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Abstract

RNA molecules will tend to adopt a folded conformation through the pairing of bases on a single strand; the resulting so-
called secondary structure is critical to the function of many types of RNA. The secondary structure of a particular substring
of functional RNA may depend on its surrounding sequence. Yet, some RNAs such as microRNAs retain their specific
structures during biogenesis, which involves extraction of the substructure from a larger structural context, while other
functional RNAs may be composed of a fusion of independent substructures. Such observations raise the question of
whether particular functional RNA substructures may be selected for invariance of secondary structure to their surrounding
nucleotide context. We define the property of self containment to be the tendency for an RNA sequence to robustly adopt
the same optimal secondary structure regardless of whether it exists in isolation or is a substring of a longer sequence of
arbitrary nucleotide content. We measured degree of self containment using a scoring method we call the self-containment
index and found that miRNA stem loops exhibit high self containment, consistent with the requirement for structural
invariance imposed by the miRNA biogenesis pathway, while most other structured RNAs do not. Further analysis revealed a
trend toward higher self containment among clustered and conserved miRNAs, suggesting that high self containment may
be a characteristic of novel miRNAs acquiring new genomic contexts. We found that miRNAs display significantly enhanced
self containment compared to other functional RNAs, but we also found a trend toward natural selection for self
containment in most functional RNA classes. We suggest that self containment arises out of selection for robustness against
perturbations, invariance during biogenesis, and modular composition of structural function. Analysis of self containment
will be important for both annotation and design of functional RNAs. A Python implementation and Web interface to
calculate the self-containment index are available at http://kim.bio.upenn.edu/software/.
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Introduction

Our understanding of the significance of noncoding RNAs

(ncRNAs) has increased dramatically over the last decade, notably

marked by the discovery of the endogenously coded microRNAs

(miRNAs) [1–3]. Along with the increased awareness of the diversity

of ncRNAs has come a corresponding heightened attention to RNA

sequence and structural measures (e.g., compared in [4]) with which

to characterize known and novel RNAs.

The secondary structure of an RNA, consisting of the energy-

minimizing base interactions along the length of the molecule, has

a direct effect on its function [5], a fact that has been well-

characterized for a variety of RNA classes. Ribosomal RNAs

(rRNAs) are among the largest examples that illustrate the

functional importance of RNA structure—several rRNAs along

with associated proteins assemble into the large and small subunits

of the ribosome, with the structural specificity to direct protein

translation [6]. The cloverleaf transfer RNA (tRNA) structure

allows it to associate with the ribosome and properly orient its

bound amino acid during aminoacylation [7]. Various small

nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs) are

involved in RNA editing and splicing on the basis of their shape

specificity [8,9], while the stem-loop structure of precursor

miRNAs (pre-miRNAs) allows them to be recognized by the

ribonuclease Dicer during the miRNA maturation process [10].

Structure-derived functionality is not limited to nonprotein coding

RNAs; however, some messenger RNAs (mRNAs) contain

structural regulatory motifs, such as the hairpin selenocysteine

insertion sequence (SECIS) that occurs predominantly in the 39

untranslated regions (UTRs) of mRNAs coding for selenoproteins

[11] and the internal ribosome entry site (IRES) in viral 59 UTRs

that promotes translation initiation in the middle of the mRNA

[12]. Additionally, recognition of specific mRNAs by RNA

binding proteins as well as pre-mRNA splicing all involve

molecular interactions of the folded RNA structure [13,14].

The importance of structural specificity is not limited to the end

product – sequence and structural specificity during various stages

of RNA biogenesis are also critical. Eukaryotic tRNAs, for

example, are transcribed as longer precursor transcripts, which

are recognized and cleaved on both the 59 and 39 ends by RNaseP
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and an uncharacterized endonuclease, respectively [7,15]; some

tRNAs also contain introns, which disrupt the canonical cloverleaf

structure and are spliced out before the mature tRNA is exported

out of the nucleus [7,15]. The eukaryotic 18S, 5.8S, and 28S

rRNAs are transcribed as a single unit and subsequently cleaved

apart [16,17]. The hammerhead ribozyme is an example of a self-

splicing RNA, such that its three helices mediate cleavage of a

motif that occurs on the same RNA molecule [18].

In the case of miRNAs, biogenesis begins with the transcription of

long primary transcripts (pri-miRNAs), which fold into large

structures that serve as substrates for the endonuclease Drosha

[19]. Drosha, in complex with Pasha to form the Microprocessor

complex, recognizes specific hairpin substructures in the pri-miRNA

and cleaves them at the base of the helical stem region, yielding the

pre-miRNA hairpins [20,21]. These range in size from ,60–120

nucleotides and are subsequently processed by Dicer, which targets

the pre-miRNAs on the basis of their hairpin shape [22,23]. miRNAs

are notable in that the sequence of the pre-miRNA hairpin remains a

robust structure through these biogenesis steps, regardless of the

sequence context: when embedded in the larger primary sequence,

the pre-miRNA subsequence folds into a hairpin, and when it is

cleaved off to form an independent unit, the sequence folds into the

same hairpin [24].

The need for context-independent structural conservation, as

exemplified by the miRNA biogenesis pathway, is a hallmark of a

broader phenomenon of modular composability—i.e., the gener-

ation of biopolymers through combinatorial composition of

structural motifs. It is now well recognized that novel proteins

can arise from shuffling of structural domains, the most vivid

example being circularly permuted proteins [25,26]. Given the

critical role of structural features in RNA function and the already

recognized motifs as compiled in databases such as RFAM [27], it

is conceivable that many RNAs might also have arisen from

evolutionary steps of domain shuffling and domain fusions. Such a

process would require that the novel molecule reach a folded state

that is a composition of the structural features of its parts—i.e., the

structural features of the combinatorial pieces need to be invariant

to composition with other sequences.

On the one hand, structural context robustness may be a product

of the specific relationship between each sequence and its genomic

context, a property that has been exploited in computational

miRNA finders such as in [28]. On the other hand, certain

subsequences may have some intrinsic tendency to be structurally

indifferent to their surrounding sequence, irrespective of the

particular identity of that surrounding sequence—e.g., a pre-miRNA

would still be structurally robust if it were inserted into a different

context. We call this property of intrinsic structural invariance ‘‘self

containment.’’ A self-contained structural RNA (or protein) has the

potential to be a modular building block in a larger structure, carry

out consistent function through biochemical modifications of

surrounding sequences, and potentially maintain function when

inserted into novel contexts, as might occur with viral elements.

