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Abstract

Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian
genomes. To date, these reconstructions are ‘‘genome-scale’’ and strive to include all reactions implied by the genome
annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale
reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these
comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a
particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to
achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic
objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the
algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a
particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and
intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle
cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the
conditions where the expression profiling data is available.
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Introduction

Commonly, genome-scale metabolic networks are reconstructed

to contain all known metabolic genes and reactions in a particular

organism [1]. These reconstructions are thus a superset of the

metabolic reactions that are functioning in the organism at any

one time. The processes that determine which enzymes are active

in a cell are often overlooked in constraint-based studies. Of

particular interest are the transcriptional regulatory processes in

cells which choose a subset of possible enzymes for activity at any

given time.

Knowledge of transcriptional regulation of metabolism comes

from different sources. At a low level, from the bottom up, some of

the regulatory proteins that control the transcription of sets of

metabolic genes are known [2]. At a higher level, from the top

down, gene expression data provides a picture of what genes are

being transcribed at a particular time, and hence which enzymes

are probably active in the cell [3]. Both of these types of knowledge

can be used to refine metabolic networks under given conditions.

There are three ways to study how regulation tailors gene-

expression under a specific condition. First, if a transcriptional

regulatory network network (TRN) is available, then the

transcription state of the cells can be computed for a given input

[4,5]. However, genome-scale TRNs are not available. Even for

Escherichia coli, it has been estimated from dual perturbation

experiments that only about one-fourth or one-third of its TRN is

currently known [6]. ChIP-chip data and other approaches may

soon enable more comprehensive reconstructions. Second, in the

absence of a TRN, optimization procedures based on the

assumption that the organism picks out the best set of reactions

to meet a physiological objective have been used [7]. However,

there are multiple solutions to such problems [8] and no real way

to determine which internal reactions are used in the absence of

flux data. In addition, the statement of an objective introduces a

‘user-bias’ and such objective may not actually be relevant to the

true physiological state.

The third approach to study regulation relies on the available of

expression profiling data. If such data is available for the conditions

being examined we can directly examine the expression of the ORFs

accounted for in a genome-scale reconstruction. Metabolic network

reconstructions can be combined with gene expression data from

different states to identify regulatory principles in organisms [9].

Pathway-based analysis methods can be used to predict the usage of

entire pathways of reactions based on the expression state of multiple

genes [10]. Gene expression data has previously been applied with

yeast to predict which reactions may be inactive on a gene-by-gene

basis [11]. More recently, gene expression data has been interpreted

in terms of elementary modes [12], moving towards a more

functional view of analysis.

The results of these methods are dependent on the quality of the

expression data that is used as input. Expression data is known to be

noisy, and the variety of methods for converting the fluorescence

intensity of thousands of spots on a chip to semi-quantitative readings

of mRNA molecule counts do not produce equivalent results

[13,14]. Importantly, due to the noise, it is impossible to define a

comprehensive set of present mRNA transcripts without a large
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number of false-positives. Practically speaking, one can say either (1)

these few mRNAs are almost certainly present in the cell, or (2) some

of these many mRNAs are maybe present in the cell. Pathway-based

methods, for example [10], attempt to avoid the noise problem by

assuming that all mRNAs assigned to a particular pathway should be

present or absent together. This is dependent on biased, human-

imposed pathway definitions, and reactions that function within a

pathway can also function outside of that pathway, limiting the use of

such assumptions.

Here we use gene expression data in combination with objective

functions to create functional models despite potentially noisy

data. We describe the use of genome-scale transcriptomic data to

constrain reactions in both bacteria and human cells, enabling

context-specific metabolic networks to be reconstructed and

compared. We quantitatively define the consistency of gene

expression data with assumed functional states of a cell,

demonstrating agreement with physiological data. Context-specific

metabolic networks will be virtually essential to accurately model

human metabolism due to the variety of cell types and their

corresponding metabolic processes.

