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Abstract

During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of
distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer
simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking
an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the
experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila,
and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes.
Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined
Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled
chains due to topological constraints.
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Introduction

Eukaryotic genomes are organized in sets of chromosomes which

are made up by a single continuous piece of DNA and associated

proteins [1]. During cell division (mitosis) chromosomes adopt a

compact form which is suitable for transport and which can be

discerned in a light microscope. During periods of normal cell

activity (interphase), chromosomes decondense. More than 100

years ago, Rabl discovered that interphase chromosomes in newt

and Drosophila remain organized in distinct territories [2]. During the

last twenty years similar territories of various shapes have been

observed in many organisms [3], a notable exception being budding

yeast whose chromosomes appear to mix freely [4,5].

The function of these territories, the mechanism responsible for

their formation, and the reasons for the differences between

species are still unclear [4,6]. In this paper we investigate, if the

observed interphase structure and dynamics are the consequence

of a generic polymer effect, the preservation of the local

topological state in solutions of entangled chain molecules

undergoing Brownian motion. This effect plays an important role

for the viscoelastic properties of polymeric systems [7,8]. In the

present context, Sikorav and Jannink [9] assumed that interphase

nuclei behave as equilibrated polymer solutions and estimated the

disentanglement time td of condensing metaphase chromosomes

as td = 1.561027 (#nucleosomes)3 s, where ‘‘#nucleosomes’’ is

the total number of nucleosomes in a chromosome. A human

chromosome of typical size <100 mega-basepairs (Mbp) has

<500,000 nucleosomes [1], i.e., td<261010 s (<500 years). From

this prohibitively high estimate Sikorav and Jannink concluded

that the process requires substantial topoisomerase-II (topo-II)

activity.

Here we reverse the argument. We suggest that interphase

nuclei never equilibrate and behave like semi-dilute solutions of

unentangled ring polymers which are known to segregate due to

topological constraints [10]. Within these territories, individual

genomic sites are highly mobile and accessible. However, the

structure of interphase and metaphase chromosomes remains

largely identical from a topological point of view. Thus, instead of

being a problem to be overcome by evolution, slow equilibration

of long chromosomes accelerates the reverse process of chromosome

condensation.

Experimental Evidence and Polymer Theory
Nowadays, the large-length scale structure of decondensed

chromosomes can be experimentally studied using Fluorescence in

situ Hybridization (FISH): nucleic acids are chemically modified to

incorporate fluorescent probes and specific sequences on single

chromosomes can be detected [11]. In particular, it is possible to

mark different portions of the genome (chromosome painting) and

to determine locations of and spatial distances between targeted

sites [11]. Chromosome painting indicates that chromosome

territories in human nuclei have an ellipsoidal shape with radii of

the order of 1 mm [4]. In contrast and as already discovered by

Rabl, the interphase nuclei of organisms like newt or Drosophila are

organized in elongated territories oriented between two poles of

the nucleus [2,3]. Furthemore, there are also organisms such as

budding yeast whose chromosomes appear to mix freely or, at

least, considerably less organized [4,5]. The localization of

territories inside the nucleus exhibits regular patterns: gene-rich

chromosomes in human lymphocytes preferably locate in the

nuclear interior while gene-poor chromosomes are typically found

closer to the periphery [12,13]; in contrast, in human fibroblasts

positioning of territories was shown to correlate with chromosome

size and not with its gene content [14]. In general, interactions

between specific chromosome regions and structural elements

within the nuclear envelope, such as nuclear pores or nuclear

lamina, are believed to shape chromatin organization [15].
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Data on the (relative) position and motion of target sites provide

further insight into the organization of interphase chromosomes. In

Figure 1A we show average spatial distances between targeted sites

as a function of their genomic separation. The figure contains FISH

data for yeast chromosomes 6 and 14 (Chr6 and Chr14, brown #)

[16], human chromosome 4 (Chr4, blue # and e) [17] and

Drosophila chromosome 2L (Chr2L, orange and green #) [18]. In the

latter case, orange symbols refer to embryos in DS5 phase and green

symbols to the DS1 phase which appears later in the cell cycle [19].