Previously, while studying the general mutational robustness of

170 structural elements of RNA viral genomes, Wagner and

Stadler found that there was a trend toward higher structural

robustness in conserved elements than in nonconserved elements

when placed in short nongenomic contexts [29]. Using a similar

approach, Ancel and Fontana studied the intrinsic context

insensitivity of a set of canalized artificial RNAs, selected to have

reduced environmental plasticity, and found a positive relationship

between environmental canalization and modularity [30]. Other

work in RNA (e.g., [31,32]) and proteins (e.g., [33]) suggests that

there is an intimate relationship between mutational robustness

and domain modularity with folding kinetics, thermodynamic

stability, as well as other biogenerative processes.

In this work, we analyze self containment over a broad range of

biological RNAs using an intuitive scoring method to quantify

different degrees of context robustness. We show that in fact pre-

miRNAs do exhibit a high degree of intrinsic self containment,

while most other biologically relevant RNAs tend not to show such

self containment. We relate self containment to other sequence

and structural features of RNA and find that no simple

combination of features can completely explain self containment.

Finally, we show that variation among miRNAs in degree of self

containment is correlated with genomic location and miRNA-

family membership, as well as their biogenerative process, as

illustrated by miRNAs produced by the alternate mirtron

pathway. We propose that high self containment is an intrinsic

property of particular RNA sequences and may be an evolution-

arily selected characteristic in molecules that need to maintain

structural robustness for some aspect of their function in the face of

genetic perturbations, generative perturbations, and modular

composition in combinatorial contexts.

Results

Measuring Self Containment
Given a sequence of nucleotides xwy, where w is a sequence of

interest and x and y are arbitrary upstream and downstream

sequences, w is structurally invariant if the substructure of the w

portion is identical to the structure of w in isolation. In this

scenario, the paired bases in w are paired exclusively with other

bases in w and do not involve the nucleotides in x and y. If w is

structurally invariant regardless of the nucleotide identity of x and

y, we call w self contained. We formulate self containment as a

quantitative trait of w that varies with the degree of structural

invariance vis-a-vis the pool of possible x and y sequences.

We developed a scoring method to measure the degree of self

containment of an RNA molecule, similar to the methods used in

[29] and [30] but better encapsulating the severity of structure

change over a varied number of contexts. The score is calculated

as follows: for each RNA sequence w of length L folding into a

Author Summary

An RNA molecule is made up of a linear sequence of
nucleotides, which form pairwise interactions that define its
folded three-dimensional structure; the particular structure
largely depends on the specific sequence. These base-
pairing interactions are stabilizing, and the RNA will tend to
fold in a particular way to maximize stability. Consider some
nucleotide sequence that optimally folds into some
structure in isolation; if this sequence is now embedded
inside a larger sequence, then either the original structure
will be a robust subcomponent of the larger folded
structure, or it will be disrupted due to new interactions
between the original sequence and the surrounding
sequence. We explore this property of context robustness
of structure and in particular define the property of ‘‘self
containment’’ to describe intrinsic context robustness—i.e.,
the tendency for certain sequences to be structurally robust
in many different sequence contexts. Self containment turns
out to be a strong characteristic of a class of RNAs called
microRNAs, whose biogenesis process depends on the
maintenance of structural robustness. This finding will be
useful in future efforts to characterize novel miRNAs, as well
as in understanding the regulation and evolution of
noncoding functional RNAs as modular units.

Self-Contained Modular RNA
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particular minimum free energy (mfe) secondary structure, we

create a larger sequence of length 3L by embedding the original

sequence in between randomly generated sequences x and y of

equal length, forming a concatenated molecule xwy. We fold the

resulting larger sequence and measure the proportion of the

original structure preserved in the larger structure (Figure 1). We

repeat the process using 1,000 different random embeddings and

average the proportions to generate a single value that ranges from

0.0 to 1.0, with 1.0 indicating a maximal degree of self

containment. We call this score the self-containment index (SC).

When applied to a set of 493 human miRNA stem loops

downloaded from miRBase [34,35], filtered to exclude sequences of

.90% sequence identity using the greedy sequence clustering

algorithm Cd-hit [36], we found that the SC index produced a

heavily right-shifted distribution, with an average SC value of 0.88

(Figure 2). We repeated the analysis on the stem-loop sequences after

trimming the 59 and 39 ends to align with the mature miRNA

sequence while including the characteristic 2-nt 39 overhang [19,24],

thus yielding true pre-miRNA stem loops as would be produced by

Drosha processing, and found the same right-shifted distribution,

again with an average SC of 0.88, though true pre-miRNA SC

values tend to be slightly higher than the corresponding foldback

values (p = 0.021, Wilcoxon signed rank test) (Figure 2). In contrast,

when applied to a set of 500 randomly-generated structured RNAs,

generated to approximately match the length and degree of base

pairing of human miRNA foldbacks (see Materials and Methods),

the SC index produced a roughly normal distribution of values

centered around 0.54 (Figure 2). Thus, the miRNAs exhibit a

significantly higher degree of self containment than random

(p,2.2610216, Wilcoxon rank sum test).

We tested the robustness of the SC index by varying the number

of random embeddings used and found that the index gave

consistent results using as few as 100 embeddings when applied to

random 100-sequence subsets of the miRNA stem loops and

random structures. A Pearson correlation between SC values using

100 random embeddings versus 1,000 random embeddings

yielded an average slope of 0.99 with an average r2 of 0.98,

indicating that the SC index can be reliably estimated with a small

sample of randomizations. (Table S1). Similarly, increasing the

number of random embeddings to 5,000 also did not affect the

scores (Table S1).

We also tested the effect of varying the length of the random

context by comparing SC values obtained using the normal

formulation—left and right random contexts of length L—with

values obtained using context lengths ranging from 0.1L to 2L.

Longer contexts produced comparable SC values to the original

formulation over both miRNAs and random structures, with

Pearson correlations ranging from 0.98 to 0.99 and slopes from

0.98 to 1.08. SC values were slightly but significantly lower with

longer context lengths, with an average difference of 0.01 for the

miRNAs and 0.04 for the random structures between the L- and

2L-derived values (p,161029, Wilcoxon signed rank test).

Conversely, shorter contexts produced lower correlations and

inflated SC values, with the context length of 0.1L yielding

Pearson correlations of 0.61 to 0.65 and an average increase in SC

value ranging from 0.06 to 0.21 (p,2.2610216, Wilcoxon signed

rank test) (Table S2). These data indicate that a context length of L

is sufficient to model the effects of large sequence surroundings,

but lengths much shorter than L may be insufficient.