Results/Discussion

GIMME Algorithm
The approach to the construction of context-specific metabolic

networks is termed Gene Inactivity Moderated by Metabolism and

Expression (GIMME) and is illustrated in Figure 1. As inputs, the

algorithm requires: (1) a set of gene expression data, (2) the

genome-scale reconstruction, and (3) one or more Required

Metabolic Functionalities (RMF) that the cell is assumed to

achieve. Preliminary tests (not shown) suggest that proteomic data

can be substituted for expression profiling data. Given these three

inputs the algorithm produces a list of reactions in the network that

are predicted to be active and an inconsistency score (IS) that

quantitatively classifies the disagreement between the gene

expression data and the assumed objective function. This

inconsistency score is converted to a normalized consistency score

(NCS), allowing for relative comparisons of how well each gene

expression data set agrees with a particular metabolic function.

Simply speaking, reactions that correspond to mRNA transcript

levels below a specified threshold are tentatively declared inactive.

If the cell cannot achieve the desired functionality without at least

one of these reactions, linear optimization is used to find the most

consistent set of reactions to reactivate. Inconsistency scores are

calculated based on the product of distance from threshold and

necessary flux for each reaction required to be reactivated, as

illustrated in Figure 2. A smaller inconsistency score indicates that

the data is more consistent with the RMF. The GIMME algorithm

produces the network with the minimal inconsistency score

through the following two-step procedure:

(A) Find the maximum possible flux through each RMF

(allowing usage of all reactions).

(B) Constrain the RMF’s to operate at or above some minimum

level (generally a percentage of the maximum found in [A])

and identify the set of available reactions that best fit a

quantitative data set.

Part A is achieved through flux balance analysis (FBA) [15]. Part B

involves the solution of the following linear programming problem:

minimize :
P

ci. vij j
subject to : S.v~0

aivvivbi

where ci~ xcutoff{xi where xcutoffwxif
0 otherwise

for all i:

Figure 1. A flow chart schematic representation of the GIMME
algorithm. The GIMME algorithm takes three inputs: gene expression
(or any other data type) mapped to reactions, a metabolic reconstruc-
tion, and one or more RMFs. A metabolic reconstruction is mapped
through a data set, removing reactions that are not available and
creating a reduced model. Reactions are reinserted into the reduced
model as needed to achieve RMFs (such as growth and/or ATP
production), resulting in a functional, context-specific model that
features minimal disagreement with the data. The consistency score
quantifies the disagreement with data, showing the minimal sum of
fluxes weighted with reaction data deviations from data.
doi:10.1371/journal.pcbi.1000082.g001

Author Summary

Systems biology aims to characterize cells and organisms
as systems through the careful curation of all components.
Large models that account for all known metabolism in
microorganisms have been created by our group and by
others around the world. Furthermore, models are
available for human cells. These models represent all
possible biochemical reactions in a cell, but cells choose
which subset of reactions to use to suit their immediate
purposes. We have developed a method to combine
widely available gene expression data with presupposed
cellular functions to predict the subset of reactions that a
cell uses under particular conditions. We quantify the
consistency of subsets of reactions with existing biological
knowledge to demonstrate that the method produces
biologically realistic subsets of reactions. This method is
useful for determining the activity of metabolic reactions
in Escherichia coli and will be essential for understanding
human cellular metabolism.

Context-Specific Metabolic Networks
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In the formulation, xi is the normalized gene expression data mapped

to each reaction. xcutoff is a cutoff value set by the user above which a

reaction is definitely present; there is no contribution to the

inconsistency score from reactions that are above this threshold. S
is the stoichiometric matrix with reactions as columns, metabolites as

rows, and stoichiometric coefficients as elements. v is the flux vector,

quantitatively describing the flow through each reaction. ai and bi are

the lower and upper bounds, respectively, for each reaction and

define the minimum and maximum allowable flux. These bounds are

set according to the maximal value of the RMF(s) found in step (1), in

general by setting the lower bound corresponding to each RMF to

some fraction of its maximal value. The great majority of the lower

and upper bounds do not correspond to an RMF and are set to the

same value as in a standard FBA problem, usually to arbitrarily high

and low values, but sometimes to finite values as for input constraints

(glucose uptake, for example) and irreversible reactions.