Two-dimensional spatial distances between sites on Chr4 measured

in fibroblasts cells fixed on microscope slides [17] were here rescaled

by 3/2 to obtain the corresponding 3 d distances.

Observations for the various organisms agree on short length

scales and coincide with the known properties of the (30 nm)

chromatin fiber [16]. Given further the rather structureless

appearance of interphase nuclei in the light microscope, a useful

starting point for a theoretical description is a confined,

equilibrated semi-dilute solution of ‘‘worm-like’’ chromatin fibers

[12]. Within the worm-like chain (WLC) model, the fiber statistics

can be calculated analytically [7]. It is characterized by a crossover

from rigid rod to random coil behavior at a characteristic length

scale, the Kuhn length lK<300 nm of the 30 nm chromatin fiber

[16,20]. Consider two points located at N1 and N2 Mbp from one

chosen end of the fiber. They are separated by L = |N22N1|

610 mm Mbp21 along the contour of the chromatin fiber [16].

The fiber is essentially stiff with a mean square spatial distance

R2(L&lK) = L2 on small scales and bent by thermal fluctuations on

large scales with R2(L) = lKL. The full crossover is described by [21]

R2 L,lKð Þ~ l2
K

2

2L

lK
ze{2L=lK{1

� �
, ð1Þ

(black continuous line, Figure 1). In particular, Equation 1 holds in

the bulk of semi-dilute solutions where chains strongly overlap.

Given the typical contour length of Lc = 1 mm of the chromatin

fiber of a human chromosome with <100 Mbp, the expected

chain extension of
ffiffiffiffiffiffiffiffiffiffi
lKLc

p
&17 mm largely exceeds the nuclear

radius of 5 mm. In an equilibrated solution, the fibers should fill

the nucleus homogeneously with mean-square internal distances

saturating at a limiting value (black dashed line, Figure 1A). (The

exact probability distribution function of the square internal

distances R2(|N22N1|) of a polymer without self-interactions obeys

diffusion equation [7] with null boundary conditions (in our case the

boundary is the sphere which models the nucleus).) In contrast, the

smaller yeast (S. cerevisiae) chromosome (<1 Mbp, Lc<0.01 mm,ffiffiffiffiffiffiffiffiffiffi
lKLc

p
&2 mm) should be only weakly affected by a confinement to

its nucleus of <1 mm radius [22] while Drosophila chromosomes

(<20 Mbp, Lc<0.2 mm,
ffiffiffiffiffiffiffiffiffiffi
lKLc

p
&8 mm) in embryonic cells (for

which FISH data are avalaible [18]) are confined inside nuclei whose

radius grows from <2 mm to <5 mm in <30 minutes. Not

surprisingly, the large-scale statistics of human and Drosophila

chromosomes does not agree at all with the predictions of a WLC

model assuming confinement at the scale of the nucleus (Figure 1A).

Rather, the data reflect the different territory shapes observed for the

two species. Note, however, that confinement on large scales alone

cannot explain the unexpectedly small distances on intermediate

scales |N22N1|.4 Mbp for Chr4 (blue e).

There is less data available for the dynamics of interphase

chromosomes. In mammalian cells chromatin domains of ,1 mm

diameter display little or no motion in a period of several hours

[23]. Cabal et al. [24] followed the motion of a marked active gene

(GAL) in in-vivo yeast nuclei. They observed a mean-square

displacement (msd) g1(t = 100 s)<0.1 mm2 for their largest obser-

vation interval, i.e., much less than the typical territory size in

organisms with larger chromosomes. In particular, the authors

reported anomalous diffusion with g1(t),t0.4.