Finally, we tested the degree to which the base composition of

the random contexts affected the SC values and found that

substituting random contexts with coding sequence, intronic

sequence, or versions of these with shuffled dinucleotides (i.e.,

the nucleotide sequences were randomly permuted in a way that

preserves both the mononucleotide and dinucleotide frequencies of

the original [37,38]) had little effect on SC values. Pearson

correlations between SC values produced by the original

formulation compared to each of these variants, for each of the

RNA classes, yielded slopes ranging from 0.91 to 1.08 with r2

values from 0.86 to 0.98 (Table S3), again suggesting that the SC

index can be well estimated using randomization experiments.

Figure 1. Example of varying degrees of structure preservation. (A) An RNA sequence that folds into a hairpin in isolation. (B–D) Embedding
the original sequence in different surrounding sequence contexts causes varying degrees of preservation of the hairpin in the global mfe structure:
complete preservation (A); loss of one base pair (B); and complete disruption of the original hairpin (C).
doi:10.1371/journal.pcbi.1000150.g001

Figure 2. SC values for human pre-miRNA foldbacks versus
random structures. Histograms of self-containment index values for
the 493 human miRNA stem loops, the stem loops trimmed to
represent true pre-miRNAs, and the 500 random structured RNAs.
doi:10.1371/journal.pcbi.1000150.g002

Self-Contained Modular RNA
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RNA Classes Have Varying Degrees of Self Containment
Using the SC index, we analyzed several other RNA classes to

characterize their degrees of self containment. First, to confirm

that high self containment is not particular to miRNAs in humans,

we measured the self containment of the miRNA stem loops

spanning the 56 other species represented in miRBase [34,35]. We

found that among species with at least five annotated miRNAs in

miRBase, the average SC was between 0.85 and 0.98 (Table S4),

and that the distributions of scores when grouped into larger

taxonomic classes were all heavily right shifted, as was the case for

the human miRNAs (Figure 3).

We next measured the self containment of several other classes

of structural RNAs that have been compared previously using

other measures, e.g., [4,37,39]: tRNAs, U1 and U2 spliceosomal

RNAs, Hammerhead type III ribozymes, and 5S rRNAs (Table 1).

All of these yielded SC ranges much lower than for the miRNAs

(Figure 4A). The Hammerhead III ribozymes exhibited the highest

average degree of self containment at 0.69, which is significantly

lower than for the miRNAs (p = 3.9561028, Wilcoxon rank sum

test), while the remaining classes had average SC values ranging

from 0.38 for U1 to 0.54 for the 5S rRNA (Figure 4A).

To determine whether high self containment is a product of a

strong hairpin shape, which these other classes lack, we

additionally analyzed selenocysteine insertion sequences (SECIS)

and bacterial signal recognition particle (SRP) RNAs from RFAM

[27], both of which exhibit strong hairpin secondary structures.

We also tested a set of hairpins derived from the protein-coding

regions of mRNA transcripts, originally curated to serve as a

negative training set for pre-miRNA detection (CD hairpins) [40].

Both the SECIS and SRP RNAs exhibited higher SC values than

all the other structural RNAs except for the Hammerhead

ribozymes, yielding average values of 0.60 and 0.69, respectively;

however, this was still significantly lower than for the miRNAs

(p = 2.2610216 for SECIS, p = 7.24610212 for SRP, Wilcoxon

rank sum test) (Figure 4B). The CD hairpins, despite their

structural similarity to pre-miRNAs, turned out to have very low

self containment, with an average SC value of 0.43, greater only

than that of the U1 RNAs (Figure 4B, Table 1).

Two Additional Groups of Hairpins Show High Self
Containment

In a further attempt to find groups of RNAs with similar SC

distributions to the miRNAs, we considered the entire set of

RFAM sequences [27,41], filtered to .90% sequence identity. We

extracted all unbranched hairpins greater than 50 nucleotides in

length, with at least half of the nucleotides involved in base pairs;

these hairpins were either full-length RNAs, or they were

structurally decomposable portions of full RNAs. In all, we

obtained 9,572 hairpins, of which 335 were miRNAs.

We computed SC values for each hairpin. As a whole, there

exists a bias toward higher SC values, though the distribution is

roughly uniform among the SC values greater than 0.5 (Figure 5).

We extracted the top 15% scoring hairpins, which corresponds to

having a SC value greater than 0.900, and looked for

overrepresentation of hairpins deriving from particular RFAM

Figure 3. SC values for pre-miRNAs from various lineages. Box-and-whisker plots showing the self-containment index distribution among
pre-miRNAs found in miRBase, indicating the median in bold, the interquartile range enclosed by the box, the smallest and largest non-outliers
indicated by the whiskers, and outliers represented as individual points. The lineages displayed are, from left to right: viruses; protists; plants; and
animals divided into the phyla arthropods, nematodes, flatworms, and chordates, which are further subdivided into classes/superclasses of fish,
amphibians, birds, and mammals. Number of miRNAs for each lineage is shown in parentheses, and box width is proportional to the square root of
this number.
doi:10.1371/journal.pcbi.1000150.g003

Table 1. Average self-containment index values for RNA
classes analyzed.

RNA class Number of sequences Average SC

miRNA (all species) 4,429 0.90

miRNA (human) 493 0.88

Hammerhead III ribozyme 19 0.69

Bacterial SRP 47 0.69

RFAM-extracted hairpins 9,572 0.65

SECIS elements 47 0.60

5S rRNA 290 0.54

Random structures 500 0.54

tRNA 751 0.51

U2 spliceosomal 30 0.46

CD hairpins 168 0.43

U1 spliceosomal 31 0.38

doi:10.1371/journal.pcbi.1000150.t001

Self-Contained Modular RNA
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families. Nineteen classes show significant enrichment with

p,0.001 according to a Fisher’s exact test, of which 12 are

miRNA families (Table 2). Of the remaining classes, the

eukaryotic SRP RNA and the hepatitis C virus stem-loop VII

show the most significant skews toward high self containment, with

the majority of the individuals having SC values greater than 0.9,

as was observed among the miRNA stem loops. The next most

significant non-miRNA class are hairpins derived from U2, which

do not show as pronounced a skew.