The above optimization problem would generally be difficult to

solve due to the presence of an absolute value operator, but in this

case, a trivial simplification converts the above problem to a

standard LP problem. Each reaction defined as possibly reversible

(containing a negative lower bound) is converted to two

irreversible reactions, thus restricting all fluxes to be positive,

and removing the need for the absolute value.

In general, some reactions will not have available data. The

algorithm takes a conservative approach and designates these

reactions as active; hence the term ‘‘gene inactivation’’ is part of

the method name. The algorithm treats these reactions as if they

had data that surpassed the cutoff; this is a conservative approach

to avoid any penalty for absent data. The lack of data does have

implications for the interpretation of results. It is entirely possible

that given better data, these reactions would be determined to be

absent, perhaps necessitating the activation of other reactions.

Clearly, with limited data, the results must be considered with

caution. In general, this is far more of a concern for human

metabolic networks than for E. coli.

Context-Specific Networks for E. coli
We have used the GIMME algorithm to produce context-

specific metabolic networks for E. coli for several different

conditions and to compare inconsistency scores for different

strains of the bacterium. We show that the inconsistency scores

agree with experimental data in nearly all cases. Gene expression

data from different conditions of E. coli growth are the input data,

and the independent validation data is phenotypic data describing

the relative growth and product secretion.

Strains adapted to novel substrates. Adaptive evolution

has been used in the laboratory to improve the growth rate of E.

coli on culture media to which it is unaccustomed [16]. Metabolic

models of E. coli predict better growth than it initially achieves in

the laboratory when it is given a substrate other than glucose to

use as a carbon source for growth. However, after selective

pressure is applied to maximize growth, the actual growth has

been shown to improve to match the prediction, typically after a

month or two of serial passage of cells [16]. Using the GIMME

algorithm, we constructed context-specific metabolic networks for

three types of strains described in [17]: (1) wild-type strains, (2)

strains evolved to growth on glycerol, and (3) strains evolved to

growth on lactate.

The gene expression data used to construct the models consists

of CEL files containing the data described in [17], normalized

using GCRMA [14]. The data was mapped from genes to

reactions using the gene-protein-reaction associations from the

reconstruction [18]. The threshold (xcutoff) was set at 12, meaning

that reactions assigned a normalized value greater than 12 are

assumed to be present; similar results were noted at other

thresholds. The RMF was growth on a given carbon source, and

the context-specific metabolic networks were forced to grow no

less than 90% of optimal growth. Because the evolved strains

nearly always grow better than wild-type strains on a variety of

carbon sources [19], metabolic networks for optimal growth on

nine carbon sources were constructed. The results are shown in

Figure 3 (glycerol evolved strains) and Figure 4 (lactate evolved

strains). For these figures, the inconsistency scores were used to

calculate normalized consistency scores (see Materials and

Methods for details); a higher normalized consistency score

indicates that the gene expression profile is more consistent with

the objective. The figures show that the gene expression state of

evolved strains are always more consistent with growth on the nine

Figure 2. The computation of inconsistency scores. Inconsistency scores for each reaction are computed by multiplying the deviation from a
threshold by the required flux through a reaction. In the example here, the green reactions have data above the threshold, set to 12 (this is a
parameter; see text). The red reactions have data below the threshold (11.4 and 8.2). The calculation of the inconsistency score corresponding to each
reaction is shown numerically as flux multiplied by the deviation from the cutoff. They each increase the inconsistency score, implying that the data
are less consistent with the objective of growing on lactate. Greater required fluxes and greater deviation from the threshold both increase the
inconsistency scores. The total inconsistency score is the sum of all individual reaction scores.
doi:10.1371/journal.pcbi.1000082.g002
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substrates, paralleling the phenotypic findings from [19] in nearly

all cases. These findings demonstrate that the evolved strains have

gene expression states that are more consistent (than wild type

strains) with usage of the optimal networks for growth on a variety

of carbon sources.