To rationalize this result, it is again useful to consider ‘‘worm-

like’’ chromatin fibers in equilibrated semi-dilute solutions at

typical nuclear densities. Neglecting entanglement effects, g1(t)

displays crossovers between different regimes: (1) g1(t),t0.75 up to

length scales of <1 Kuhn length [25]; (2) g1(t),t0.5 (Rouse

behavior) up to length scales of the chain radius of gyration

R2
g L,lKð Þ~R2 L,lKð Þ=6~lKL=6 [7]; and (3) g1(t),t at larger times,

when the monomer motion is dominated by the center-of-mass

diffusion (cyan line, Figure 2).

In semidilute solutions, linear chains with a contour length

exceeding a characteristic value, L&Le, become mutually

entangled, leading to confinement to a tube-like region following

the coarse-grained chain contour and a drastically altered,

‘‘reptation’’ dynamics [7]. Estimating Le is not a trivial task.

How strongly linear polymers entangle with each other depends

on their stiffness and on the contour length density of the polymer

melt or solution [26]. The latter is most suitably expressed in terms

of the density of Kuhn segments, rK. In loosely entangled systems

with rKl3
Kv1 the mean-free chain length between collisions is

larger than the Kuhn length, leading to random coil behavior

between entanglement points. In contrast, for rKl3
K&1 filaments

are tightly entangled and exhibit only small bending fluctuations

between entanglement points. For a solution of chromatin fibers at

a typical nuclear density of <0.012 bp/nm3 and a Kuhn length of

300 nm (Table 1) rKl3
K&10, i.e. the system is loosely entangled,

but close to the crossover between the limiting cases. The

entanglement contour length, Le, can be estimated via [26]
Le

lK
& 0:06 rKl3

K

� �� �{2=5
z 0:06 rKl3

K

� �� �{2
, yielding Le<1.2 mm

or four times the Kuhn length. To a first approximation, chains

can thus be considered to be flexible on the tube scale, i.e., we

expect around a msd of g1 teð Þ~2R2
g Le,lKð Þ~0:12 mm2 a

crossover from Rouse behavior to a g1(t),t0.25 regime character-

istic of reptation [7]. Interestingly, this estimate coincides with the

observations of Cabal et al. [24], who reported an intermediate

effective power law g1(t),t0.4 for msd 0.05 mm2#g1(t)#0.17 mm2.

Author Summary

Eukaryotic genomes are organized in sets of chromo-
somes. Each chromosome consists of a single continuous
DNA double-helix and associated proteins that organize
locally in the form of a chromatin fiber. During cell division
(mitosis) chromosomes adopt a compact form that is
suitable for transport. During periods of normal cell activity
(interphase), they decondense inside the cell nucleus.
Being long-chain molecules (in the case of human
chromosomes the contour length of the chromatin fiber
is on the order of 1 mm), the random thermal motion of
interphase chromatin fibers is hindered by entanglements,
similar to those restricting the manipulation of a knotted
ball of wool. We have studied the consequences of this
effect using computer simulations. Most importantly, we
find that entanglement effects cause sufficiently long
chromosomes to remain segregated during interphase and
to form ‘‘territories.’’ Our model (1) reproduces currently
avaliable experimental results for the existence and shape
of territories as well as for the internal chromosome
structure and dynamics in interphase nuclei and (2)
explains why entanglement effects do not interfere with
the reverse process of chromosome condensation at the
end of interphase.