Self-Containment Index Correlates with Other RNA
Measures

Having characterized the extent to which self containment

varies among different RNAs, we next sought to understand the

biophysical basis of SC by comparing it to other measures on

structured RNAs. We compared SC values with 14 other measures

drawn from [4] and [39]: sequence length; %GC nucleotide

content; mfe and mfe normalized by length [4,42] and GC content

[42,43]; normalized Shannon entropy of base-pair probabilities

among all the structures in the thermodynamic ensemble (Q) [44];

base-pairing proportion overall (P) and the proportion of those

pairs that are AU, GC, and GU pairs; z-scores of mfe, Q, and R

when compared to a set of shuffled sequences preserving

dinucleotide frequencies [37,38]; and the stability of the mfe

structure with respect to competing alternate structures, which is

approximated by the number of structures in the thermodynamic

ensemble within 2 kcal/mol of the mfe [31,45] (see Materials and

Figure 4. SC values for RNA classes. Histograms of self-
containment index values for (A) tRNAs, 5S rRNAs (5S), Hammerhead
type III ribozymes (H III), U1 spliceosomal RNAs, and U2 spliceosomal
RNAs, as compared to random structures; and (B) SECIS elements,
bacterial SRP RNAs (bact SRP), and hairpins derived from protein-coding
regions of mRNAs (CD hairpin), as compared to random structures.
doi:10.1371/journal.pcbi.1000150.g004

Figure 5. SC values for RFAM-extracted hairpins. Histogram of
self-containment index values for the 9,572 hairpins extracted from
RNAs annotated in RFAM.
doi:10.1371/journal.pcbi.1000150.g005

Table 2. RFAM families whose hairpin structures are
significantly enriched for high self containment.

Class

Total
number
of hairpins

Observed
in top
15% SC

Expected
by chance p-valuea

MIR (combined)b 335 285 50.3 3.70610282

RF00017 SRP_euk_arch 171 105 25.7 9.76610225

RF00468 HCV_SLVII 41 31 6.2 4.11610210

RF00451 mir-395 31 27 4.7 6.32610210

RF00075 mir-166 21 20 3.2 3.7461028

RF00445 mir-399 17 16 2.6 9.4961027

RF00073 mir-156 15 15 2.3 1.2661026

RF00004 U2 113 43 17.0 1.9361026

RF00169 SRP_bact 110 37 16.5 7.1761025

RF00247 mir-160 10 10 1.5 7.7061025

RF00074 mir-29 9 9 1.4 1.7861024

RF00238 ctRNA_pND324 10 9 1.5 2.9861024

RF00103 mir-1 10 9 1.5 2.9861024

RF00551 bicoid_3 19 12 2.9 3.1561024

RF00256 mir-196 13 10 2.0 3.2861024

RF00027 let-7 13 10 2.0 3.2861024

RF00053 mir-7 8 8 1.2 4.1261024

RF00047 mir-2 8 8 1.2 4.1261024

RF00042 CopA 12 9 1.8 7.4161024

RF00244 mir-26 7 7 1.1 9.6261024

aBy Fisher’s exact test.
bAll miRNA families combined.
doi:10.1371/journal.pcbi.1000150.t002

Self-Contained Modular RNA
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Methods). To test whether self containment is related to the

complexity of an RNA sequence, we also compared SC to the

Shannon entropy of nucleotide, dinucleotide, and trinucleotide

probabilities across the sequence. Finally, we tested whether self

containment depends more on the strength of base interactions in

the 59 and 39 ends of the sequence rather than in the interior of the

structure, using the base-pairing proportion measure limited to the

distal portions of the sequence (see Materials and Methods).

We used four RNA classes for comparison: human miRNA

stem loops, random structured RNAs, 5S rRNAs, and tRNAs.

The correlations between variance-stabilized SC values—using an

arcsin square-root transform (see Materials and Methods)—and

values obtained from each of these measures are presented in

Table 3, and scatter plots for length, GC content, mfe, mfe z-score,

Q, Q z-score, P, and end-restricted P are presented in Figure 6.

For many of these measures, the relationship with SC varies

depending on the class of RNA considered. Minimum free energy,

for example, is moderately correlated with SC in the 5S rRNAs, but

this is not the case for the other classes. Similarly, base-pairing

proportion—overall, partitioned into base-pair type, or limited to

particular regions of the structure—is moderately predictive for

miRNAs and 5S, but not for tRNAs. Sequence complexity, as

described by the nucleotide entropy measures, appears to have little

to no relationship on self containment. The strongest correlations are

between SC and mfe z-score, as well as with base pair entropy and

the corresponding z-score, which themselves have all been shown to

have strong correlations with one another [4].

We performed a multiple regression using all 21 variables, to

assess how SC relates to a linear combination of the various RNA

measures. The linear model yielded an r2 of 0.52 for the random

structures, 0.65 for tRNAs, 0.76 for miRNAs, and 0.81 for the 5S

rRNAs. However, the significantly predictive variables for the

regression model differed between the RNA classes, suggesting

that self containment reflects a subtler sequence-structure

relationship that is not captured in a common model across these

factors and RNA classes.

RNA Sequences Have Enhanced Self Containment Given
Their Structure

To further characterize the relationship between structure and

sequence in determining degree of self containment, we generated

an ensemble of 100 inverse-folded sequences for each human

miRNA stem loop using RNAinverse from the Vienna RNA

Package [46]; each inverse-folded sequence is predicted to adopt

the respective miRNA structure with minimum free energy. We

then measured self containment for each set of sequences to

produce a distribution of SC values for each miRNA structure and

compared these distributions.

Some of the structures have very narrow ranges of admissible SC

values, particularly on the high end where it appears that there are

structures that are context-robust regardless of the sequence.

However, most of the structures admit a wide range of possible SC

values, even among structures whose real miRNA sequences

exhibit very high self containment, indicating that self containment

is not simply determined by structure but is an evolved feature of

the sequence given a particular structure (Figure 7A). The same

trend was observed when other types of RNA were considered

(data not shown).

Using the ensemble of 100 inverse-folded sequences per miRNA

stem-loop structure, we calculated the average SC value and

standard deviation and compared this to the SC value of the true

miRNA sequence by computing a z-score. We found a strong

tendency for the real sequences to have higher self containment than

average, though few of them had z-scores greater than 2 (Figure 7B).

We performed the same analysis on random 100-sequence subsets of

the 5S rRNAs, tRNAs, CD hairpins, and the eukaryotic SRP RNA-

derived hairpins we previously extracted, and found that all classes

displayed right-shifted z-score distributions, indicating that the

biological RNA sequences tend to be more self contained than

artificial sequences that fold into the same structure (Figure 7B).

Mirtrons Are Less Self Contained Than Conventionally
Processed miRNAs

The high self containment that distinguishes miRNAs is

hypothesized to be partly a function of their unique biogenesis

mechanism; therefore, we tested whether enhanced self containment

would still be present in the absence of the biogenesis constraint.