Metabolic engineering strain. Metabolic engineering seeks

to optimize bacterial strains to produce a valuable product from a

less expensive set of molecules. Rational design of strains for

metabolic engineering is possible with genome-scale metabolic

models [20]. Adaptive evolution of knock-out strains of E. coli can

be used to optimize such strains [21]. We determined the

inconsistency scores with GIMME for replicates of a Dpta

DadhE strain that is designed to produce lactate as a byproduct

of anaerobic growth on glucose, as described in [21], as well as

wild-type strains. The objective used was growth and lactate

production was fixed at a rate consistent with experimental data

from [21]. As shown in Figure 5, the designed strain has gene

expression data that is more consistent with growth-coupled

lactate production, exactly as experimental data indicates. The

gene deletions and subsequent evolution have led to a global

metabolic gene expression state that is more consistent with

growth-coupled lactate production than the wild-type strain.

We used this data set to verify the robustness of the algorithm to

two different factors. First, we tested the effect of altering the cutoff

by recalculating the results for cutoffs ranging from eight to 14, in

increments of 0.1. We found that the consistency scores were

significantly different for all cutoffs. For some cutoffs, the p value

was not as good as for others, but p,0.01 for all choices of cutoff

within the range tested. Second, we verified the robustness of the

algorithm with a jackknife test. We randomly removed 5% of the

expression values mapped to reactions 100 times and recomputed

the context-specific networks and consistency scores. We found

that for all repetitions the same conclusion was reached, although

in some cases the p values were not quite as low as when using all

of the data. In all cases, the conclusion was reached with p,0.02,

which demonstrates slightly lower performance with all of the data

available. This suggests that the algorithm should be expected to

have greater statistical power when as many reactions as possible

are assigned data.

Terminal electron acceptor effect on network. The

growth of E. coli varies depending on the availability of terminal

electron acceptors, usually oxygen or nitrate. Gene expression data

from a total of 21 different strain/electron acceptor conditions was

analyzed to construct the most consistent models for growth with

oxygen, without oxygen, and with nitrate. The expectation is that

the strain data taken from a given condition (for example, aerobic)

should be more consistent with growth on that condition (again,

aerobic) than strain data from a different condition. Pairwise

comparisons were made between all consistency scores, and the

results are shown in Figures 6, 7, and 8, for aerobic, anaerobic,

and anaerobic nitrate conditions, respectively. A green box

indicates that the strain/condition indicated on the y axis is

more consistent with growth than the strain on the x-axis; a red

Figure 3. Glycerol-evolved strain normalized consistency
scores. Normalized consistency scores are computed directly from
the inconsistency scores, as described in the text. A higher normalized
consistency score indicates that the gene expression data is relatively
more consistent with the RMF. Thus, here the gene expression data
from the glycerol-evolved strains are more consistent with highly
efficient growth on each of the carbon sources tested. The p values,
determined by permutation testing, are less than 0.01 in all cases here.
doi:10.1371/journal.pcbi.1000082.g003

Figure 4. Lactate-evolved strain consistency scores. This figure
demonstrates the same result as Figure 3, but with strains evolved on
lactate. The normalized consistency scores for growth on each of the
tested carbon sources are higher for evolved strains, indicating that the
gene expression data from the evolved strains are more consistent with
efficient growth on each carbon source.
doi:10.1371/journal.pcbi.1000082.g004

Figure 5. Metabolic engineering strain consistency score. The
normalized consistency score for an E. coli strain designed to produce
lactate indicate that the Dpta DadhE strain has a metabolic gene
expression state consistent with the simultaneous production of lactate
and growth when compared with the wild-type. This higher normalized
consistency score indicates that the gene expression data from the
double deletion strain is more consistent with the metabolic
engineering objective than the wild-type strain, in accordance with
experimental measurements.
doi:10.1371/journal.pcbi.1000082.g005

Context-Specific Metabolic Networks
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box indicates the opposite. The intensity of the green or red color

indicates the difference in inconsistency scores, after log2

transformation for visualization scaling. Black boxes indicate that

no statistically significant (p,0.05) conclusion could be reached

from the data. In all cases where statistically significant conclusions

were possible, gene expression in strains grown with oxygen is

more consistent with aerobic growth than gene expression from

strains grown without (Figure 6). In 99% of cases that are

statistically significant, gene expression in strains grown

anaerobically is more consistent with anaerobic growth than the

data from strains grown with oxygen (Figure 7). The trend holds

90% of the time for anaerobic growth with nitrate (Figure 8). As

would be expected, different subsets of reactions are active for

each condition. Taken with the previous results, this provides

strong support for the inconsistency scores that emerge from the

algorithm and provides a positive control.