Structure and Dynamics of Interphase Chromosomes
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Figure 1. Experimental FISH data for spatial distances R2(|N22N1|) between targeted chromosome sites compared to the estimates
based on the WLC model (A) and results from our simulations (B–F). Brown #: Saccharomyces cerevisiae Chr6 and Chr14 [16]. Blue # and e:
Homo Sapiens Chr4, |N22N1|,4.5 Mbp and |N22N1|.4.5 Mbp, respectively [17]. Orange and green #: Drosophila melanogaster Chr2L, DS5 and DS1
embryos respectively [18]. DS5 and DS1 are two phases of cell cycle. DS1 appears later. Black continuous line: Mean-square internal distances
predicted by the WLC model, Equation 1. (A) Black dashed line: Mean-square internal distances of an ideal polymer chain inside a spherical nucleus of
5 mm radius [7]. (The exact probability distribution function of the square internal distances R2(|N22N1|) of a polymer without self-interactions obeys
diffusion equation [7] with null boundary conditions (in our case the boundary is the sphere which models the nucleus).)While data for Chr4 and
Chr2L show a reasonable agreement at short-length scales, the apparent large-length scale Chr4 behavior L2/3 [29] contrasts with the observed L2 for
Chr2L. The insets show two schematic drawings of the Chr4 territory in a human nucleus (blue) and of Chr2L in Rabl phase in a Drosophila nucleus
(orange). (B–E) Gray lines represent internal distances in the initial, ‘‘metaphase-like’’ chromosome configuration (Materials and Methods). Internal
distances in simulated chromosomes have been averaged over 3 time windows of exponentially growing size: 240 s,t,2,400 s (dark red line),
2,400 s,t,24,000 s (magenta line) and 24,000 s,t,240,000 s (cyan line). Since yeast chromosomes rapidly equilibrate only averages over the first
24,000 s are here reported (panel C). In panel E, N1 = 0, i.e., has been fixed at the origin of the chain to make equilibration of the chain ends evident.
(F) Data from simulations of three ring polymers of decreasing half-size Lc = 97.2, 48.6, and 2.7 Mbp (green, magenta and red lines respectively). Mean
distances seem to extrapolate to an effective power law ,L2/3. Inset: Initial (left) and final (right) conformation of a (randomly chosen) half of the
largest (2697.2 Mbp) simulated ring chromosome.
doi:10.1371/journal.pcbi.1000153.g001
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Using their data, we can obtain estimates for the entanglement

time, te.32 s, as well as for the disentanglement times, td<te(Lc/

Le)
3 [7], of the order of td.26104 s, 26108 s (<5 years) and

261010 s (<500 years) for yeast, Drosophila and human chromo-

somes, respectively. Since this exceeds the life time of the entire

organism (not to mention the much shorter cell cycle of most

animal cells [1]), Drosophila and human chromosomes do not have

the time to equilibrate during interphase. (This conclusion does

not change, if we take into account entanglement relaxation via

topo-II discussed in [9]. At best, this mechanism could completely

remove the barrier for chain crossing, thus converting the system

to a solution of phantom chains whose relaxation time is given by

the Rouse time tR<te(Lc/Le)
2 [7]. Yeast, Drosophila and human

chromosomes would relax in, respectively, 26103 s, 106 s (<10

days), and 26107 s (<250 days).)

While the discussion up to this point has shed some light on

various aspects of the structure and dynamics of interphase

chromosomes, we have so far evaded the central question, the

origin of the observed chromosome territories. A priori, segrega-

tion or (micro) phase separation due to small chemical differences

between chains is a common phenomenon in polymeric systems

[21]. Organisms could, in principle, render different chromosomes

immiscible by a labeling technique akin to chromosome painting.

In practice, it is difficult to conceive a corresponding, self-

organizing molecular mechanism. Here we propose that the

formation of chromosome territories could be related to a

different, less well-known effect, the segregation of unentangled ring

polymers in concentrated solutions due to topological barriers

[10,27]. Well-separated metaphase chromosomes are clearly

unentangled at the onset of interphase. Initially, decondensing

chains can only rearrange locally and spread out uniformly

without changing the global topological state. Up to the extremely

long relaxation times for large chromosomes, interphase nuclei

should therefore show a behavior similar to concentrated solutions

of unentangled ring polymers. In particular, the chromosomes

should remain segregated!