Recently, several intronic miRNAs were characterized in Drosophila

melanogaster [47,48] and Caenorhabditis elegans [48] that bypass the

Drosha cleavage pathway. Instead, these ‘‘mirtrons’’ are full-length

intronic sequences that are spliced from protein-coding transcripts

through the normal splicing pathway, giving rise to pre-miRNA

foldbacks that are subsequently processed by Dicer to yield mature

miRNAs. Since mirtrons are processed as introns, structural

robustness of the hairpin shape is not as critical to biogenesis as it

is for pre-miRNAs that need to be excised by Drosha. We

hypothesized that this effect would be reflected in lower SC values

for mirtrons as compared to canonical pre-miRNAs.

For the mirtrons identified in Drosophila [47,48], this does appear

to be the case. We compared the SC values of the 14 mirtrons dme-

Table 3. Correlation coefficients (r2) between self-
containment index and other RNA measures.

Measure miRNA Random 5S rRNA tRNA

Length 0.04 0.01b 0.12 0.00b

GC proportiona 0.15 0.18 0.02 0.01b

mfe 0.07 0.00b 0.46 0.04

Length-normalized mfe 0.21 0.03 0.44 0.05

GC-normalized mfe 0.31 0.06 0.63 0.27

mfe z-score 0.58 0.35 0.72 0.48

Base pair entropy (Q) 0.56 0.35 0.59 0.25

Base pair entropy z-score 0.58 0.37 0.56 0.28

Base pair proportion (P)a 0.25 0.00b 0.26 0.01

Base pair proportion z-score 0.30 0.04 0.29 0.05

AU base pair proportiona 0.21 0.14 0.00b 0.01

GC base pair proportiona 0.13 0.06 0.03 0.00

GU base pair proportiona 0.05 0.02 0.03 0.09

End base pair proportiona 0.33 0.04 0.27 0.01

End AU base pair proportiona 0.16 0.08 0.00b 0.01

End GC base pair proportiona 0.09 0.02 0.02 0.00b

End GU base pair proportiona 0.03 0.03 0.03 0.09

Number of alternate structures 0.12 0.04 0.14 0.09

Nucleotide entropy 0.02 0.12 0.02 0.00b

Dinucleotide entropy 0.01 0.05 0.01b 0.01

Trinucleotide entropy 0.00b 0.01b 0.00b 0.01

aProportion metrics were variance stabilized by performing an arcsin-square
root transform before correlation was calculated.

bCorrelation was not significant (p.0.05).
doi:10.1371/journal.pcbi.1000150.t003
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mir-1003–1016 against the remaining 76 Drosophila miRNAs (filtered

to exclude sequences .90% similar) and found that mirtrons have

lower SC values on average—0.83 for mirtrons versus 0.91 for

canonical miRNAs; this difference achieves a significance level of

p = 0.062 according to a t test on logit-transformed SC values. An

additional degenerate Drosophila mirtron was characterized, dme-mir-

1017, that is aligned to only the 59 splice site and has a long 39

overhang, which presumably is cleaved subsequent to intron splicing

[48]. Including dme-mir-1017 in the analysis, after trimming the

sequence from the 39 end to yield a canonical hairpin, achieves a 5%

significance level (p = 0.0483) (Table 4).

Among mammalian mirtrons that have recently been charac-

terized [49], the effect is much stronger. Thirteen human and 11

Macaque mulatta mirtrons were identified with strong cloning

evidence and sequence conservation, including one previously

annotated miRNA, mir-877. When we compared SC values

between the human mirtrons and the set of canonical miRNA

stem loops excluding hsa-mir-877, we found that human mirtrons

had an average SC of 0.50 compared to the canonical 0.88 with

p = 4.9661026, using a Wilcoxon rank sum test due to the non-

normality of the data (Table 4). Similarly, macaque mirtrons also

had a significantly lower average SC of 0.67, compared to 0.89 for

the canonical miRNAs (p = 2.3961025, t test) (Table 4).

In contrast, this trend was not observed in C. elegans—all four of

the mirtrons identified in C. elegans [48] were found to be more

highly self-contained than the average C. elegans miRNA

(p = 7.0661023, t test) (Table 4). Since mirtrons in different

lineages may not have a common ancestry [49], perhaps this trend

reflects a different biogenesis mechanism or evolutionary history.

Self Containment Distinguishes miRNA Subclasses
Although high self containment seems to be a distinguishing

characteristic for Drosha-processed miRNAs, there is still

variability in the degrees of self containment among these

miRNAs. We sought to account for some of this variability by

measuring mean differences in SC along several functional

partitions of the set of human miRNAs.

Among the full set of 533 unfiltered human miRNAs, we tested

the tendency for self containment to differ among miRNAs

depending on their family membership. The miRNAs belonging

to a miRNA family as annotated in miRBase [34,35]—i.e.,

possessing at least one ortholog or paralog—were found to be

significantly more self contained, with an average SC of 0.91, than

the nonconserved miRNAs, which had an average SC of 0.78

(p = 1.3261027, Wilcoxon rank sum test) (Table 5). This significance

is possibly inflated by the fact that, by definition, miRNAs in a family

share nucleotide sequence, which would cause some correlation in

SC values among individuals in the same family. Using a more

stringent formulation, obtained by averaging the human SC values

per family and performing a rank sum test on family averages versus

the SC values of the nonconserved miRNAs, we were still able to see

the significant difference (p = 1.3761024). Additionally, we con-

firmed the result by performing a randomization test (see Materials

and Methods), which is robust to sampling bias and distribution

shape (p,1025). Restricting the analysis to only the miRNAs with

human paralogs, we again found a significantly higher degree of self

containment when compared to the human miRNAs lacking human

relatives (p = 1.0561024, Wilcoxon rank sum test; p,1025,

randomization test).

Figure 6. Comparison of SC with other RNA measures. Scatter plots showing self-containment index plotted against eight other RNA
measures: sequence length (length); proportion of G and C nucleotides (GC); minimum free energy of the structure (MFE); z-score of the mfe
compared to 1,000 dinucleotide-shuffled sequences (MFE z); normalized Shannon entropy of base-pair probabilities among all the structures in the
thermodynamic ensemble (Q); z-score of Q compared to 1,000 dinucleotide-shuffled sequences (Q z); proportion of bases involved in base pairs over
the entire structure (P); and proportion of bases involved in base pairs, limited to the 59 and 39 ends of the sequence. Four sets of RNAs are overlaid in
each plot: tRNAs, random structures, 5S rRNAs, and human pre-miRNAs.
doi:10.1371/journal.pcbi.1000150.g006
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A large proportion of human miRNAs occur in genomic clusters

[50] as part of the same primary transcript [24,51,52]. Using a

liberal definition of clustering proposed by [28], such that a

miRNA is part of a cluster if it is ,10,000 nucleotides from

another miRNA on the same strand, we found that miRNAs

occurring in clusters are significantly more self contained than

isolated miRNAs (p = 1.4861024, Wilcoxon rank test) (Table 5).