Context-Specific Networks for Human Cells
The wide variety of human cell types in the body do not share a

simple objective such as cellular growth, but rather have a

multiplicity of functions necessary for multi-cellular life. Accord-

ingly, understanding the metabolism of any particular cell type

requires a model that contains only the reactions present in that

cell type, without potentially thousands of extraneous reactions.

Human Recon 1 [22] will contain many reactions that are inactive

in particular cell types. Accurate models require their removal,

and the GIMME algorithm provides a framework for this process.

Herein we describe the first functional genome-scale metabolic

models for particular human cells, in this case, skeletal muscle cells

in different conditions.

Data sources. We used three publicly available sets of gene

expression data for skeletal muscle cells, as depicted in Table 1.

These three datasets were originally gathered for purposes

completely distinct from creating context-specific metabolic

networks, just as the E. coli datasets described earlier were.

Nevertheless, they can be interpreted in the context of a genome-

scale metabolic network towards this end. All three datasets were

collected using Affymetrix (Santa Clara, CA) gene expression

arrays. The GB dataset used U133+ 2.0 arrays, while the GI and

FO datasets used U133A arrays. While the arrays are similar, the

U133+ 2.0 array is able to provide reliable trancriptomic data for

179 reactions beyond what the U133A array can provide. The

coverage of these arrays in terms of model reactions is shown in

Figure 9. Each probeset that corresponded to a metabolic gene

was mapped to that gene, provided that the annotation

information for that particular array type indicated that the

probeset sequence was unique to either that gene or a closely

related gene. Probesets with sequences that correspond to

multiple, unrelated genes were ignored. The values associated

with the expression of genes were mapped to reactions through the

gene-protein-reaction associations, as described earlier and in

Materials and Methods.

Model creation and comparison. Each of the 42 (6+12+24)

gene expression datasets was used with the GIMME algorithm to

Figure 6. Pairwise comparisons of consistency for aerobic conditions. A graphical representation of the log2 transform of the difference
between inconsistency scores. A green box indicates that the sample on the y-axis is more consistent with aerobic growth than the sample on the x-
axis. Red boxes indicate the opposite. Differences that do not meet p,0.05 are left blank. The shade of red or green quantifies the log2 of the
difference in inconsistency scores. The position of green and red blocks here indicates that in all statistically significant cases, strains grown with
oxygen have gene expression more consistent with efficient aerobic growth than strains grown without oxygen.
doi:10.1371/journal.pcbi.1000082.g006
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create a model that produces ATP at no less than half the optimal

efficiency and matches the data as closely as possible. These

models were compared on a pairwise basis by finding the number

of reactions that are different in the two models under comparison.

On average, two models differ by 340 reactions, which is

approximately 10% of the reactions in the global model. The

pairwise distances are shown graphically in Figure 10. Darker

squares represent pairs of networks that are more similar than

lighter squares. Two trends are immediately apparent. First, the

metabolic networks that are derived from each dataset are more

similar to others derived from that same dataset, as shown by the

three large dark squares that surround the diagonal. Secondly, it

appears that the GI and FO models are more similar to each other

than to the GB models. Initially, we suspected that the gene chip

might bias this result, so we recomputed the distance between each

pair of models, ignoring the 179 reactions that are not present on

the U133A array. This result is graphically depicted in Figure 11,

showing that the FO models are similar to both the GB and GI

models, but the GI models are not similar to the GB models.

Comparing models generated with different gene expression

platforms must be done with caution. The bottom line is that

there are 179 metabolic reactions that the GB models could elect

not to use based on data, but the GI and FO models cannot

because no data is present; the GIMME procedure will only turn

off a reaction in the presence of some data mapped to that

reaction. Better coverage of metabolic reactions on gene

expression arrays will lead to fewer extraneous reactions in

resulting models.