It is instructive to compare this explanation to previously

published models describing interphase chromosomes as equilibrium

structures. The unexpectedly small distances on intermediate

scales |N22N1|.4 Mbp for Chr4 (blue e) were rationalized in

terms of giant loops of fibers departing from an underlying

(protein) backbone [17] or alternatively, in terms of random loops

on all length scales resulting from specific chromatin-chromatin

interactions [28]. Simulations of a multi-loop subcompartment

polymer model reproduced the experimental observations on

human Chr4, by imposing (and hence not explaining) confinement

to a spherical territory [20,29]. We do not exclude the possibility

of such contacts. However, we claim that territories should also

form, if the involved proteins are disabled. For the inverse test—to

keep the linking proteins, but to equilibrate a nucleus with disabled

local topology conservation—it would be instructive to investigate

the structure of nuclei in long-living cells arrested in interphase

and to devise ways to maximize the efficiency of topo-II. (This

conclusion does not change, if we take into account entanglement

relaxation via topo-II discussed in [9]. At best, this mechanism

could completely remove the barrier for chain crossing, thus

converting the system to a solution of phantom chains whose

relaxation time is given by the Rouse time tR<te(Lc/Le)
2 [7].

Yeast, Drosophila and human chromosomes would relax in,

respectively, 26103 s, 106 s (<10 days), and 26107 s (<250

days).) We note that a few cross-links or attachment points to a

residual skeleton would be sufficient to suppress chromosome

equilibration via reptation [30]. Long-lived contacts could thus

stabilize the observed structures without being at their origin.

How much of the experimental observations can be explained

by this topology-conserving, parameter-free, minimal model of

decondensing chromosomes? Unfortunately, it is difficult to derive

quantitative predictions from an analytical theory due to the non-

trivial initial conformation, the simultaneous presence of various

crossovers (stiff/flexible, loosely/tightly entangled), and the lack of

a theory describing the conformational statistics and dynamics of

the unentangled ring polymer melts. We have therefore resorted to

Molecular Dynamics (MD) computer simulations as a tool which

allows us to study the model without further approximations.

The Model
With a spatial discretization of 30 nm (corresponding to the

bead diameter), the employed generic bead-spring polymer model

[31] accounts for the linear connectivity, self-avoidance and

Figure 2. Time behavior of the msd of the six inner beads (g1(t),
continuous lines), compared to the average square gyration
radius R2

g (horizontal dashed lines) of the whole chromosome
and measurements of the msd of the active GAL gene inside in
vivo yeast nuclei [24] (purple dots). For comparison, g1(t) for yeast
chromosomes without topological constraints has been shown (cyan
line). On short time scales, our model reproduces the typical dynamics
of semi-flexible polymers with g1(t),t0.75 [25]. For the model with
constraints, there is no extended Rouse regime due to the insufficient
separation of Kuhn and entanglement length. Nevertheless, we observe
the characteristic g1(t),t0.25 regime for entangled, flexible polymers [7].
doi:10.1371/journal.pcbi.1000153.g002

Table 1. Summary of the relevant physical parameters for the
polymer model of interphase chromosomes.

Parameter Value

Typical nuclear radius of a human cell [20] 5 mm

Radius of the yeast (S. Cerevisiae) nucleus [22] 1 mm

Length of the diploid human genomea 66109 bp

Length of the diploid Drosophila genomea 36108 bp

Length of the diploid yeast (S. Cerevisiae) genomea 26107 bp

Compaction ratio of chromatin [16] 102 bp/nm

Kuhn length of chromatin [16], lK 300 nm

Volume fraction of chromatin 10%

aSee, e.g., the website http://www.ensembl.org/index.html.
doi:10.1371/journal.pcbi.1000153.t001
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bending stiffness of the chromatin fiber (Materials and Methods).