Since clustering turns out to be correlated with family membership

(p,2.2610216, x2 test, 1 degree of freedom), we again used a

randomization test to confirm significance (p = 1.261024).

Finally, we tested whether miRNAs overlapping genes had

differing self containment than intergenic miRNAs. Using miRBase

annotations [34,35], miRNAs classified as intergenic were signifi-

cantly more self contained than gene-overlapping miRNAs

(p = 0.0195, Wilcoxon rank sum test) (Table 5). When broken down

into intron- versus exon-overlapping miRNAs, the effect is stronger,

with exon-overlapping miRNAs significantly less self contained than

non-exon-overlapping miRNAs (p = 1.561024, Wilcoxon rank sum

test). Again, among human miRNAs there is an association between

family membership and genomic location—intergenic miRNAs are

overrepresented in families (p = 2.86610210, x2 test, 1 degree of

freedom) and exon-overlapping miRNAs are underrepresented in

families (p = 4.8461023, x2 test, 1 degree of freedom). Randomiza-

tion tests again confirmed significance of the SC differences

(p = 1.5461023 for intergenic versus gene-overlapping,

p = 7.6961023 for exon-overlapping versus non-exon-overlapping).

Discussion

In the previous sections we showed that there exist RNA

sequences that have an intrinsic tendency to maintain their specific

folded structure regardless of their embedded sequence context.

We developed a way to measure this tendency, the self-

containment index, and we used the index to show that degree

of self containment varies among functional classes of RNA.

miRNAs, with their need to maintain structural invariance

through two cleavage steps during biogenesis, exhibit an enhanced

degree of self containment, in contrast to other classes of RNAs

without such a restriction. When we considered a subset of

miRNAs, mirtrons, that bypass one of these cleavage steps, we

found a significantly lower average self containment in three

species. Among human miRNAs, we found a positive association

of high self containment with membership in human-specific or

cross-species miRNA families and putative transcription in a

polycistronic cluster; as well as with location of the miRNAs in

genomic regions not overlapping protein-coding genes. We

postulate that self containment is potentially an evolved feature

of particular RNA classes rather than a characteristic purely

determined by the physicochemical characteristics of folded RNA.

It is possible that possessing some degree of self containment is

simply an inherent property of biological RNAs. For example,

small RNA subsequences that are also thermodynamically stable

may be fast-folding in the kinetic folding pathway (P. Higgs,

Personal Communication). Such elements would obtain their base

pairing first, which would inhibit their interaction with larger

sequence elements. Thus, a certain degree of self containment may

be posited to be an epiphenomenon of the folding kinetics. We did

observe a strong relationship between SC and other measures that

typically denote structurally relevant RNAs, particularly measures

Figure 7. SC values of RNAs versus inverse-folded sequences.
(A) Scatter plot showing self-containment index values for each original
pre-miRNA versus the range of SC values observed among 100 inverse-
folded sequences with the same structure as that miRNA. A range value
of 0 indicates homogeneity among the SC values obtained over all 100
inverse-folded sequences, while higher values indicate higher diversity.
The marginal histogram of range values is also shown. (B) Histograms
showing the RNA class distributions of z-scores calculated from the self-
containment index values of each RNA compared to the SC values of its
100 inverse-folded sequence ensemble. Classes shown are human pre-
miRNAs (miRNA), hairpins derived from protein-coding transcripts (CD),
hairpins derived from eukaryotic signal recognition particle RNAs (SRP),
5S rRNAs (5S), and tRNAs.
doi:10.1371/journal.pcbi.1000150.g007

Table 4. Average self-containment index differences
between mirtrons and canonical pre-miRNAs.

Species
Number of
mirtrons

Average
mirtron SC

Average
miRNA SC p-valuea

D. melanogaster 15 0.83 0.91 0.0483

C. elegans 4 0.98 0.88 7.0661023

H. sapiens 13 0.50 0.88 4.9661026

M. mulatta 11 0.67 0.89 2.3961025

aBy a Wilcoxon rank sum text (H. sapiens) or by a t test (all others).
doi:10.1371/journal.pcbi.1000150.t004
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for structural saturation (base pair proportion), sequence-condi-

tional structural stability (mfe z-score), and structural specificity

(base-pair entropy) (Table 3). And, the fact that biological RNA

sequences appear to have enhanced self containment given their

structure (Figure 7B) reflects this trend as well. However, the

extreme degree of self containment exhibited by the miRNAs and

not by many other similarly shaped and stable RNAs seems to

suggest that there is functional relevance to self containment that

goes beyond being just a byproduct of structural relevance. And, as

pointed out in Hartling and Kim [33] as well as Ancel and

Fontana [30], there may be an inherent coupling between the

modularity of biopolymer structures and both the equilibrium

distribution and kinetic pathways of the folding process. Thus,

selection for self containment may be mediated through fast-

folding and vice versa.

The decreased self containment of mirtrons as compared to

miRNAs that are processed by Drosha (Table 4) is evidence that

the structural requirements of miRNA biogenesis at least partly

explain the tendency toward high self containment. The current

model for mirtron biogenesis suggests that mirtrons are spliced

from mRNAs as conventional introns, with the formation of a

lariat structure covalently linking the 59 splice junction with the 39

branch point, effectively isolating the mirtron sequence from the

surrounding exonic sequence; it is only after splicing and

subsequent debranching that the characteristic pre-miRNA

hairpin shape is fully realized [47,48]. Thus, mirtrons do not

need to be ‘‘presented’’ as a context-insensitive substructure the

way canonical miRNA hairpins are in the context of the primary

transcript. As a result, mirtrons may be more free to accumulate

nucleotide changes that lead to lower self containment, provided

that the final spliced hairpin structure is not affected, whereas

changes in a canonical pre-miRNA might affect recognition by

Drosha due to structure disruption in the context of the primary

transcript. Or, a novel proto-mirtron with lower self containment

might more easily enter the miRNA processing pathway than a

corresponding proto-canonical miRNA, which would additionally

have to be structurally compatible with its surrounding sequence.

Still, the biogenesis mechanism may not provide sufficient a

priori reason why pre-miRNAs should exhibit high intrinsic

structural robustness, as opposed to structural invariance given

their specific genomic contexts. Perhaps the ability to remain

robust over many different genomic contexts reflects an explicit

mechanism to buffer against change. At the local level, genomic

instability of the surrounding primary transcript would be unlikely

to affect the structure of a highly self-contained precursor stem

loop, and hence would be less likely to disrupt Drosha recognition.