Two significant results. In spite of the difficulties of

comparing models derived from different sources, two

statistically significant differences emerge from the analysis. First,

a given patient is more similar to himself before and after either

gastric bypass or glucose/insulin infusion than he is to other

patients. We took the similarity scores for the GB and GI patients

and created two separate groups: (A) all matched patients before

and after and (B) all unmatched patients from the same dataset.

Permutation testing demonstrated that group A has a smaller

mean distance than group B (p,0.01). Secondly, we looked at

consistency scores, asking if any group was more consistent with

high ATP production than any other. Only one statistically

significant (p,0.01) result emerged, that the after-GI patients are

more consistent with high ATP production than the before-GI

patients. Again, this result is exactly as expected; muscle cells that

have been given a substantial dose of glucose and insulin in the

bloodstream should be more consistent with high ATP production.

Conclusions
The work reported herein details the first available method to

both produce a guaranteed functional metabolic model specific to

a set of gene expression data and quantify the agreement between

gene expression data and one or more metabolic objectives. We

have demonstrated the functionality of this GIMME method with

gene expression data from E. coli and human skeletal muscle cells.

We have shown that (1) the computed consistency between gene

expression data for different conditions and RMF agrees with

physiological data, (2) the most consistent networks depend on the

Figure 7. Pairwise comparisons of consistency for anaerobic conditions. A graphical representation of the log2 transform of the difference
between inconsistency scores. A green box indicates that the sample on the y-axis is more consistent with anaerobic growth than the sample on the
x-axis. Red boxes indicate the opposite. Differences that do not meet p,0.05 are left blank. The shade of red or green quantifies the log2 of the
difference in inconsistency scores. The position of green and red blocks shows that in nearly all cases that are statistically significant, gene expression
data for strains grown without oxygen is more consistent with efficient anaerobic growth than strains grown with oxygen.
doi:10.1371/journal.pcbi.1000082.g007

Context-Specific Metabolic Networks
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metabolic objective and media conditions, and (3) the most

consistent networks for human skeletal muscle cells contain

significantly fewer reactions than the global human model.

Initially, we expected that the results for human models would

be more interesting than those for any other organism recon-

structed to date, principally because we expected that human cells

would show the most variability across conditions. However, the

lack of available data for a substantial number of human metabolic

reactions confuses attempts at comparison. We showed that

reducing the number of reactions considered by 5% can change

the apparent differences between different datasets. In addition,

the lack of replicates in human gene expression data sets and the

difficulty in obtaining high quality biological controls complicates

matters and reduces the statistical power of comparisons. We have

higher confidence in the results presented for E. coli because nearly

all of the gene-associated reactions have data available, replicates

are available, and controls are present. We also found that a

substantial number of reactions in E. coli do vary in activity when

different input conditions are provided. In the end, we conclude

that a tool originally conceived to plug a key gap in the analysis of

human cellular metabolism actually provides more immediate use

in the analysis of microbial metabolism.

With metabolic reconstructions growing in size and becoming

available for more and more organisms, tools to filter global

reaction lists into context-specific reaction lists will be highly

useful. Meaningful analysis of the human metabolic network will

require procedures such as GIMME in order to accurately predict

phenotypes.

Figure 8. Pairwise comparisons of consistency for nitrate conditions. A graphical representation of the log2 transform of the difference
between inconsistency scores. A green box indicates that the sample on the y-axis is more consistent with nitrate growth than the sample on the x-
axis. Red boxes indicate the opposite. Differences that do not meet p,0.05 are left blank. The shade of red or green quantifies the log2 of the
difference in inconsistency scores. The position of green and red blocks indicates that in most cases, gene expression from strains grown with nitrate
as the terminal electron acceptor is more consistent with efficient growth under this condition than strains grown under other conditions.
doi:10.1371/journal.pcbi.1000082.g008

Table 1. Datasets used to create context-specific skeletal muscle models.