In particular, there is an energy barrier of 70KBT to prevent chain

crossing [32]. We emphasize that our description does not invoke

any protein-like machinery as the nuclear matrix [33]. Further-

more, we neglect local changes of the chromatin fiber as they

occur, e.g., as a result of chromatin remodeling during

transcription [34], because these processes do not alter the local

topological state of the fiber and are therefore irrelevant for the

phenomenon we discuss. This argument does not hold for the

action of topo-II whose role is precisely to (dis)entangle DNA

allowing strands to cross [9,20]. Non-directed topology changes

with a particular rate could be included by suitable modifications

of the energy barrier for chain crossing [35]. Similarly, it is

straightforward to include (protein-mediated) interactions between

specific DNA sites or effects such as confinement by or anchoring

to the nuclear envelope [11,33,36]. However, here we concentrate

on the generic case of decondensing long, internally and mutually

unentangled polymers at total concentrations far above the

overlap concentration.

As initial states of our simulations we chose linear or ring-shaped

helical structures remnant of metaphase chromosomes (Materials

and Methods). Given the anisotropic shape of our ‘‘metaphase’’

chromosomes, we were interested to see how the decondensation is

affected by the presence of other chains. The l.h.s. panel in Figure 3

shows the initial chromosome conformations in our simulations on a

common scale, indicated by a typical human nuclear radius of 5 mm.

For Drosophila (marked ‘‘B’’, only one chromosome is shown for

clarity) we assumed that 8 Chr2L model chromosomes are initially

aligned along the common axis of a rectangular simulation box

(nematic orientation). In the case of yeast (marked ‘‘C’’) and of the

human (marked ‘‘A’’), we followed the decondensation of 6

respectively 4 chromosomes of equal size which were oriented

randomly in the simulation box [14]. For comparison we have also

studied ring shaped chromosomes (see inset of Fig. 1F) of different

length under conditions corresponding to those of the human cell

nucleus. 27 small rings (Lc = 262.7 Mbp) were randomly oriented

inside the simulation box, while for larger rings (Lc = 2648.6 Mbp

and Lc = 2697.2 Mbp) we limited ourselves to simulations of single

chains in contact with their periodic copies in adjacent simulation

cells. The setup as a ring allows us to eliminate chain end effects

which otherwise play an important role.

All simulations were performed in a constant isotropic pressure

ensemble using rectangular simulation boxes with three indepen-

dently fluctuating linear dimensions. The imposed pressure leads

Figure 3. Initial (‘‘metaphase-like’’, left) and final (right) configurations of human Chr4 (A), of Drosophila Chr2L (B) and of yeast Chr6
and Chr14 (C) shown together with the spherical nucleus (black circle) of 10 mm in diameter and the corresponding simulation
boxes (in black). For the blue configuration in A and for the configuration B, we have highlighted in red the two terminal parts up to 4.5 Mbp. In
Chr4, this corresponds to the terminal 4p16.3 region [17]. (A) Simultaneous decondensation of 4 model chromosomes half the size the human Chr4.
(B) Decondensation of 1 model chromosome the size the Drosophila Chr2L. The final elongated shape qualitatively resembles a Rabl-like territory. (C)
Simultaneous decondensation of 6 model chromosomes the size the yeast Chr6 and Chr14. Arrows points at magnified versions of the same
configurations. Lack of chromosome territoriality is evident.
doi:10.1371/journal.pcbi.1000153.g003
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to the final density corresponding to the experimental value of

<0.012 bp/nm3 for human nuclei or 10% of volume fraction of

chromatin (Table 1). This appears a reasonable choice because the

experimental density in yeast nuclei is only two times lower

(<0.006 bp/nm3, Table 1), while the rapid growing size of

Drosophila embryos nuclei [19] does not allow for a univocal choice.

