuning or fitting involved. Thus, it is a very strong

argument in favor of the matched filter theory of short-term

memory, even without a biophysically detailed model. Further-

more, the matched filter hypothesis explains why the noise

correlation exists, even though it makes no contribution to solving

the memory task. It is important to remember that the noise-

correlations are not built into the model by fitting it to the data

(e.g, perirhinal neurons are fit the same way but have no such

correlations). Thus, this ‘‘black-box’’ filter model, although

simplistic with respect to cortical circuitry, provides a mechanistic

explanation of how the noise correlations could arise, and thus is a

plausible model for short-term memory.

Methods

Two monkeys (Macaca mulatta) were trained to perform a

sequential delayed match-to-sample (DMS) task. The monkeys

squatted in a primate chair 57 cm in front of a rear projection

screen (90u visual angle) with a black and white random dot

Figure 12. Schematic localization of recording sites. (A) Ventral
view of the brain with perirhinal cortex (medial, dots) and area TE
(hatched) highlighted. Actual recording was done in parts of area TE
and perirhinal cortex that are indicated in gray. (B) Coronal cross-section
of a standard rhesus monkey atlas (Laboratory of Neuropsychology,
NIMH; http://ln.nimh.nih.gov/) at 17 mm rostral to the interaural line
(AP +17) showing a recording track into perirhinal cortex and a track
into area TE. The noise correlation was found to occur for most area TE
neurons that were recorded lateral to the anterior middle temporal
sulcus. The noise correlation was not found in the responses of neurons
recorded in perirhinal cortex in this or pervious studies recorded medial
to anterior middle temporal sulcus [19,45]. MRs with electrodes can be
seen in Liu and Richmond [13]. amts, anterior middle temporal sulcus;
rs, rhinal sulcus; sts, superior temporal sulcus; TE, area TE; Prh, perirhinal
cortex.
doi:10.1371/journal.pcbi.1000073.g012
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pattern. Trials began when the monkey touched a bar on the

chair. A fixation point (0.5u60.5u) appeared and the monkey was

required to fixate loosely (within 65u of the fixation spot) for the

whole trial. When patterns used in the DMS task (8.5u68.5u,
Figure 1B) appeared, it obscured the fixation point (see Figure 1A

for timings). Because we were studying working memory, we used

a set of very familiar visual patterns, ones that the monkeys had

seen thousands of times each, to avoid any effects due to novelty.

Over ninety percent of the trials were divided between trials with

no nonmatches or one nonmatch. The other trials had two or

more nonmatch stimuli to make it difficult for the monkeys to

anticipate the match stimulus (the monkeys generally performed

these trials correctly). Because the numbers of trials with 2 or more

nonmatching trials were small (typically 1–4%), data were

analyzed only from the trials with either zero or one nonmatch

stimulus. An error was registered either when the monkey did not

release the touch bar during the two seconds after the original

stimulus reappeared (matching stimulus) or when the monkey

moved its eyes beyond the fixation limit. Only data from correct

trials were analyzed. The mean reaction times for these two

monkeys were #500 ms.

Tungsten microelectrodes (Roboz-Microprobe, Rockville,

MD) were used to record single units. Principal components

were used to select well-isolated single units [57]. TE recording

was carried out in the area from +14 to +17 on the anterior-

posterior plane lateral to the anterior medial temporal sulcus,

and perirhinal recording was done from +17 to +23 on the

anterior-posterior plane medial to the anterior medial temporal

sulcus as shown in Figure 12 [13]. To confirm the recording

locations were within area TE, MR images were obtained with

tungsten electrodes still in place (shown schematically in

Figure 12B) after some of the recording sessions [13]. All of

the experimental procedures were conducted in accordance with

the NIH Guide for the Care and Use of Laboratory Animals and

were approved by the Animal Care and Use Committee of the

NIMH.