Primary transcript sequence immediately surrounding the stem-

loop sequence has been shown to be poorly conserved [50,53],

suggesting that miRNA precursor sequences do experience a high

degree of instability of surrounding sequence. On a more global

scale, high self containment would allow for reinsertion of a pre-

existing miRNA or a copy into a novel genomic context, again with a

high probability that the embedded stem-loop structure would be

preserved. The trend for conserved and clustered miRNAs to exhibit

higher self containment (Table 5) supports the idea that functional

miRNAs arising from genomic modifications such as duplications

and rearrangements [54] were better buffered against context

change and thus were maintained. Conversely, a miRNA with low

self containment would be less likely to give rise to functional

paralogs—the duplicated sequence would tend not to fold correctly

in the new context, making preservation of the duplicate miRNA

sequence less likely due to significant loss of function.

If high self containment allows miRNA stem loops to be

modular units, potentially able to function in different genomic

contexts, then we might ask why selection for modularity would

exist for miRNAs. In fact, the organization of miRNAs into

primary polycistronic transcripts would seem to be facilitated by

modularity of the stem loops, especially given that there are several

clusters that contain ostensibly unrelated miRNAs [50] that may

have resulted from several insertion events. The role of the

primary transcript appears to be to facilitate the expression of

several miRNAs at once [24], which would allow easy neofunc-

tionalization of a duplicated miRNA if it is inserted into a primary

transcript under different regulation from the source miRNA. But

we might also imagine a situation where the release of individual

pre-miRNAs from the primary transcript can be modulated,

perhaps through RNA binding elements that block access by

Drosha. This suggests a model of the primary transcript as a way

to organize functionally related miRNAs while simultaneously

allowing for fine-tuned control of their individual activities.

Furthermore, if miRNA hairpins can be easily inserted or moved

around, we can then envision the primary transcript as a collection

of miRNA building blocks that can be combined and swapped

over evolutionary time according to the evolving regulatory needs

of the cell, a mechanism that would be difficult to attain if

miRNAs were not as highly self contained.

The high self containment of miRNAs is also interesting given

that they have additional sequence constraints that are ostensibly

unrelated to the hairpin structure. Among miRNAs that overlap

functional regions of another gene, we observed a significant

decrease in average self containment (Table 5), indicating that

these miRNAs are not as free to evolve high self containment,

since any nucleotide changes leading to higher self containment

might adversely affect the function of the overlapping gene.

miRNAs are also constrained to maintain target specificity – loss of

complementarity of the mature sequence with the target inhibits

miRNA-driven regulation [55], so in a sense, miRNA hairpins are

not as freely able to evolve toward highly self-contained sequences,

Table 5. Average self-containment index differences across different human pre-miRNA groups.

miRNA group In group count In group average SC Out of group count Out of group average SC p-valueb

In miRNA family 404 0.91 129 0.78 1.0061025

In human miRNA familya 251 0.92 282 0.84 1.0061025

Intergenic 225 0.91 303 0.86 1.5461023

Exon overlapping 53 0.81 475 0.89 7.6961023

Clustered 241 0.91 287 0.86 1.2061024

aBelonging to a miRNA family with multiple human members.
bBy a randomization t test (see Materials and Methods).
doi:10.1371/journal.pcbi.1000150.t005
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unless compensatory changes occur in the target sequence as well.

However, given that the majority of miRNAs do have high self

containment, it is also possible that there are constraints on the

space of possible target sequences, such that some classes of

sequences are disfavored as targets if the resulting complementary

miRNA hairpins would all have low self containment. Further

work is necessary to determine whether this is a quantifiable effect

that can be exploited for target prediction.

As a strong indicator for miRNAs, the property of self

containment can be used in future computational miRNA search

strategies, as evidenced by the ability of SC to discriminate

between pre-miRNAs and pseudo-hairpins (Figure 4B, Table 1),

which have been repeatedly used as negative training data for

miRNA prediction (e.g., [40,56,57]). For de novo design

applications, ensuring high self containment among candidate

structures would serve as an effective filter for hairpins that can be

robustly inserted into different genetic contexts.

Beyond its potential role in miRNAs, self containment is to a

certain degree a requisite property of biopolymers that form

through combinatorial elaboration of modular parts. A functional

fusion biopolymer cannot be generated if the fused sequences do

not retain their original substructures. Recently, Rigoutsos et al.

[58] have described the existence of an extensive collection of

repeated RNA elements in the human genome that have

combinatorial arrangements, potentially suggesting that combina-

torial generation might be an important feature of novel RNA

elements. We propose that understanding the self-containment

properties of RNAs and their structural components is fundamen-

tal to understanding the extent to which RNAs are modular

molecules, such that large RNAs can be decomposed into a set of

structurally robust building blocks that can potentially be swapped

out or rearranged.

Materials and Methods

Software and Implementation
We used the default settings of the standalone RNAfold and

RNAinverse programs bundled in the Vienna RNA Secondary

Structure Package [46] for RNA secondary structure prediction and

inverse folding respectively. We used a Python implementation of the

Altschul-Erikson algorithm [59] for dinucleotide shuffling written by

P. Clote [60]. All other code was custom written using Python and

run on Linux machines. High-volume computation, including

calculating SC and other structural measures on RNAs, was

performed using approximately 40–60 nodes of a Linux cluster.

Sequence filtering to exclude highly similar sequences was done

using Cd-hit, which implements a greedy clustering algorithm [36].

RNA structure drawings were produced using RNAViz [61].

Graphs were produced using R [62].

RNA Sequence Sets
All miRNA foldback sequences were obtained from miRBase

release 10.0 [34,35]. To obtain the ‘‘true’’ pre-miRNA set, we

trimmed these sequences according to the structure annotation

found on miRBase such that the hairpin was truncated on the 59 end

to align with the mature sequence in the case of 59-derived mature

miRNAs or the miR* sequence in the case of 39-derived mature

miRNAs; and similarly truncated on the 39 end, creating a 2-nt 39

overhang (Dataset S1). CD hairpin sequences were obtained from

[40]. All other RNA sequences were obtained from RFAM 8.0 seed

and full sequence lists [27,41]. Any wildcard IUPAC nucleotide

characters found in the RFAM sequences were replaced with a

random consistent RNA nucleotide (e.g., ‘‘B’’ would be replaced

with either ‘‘C,’’ ‘‘G,’’ or ‘‘U’’ with equal probability).

Random RNA sequences were generated to approximately

match the statistics of human miRNA foldbacks. For each

candidate sequence, a random length was chosen from a normal

distribution with mean 89 and standard deviation 12.6 (the

approximate average length and standard deviation of human

miRNA foldbacks), and an RNA sequence was generated using

uniform nucleotide probabilities; sequences shorter than 61 or

longer than 137 nucleotides (again based on human miRNA

shortest and longest lengths) were discarded. Candidates were

folded using RNAfold, and only candidates with mfe values within

one standard deviation of the average mfe for a miRNA foldback

of that length were retained. The resulting set of 500 random

sequences had an average length of 88.9 bases and an average

minimum free energy of 232.8 kcal/mol (Dataset S1).