Abbreviation Description Reference GEO Accession Number

GB 3 patients before and 1 year after gastric bypass surgery (vastus lateralis). [27] GDS2089

GI 6 subjects before glucose/insulin infusion via clamp and 2 hours after beginning (vastus lateralis) [28] GSE7146

FO 24 subjects divided into 3 groups of eight: morbidly obese (MO), not obese (NO), and obese (O)
(rectus abdominus).

[27] GDS268

doi:10.1371/journal.pcbi.1000082.t001

Context-Specific Metabolic Networks
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Materials and Methods

The metabolic networks for E. coli and human cells were

imported into Matlab with the COBRA Toolbox [23]. The gene

expression data for E. coli has been obtained by our lab and is

previously published as cited above. The gene expression data for

human skeletal muscle cells was downloaded from NCBI GEO

[24] as CEL files.

Gene Expression Data Processing
The gene expression data was obtained as CEL files and

processed using Bioconductor [25]. The data for E. coli was

processed using GCRMA as implemented within Bioconductor

[14]. The data for human skeletal muscle was processed using the

affy package [26] and the mas5calls function. The p values were

subtracted from 1 and the resulting value used as a quantitative

measure of likelihood that the gene was available. The default

parameters were used. For all datasets, the expression level of each

reaction was determined by mapping any available data from

genes associated with that reaction. If data was not available for

any gene associated with a reaction, it was given a score of 21. If

data was available for one or more genes, a single score was

computed by evaluating the boolean GPR associations; OR’s

would evaluate to the greater of the two values, AND’s to the

lesser. The end result was a score for each reaction from each set

of data, either 21 or non-negative, with greater numbers implying

greater certainty that reaction is present. This is the data that was

input into the GIMME algorithm to compute the consistency

scores and context-specific metabolic networks.

GIMME Implementation
The GIMME algorithm is implemented in Matlab, using

functions in the COBRA Toolbox. In general, any robust linear

programming solver should work; we used Tomlab (Tomlab

Optimization, Pullman, WA).

Figure 9. The mapping of Affymetrix gene chip data to
reactions. Reactions in the white area have no usable gene chip data
on either platform. Reactions in grey have usable data only on the 133+
2.0 platform. Reactions in black have usable data for both the 133+ 2.0
and the 133A platform. Importantly, 5% (179) of the reactions are only
represented on the 133+ 2.0 chip, potentially increasing scores across
chips. The average difference score is 340, so a difference of 179
reactions is greater than a 50% impact.
doi:10.1371/journal.pcbi.1000082.g009

Figure 10. A comparison of skeletal muscle models. This heat map displays the level of difference in each pair of models. Darker squares
represent models that are more similar to each other than lighter squares. A black square (as on the diagonal) indicates identical models, and a white
square indicates the most different pair of models. The three darker blocks that surround the main diagonal are the comparisons of samples within
each dataset to each other. These darker blocks show that the models within each dataset tend to be more similar to each other than to models from
other datasets. The models from a particular expression array type also appear to be more similar to each other than to models from a different array
types, but the data available do not allow us to show that this is actually true, as is shown in Figure 11.
doi:10.1371/journal.pcbi.1000082.g010
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Conversion to Normalized Consistency Scores
The output from the GIMME algorithm is an inconsistency score,

and a higher score means that the gene expression data is less

consistent with the model achieving the desired objective. For

visualization purposes only, these scores are converted into

normalized consistency scores, with a higher score indicating greater

consistency between the data and the modal achieving the objective.

For a given set of scores, each inconsistency score is subtracted from

1.02 * (maximum inconsistency score) to produce a set of consistency

scores. Each consistency score is divided by the maximum

consistency score to produce a set of normalized consistency scores.

The 1.02 factor assures that the smallest consistency score is slightly

greater than zero and easy to visualize on a graph.

Statistical Significance Testing
Permutation testing with 10,000 randomizations was used to

determine the statistical significance of all results with regard to

consistency scores. This testing was implemented in Matlab.

Visualization
Heat-map type representations were produced in Matlab. Other

graphs were produced in Excel (Microsoft, Redmond, WA).
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