Neuronal responses were quantified by the number of spikes

occurring between 70 and 470 ms after appearance of the sample,

nonmatch, and match stimulus for TE neurons, and between 120

and 520 ms for perirhinal cortex neurons.

All data analyses were done in the R statistical computing

environment [58]. We calculated the linear regressions between

responses across different task phases to quantify the variance in

the correlations across time epochs. Correlations were also done

with parametric (Pearson) measures [59]. To investigate whether

any violations of classical regression assumptions affected our

results, we repeated our analyses using robust regression methods

[58]. Our results were essentially unchanged, so we present results

from standard linear regression. A square-root transformation of

spike count to reduce heterogeneity of response variance [60] did

not change our results, so we report the results from the

untransformed data.

Simulations
Computer simulations of the matched filter model of TE were

carried out in MATLAB (The MathWorks, Natick, MA). The

scalar matched filter model used for the data analysis has no

parameters. To introduce a stochastic vector model of physiolog-

ical neuronal data with noise, three kinds of noise were added to

the model: slowly varying input noise common to all neurons (d),

encoder noise (akm) and population noise (bkm) (Figure 4). Because

the variance of a neuronal response is often proportional to its

amplitude, we used multiplicative encoder noise. The other noise

sources were additive. (An important point to make here is that we

chose the matched filter model because it is the simplest nonlinear

model that can explain our results, not because it is the only model

that can do so.) The three noise parameters were fit to the data

using the simplex algorithm in the modeFrontier optimization

program (ESTECO, Italy).

The input to the model is an encoding of the image by a

population of visual system neurons. Because the exact nature of

the visual input signals are not known for either area TE or

perirhinal cortex, we chose an arbitrary encoding, where each of

256 neurons represented one component of a two-dimensional,

16616 pixel, discrete Fourier transform (DFT). These 256 neurons

create a visual encoding of 868 Walsh images on a 16616 gray

background (e.g., Figure 8). The 256 encoder neurons projected to

256 inputs of a matched filter.

On each trial, for each neuron, for each pattern, a new sample of

white noise was chosen, uniformly distributed in the range 1+(2Ka,

Ka). The value of Ka sets the range of the simulated data. Population

noise was drawn from a white noise process with a normal

distribution (mean zero and standard deviation Kb). When Kb was

zero, the matched filter discriminated the match stimulus perfectly.

As Kb increased discrimination decreased. For each neuron, there is

a draw of alpha and beta from the same distribution for each

stimulus. A shared input noise, d, the same for all neurons and all

phases (sample, nonmatch, and match) in a single trial, was used to

test the hypothesis that the noise correlations between sample and

match came from exogenous sources. The d noise was common to all

the neurons, as might happen if the animal’s attention or level of

arousal changed from trial-to-trial. The result was to change the

values of noise correlation of the sample response with the nonmatch

and match response together (not shown), whereas the data showed a

higher correlation between noise on sample and match than on

sample and nonmatch.

DMS trials were repeated 40 times to match the size of the

experimental data sets for each neuron. This process was repeated

30 times to match the number of neurons. Images are shown with

a logarithmic gray scale. Model responses are plotted as the

normalized sum of the squared magnitude of the discrete Fourier

transform. Frequency-domain figures contain data with a wide

range of values. To better visualize the low values (where the noise

is most apparent), we plotted the logarithmically transformed

values of each cell, z, using log(1+z).

Although the matched filter model is parameter-free, the

stochastic model needed three parameters to simulate the type

and amount of noise in the neuronal responses. Noise parameters

of the model were adjusted to fit the mean values of the data in

Figure 10, and to perform the DMS task successfully (high power

for match, low power for nonmatch stimuli). The simplex does not

converge to a fixed point for this model, because each run contains

a new noise sample. Instead of a fixed point the parameters

approach a limit cycle. The values used to obtain the data

summarized in Figure 10 were: Ka = 0.482, Kb= 0.094, and

d= 0.01 (TE) or 0.097 (perirhinal).
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