Genomic coordinates, gene overlap, and family membership for

the human miRNAs were also obtained from miRBase [34,35]. Of

the 533 human miRNAs in the database, five lacked genomic

location information (hsa-mir-672, hsa-mir-674, hsa-mir-871, hsa-mir-

872, and hsa-mir-941-4) and were thus left out of any analysis that

depended on these features.

Calculating the Self-Containment Index
For each sequence of interest w with length L, a set of 2n

random sequences of length L are generated, where n is a user-

defined parameter determining the number of random contexts to

test—typically 1,000. The sequence w is folded using RNAfold and

the structure stored in Vienna RNA parenthesis-dot notation,

struct(w). For each pair of random sequences x and y, a

concatenated sequence xwy is created and folded using RNAfold,

then the portion of the Vienna structure corresponding to the

index positions of w is extracted, struct9(w). struct9(w) is modified to

create a legal RNA structure by replacing inconsistent parentheses

(indicating bases paired with bases outside of w) with dots

(indicating unpaired bases). Hamming distance is calculated

between struct(w) and struct9(w) and divided by L, and the

resulting proportion is subtracted from 1 to obtain pi for the ith

random context. All of the pi’s are averaged to obtain the final self-

containment index value.

Self-containment index values for all RNAs analyzed are listed

in Dataset S2.

For the runs using biological sequence contexts rather than

random contexts, we generated a set of one thousand coding and

intronic segments from randomly selected human NCBI Refer-

ence Sequence genes [63] downloaded from the UCSC Genome

Bioinformatics Site [64]. Segments were extracted from a random

interval at least 20 nucleotides from either end of the spliced

transcript sequence for the coding sequence, or of the concate-

nated introns with any repetitive sequence removed using

RepeatMasker [65] for the intronic sequence. Dinucleotide-

shuffled sets were created from these sets as well.

RFAM Hairpin Extraction
We started with the entire RFAM full RNA set and filtered it

using Cd-hit to exclude 90% similar sequences, resulting in 26,239

sequences. We folded all of the sequences using RNAfold, then

extracted all hairpin substructures. We discarded all substructures

of length less than 50 nucleotides, substructures where fewer than

half the bases were involved in base pairs, and any hairpins with

branching, defined in terms of the Vienna representation as

containing a left parenthesis in the string to the right of the first

right parenthesis. We calculated SC on the resulting set of 9,572

hairpins, using n = 100 random contexts. The hairpin sequences

are included in Dataset S1, while the SC values are included in

Dataset S2.
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RNA Sequence and Structural Measures
All measures were calculated based on previous descriptions

(e.g., [4,39]). Base pairing entropy (Q) was calculated using the

formulation in [44]. End base pairing proportion was calculated

by summing the number of paired bases contained in the first (59)

one-fourth and the last (39) one-fourth of the sequence and

dividing by half the sequence length. Sequence entropies were

calculated using single base probabilities (i.e., the number of A, C,

G, and U bases occurring in the sequence each divided by the

length of the sequence) in the Shannon entropy equation H = 2g
pi log2(pi) for the mononucleotide case; using probabilities of each

of the possible 16 consecutive nucleotide combinations (e.g., AA,

AC, …, UU) in the dinucleotide case; and using the 64 three-

consecutive nucleotide combinations in the trinucleotide case.

We reimplemented the algorithm described in [31] to

characterize the number of alternate suboptimal structures of a

sequence. For each sequence, all suboptimal structures within

2 kcal/mol of the mfe were obtained using RNAsubopt in the

Vienna RNA Package. We filtered the results and kept only local

minimum structures, defined to be structures such that removal or

addition of a single base pair increases the global free energy.

Correlations were calculated using arcsin-square-root (sin{1
ffiffiffi
x
p

)

transformed values for the proportion measures such as SC (i.e., with

values on [0,1]) to normalize the variances—the arcsin transforma-

tion spreads out values near 0 and 1, reducing the impact of low

variance at these boundaries on the statistical analysis [66]. Values

from non-proportion measures were used directly.

Statistical Tests
For the randomization tests, we randomly shuffled the

assignment of arcsin-square-root transformed SC values to labels

(miRNA names, belonging to group A versus group B)

N = 100,000 times and calculated a two-sided p-value as the

number of times the absolute t statistic was greater than the

original absolute t statistic, divided by N. We used the Welch t

statistic for unequal sample variances, �xxA{�xxB

� ffiffi
(

p
s2

A

�
nAz

s2
B

�
nB) where x̄A is the average of the group A values, s2

A the

sample A variance, and nA the number of members in group A;

and similarly for group B.

For parametric hypothesis testing, SC values were logit

transformed (ln(x/12x)) to normalize the data – similar to the

arcsin transform, the logit transform spreads out values near 0 and

1, though in a more extreme manner to shape the data to assume a

more normal-like distribution [66]. Normality was verified using

the Shapiro-Wilk test, and similarity of variance was assessed using

an F test. Mean differences were tested using a two-sample, two-

sided independent t test, with null hypothesis that the mean

difference is 0. Data that did not exhibit normality were subjected

to a two-sided Wilcoxon rank sum test, or signed rank test if

paired.

Availability
A Python implementation of the self-containment index

calculation, as well as a web interface for direct sequence queries,

will be made available at http://kim.bio.upenn.edu/software/.

Supporting Information

Table S1 Effects of varying the number of random contexts used

to calculate the self-containment index.

Found at: doi:10.1371/journal.pcbi.1000150.s001 (0.01 MB PDF)

Table S2 Effects of varying the length of the random contexts

used to calculate the self-containment index.

Found at: doi:10.1371/journal.pcbi.1000150.s002 (0.01 MB PDF)

Table S3 Effects of varying the source of the random contexts

used to calculate the self-containment index.

Found at: doi:10.1371/journal.pcbi.1000150.s003 (0.01 MB PDF)

Table S4. Average self-containment index values for non-

human miRNAs.

Found at: doi:10.1371/journal.pcbi.1000150.s004 (0.01 MB PDF)

Dataset S1 RNA sequences generated.

Found at: doi:10.1371/journal.pcbi.1000150.s005 (1.2 MB TXT)

Dataset S2 Self-containment index values for RNAs.

Found at: doi:10.1371/journal.pcbi.1000150.s006 (1.2 MB)
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