We emphasize that the employed periodic boundary conditions do

not introduce confinement to the finite volume of the simulation

box. Using properly unfolded coordinates, chains can extend over

arbitrarily large distances (see Figure 4 for the example of a MD

simulation using a similar model but with a strongly reduced

barrier for chain crossing). To give an idea of the computational

effort, we consider the example of Chr4, where we simulated four

model chromosomes of half of the actual length of Chr4. Each

chromosome is modeled as a chain of 32,400 beads with a total

contour length of 1023 m or 97.2 Mbp. Using <76104 single-

processor CPU-hours on a CRAY XD1 parallel computer, we

followed the dynamics over 126106 MD time steps. The

Figure 4. Human Chr4 territories are less stable if the energy barrier against chain crossing is switched off. The swelling from the initial
‘‘metaphase’’ configuration is monitored through the time behavior of the gyration radius R2

g tð Þ~1=N
PN

l~1 rl tð Þ{rcm tð Þð Þ2 [7], where rl(t) is the
position vector of the lth bead and rcm(t) is the center of mass of the configuration at time t. Without barrier, chromosomes swell easier and have
larger size (green and red lines, (A)). Comparison amongst internal distances between two sites located at N1 and N2 Mbp from one chosen end of the
fiber and avalaible experimental data reflects this behavior (B). We have averaged over 3 time windows of exponentially growing size:
240 s,t,2,400 s (dark red line), 2,400 s,t,24,000 s (magenta line) and 24,000 s,t,240,000 s (cyan line). In particular, we notice that the fortuitous
agreement of the magenta line with the data is lost due to the fast relaxation to equilibrium. The gray line corresponds to internal distances in the
initial configuration. As expected (C), the final configuration of human Chr4 without energy barrier occupies a larger volume and is more random-
walk-like than the ones where the energy barrier has been included.
doi:10.1371/journal.pcbi.1000153.g004
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comparison to the measured single-site mobility for yeast [24] in

Figure 2 suggests the value of t <261022 s used throughout the

paper. According to this estimate, we followed the chain dynamics

over 240,000 s (<3 days) of real time. However, it is clear that

more experimental data are needed to reliably fix the absolute

time scale of our simulations.

Results

Since there are no attractive interactions in our model of the

chromatin fiber, the bent and kinked initial state is unstable and

unfolds rapidly. The initial rapid expansion stops when chromo-

somes come into contact with others, including their periodic

replicas in adjacent simulation cells. Our simulation time is

sufficient to mix and equilibrate the short (1 Mbp) yeast

chromosomes (Figure 3). Fast equilibration of yeast chromosomes

explains why apparently there is no territorial organization in yeast

nuclei [5]. (Most chromosomes in yeast have a size smaller than

1 Mbp, corresponding to a disentanglement time comparable to

the time duration of the relative interphase (,1 hour [37]).) In this

case memory of the initial condition is rapidly lost: a simulation

where the chains are initially prepared as rods oriented along the

same direction produces similar results (data not shown).

The much longer Drosophila and human chromosomes remain

confined to distinct territories (Figure 3). For the nematically ordered

initial state we assumed for Drosophila, we observed that decondensa-

tion leads to the formation of Rabl-like elongated territories. In

contrast, in isotropically arranged copies of the human Chr4, the

preferred axial expansion is suppressed and the resulting territory

shapes resemble elongated ellipsoids. Our ring chromosomes

essentially reproduce the latter behavior. More quantitatively, the

shape of the human Chr4 territory is described by the average of the

3 eigenvalues L1, L2, and L3 of the corresponding gyration tensor

([38] and Materials and Methods) and the ratios of the two largest

eigenvalues L1 and L2 over L3 are two quantities which could

experimentally be tested. We have found that averaging over the

configurations of all the possible sections of half the total ring

size gives L1:L2:L3 = 6.4(61.4):1.9(60.4):1.0 (2697.2 Mbp),

L1:L2:L3 = 5.5(61.2):2.1(60.5):1.0 (2648.6 Mbp) and L1:L2:L3 =

6.9(60.7):2.2(60.2):1.0 (262.7 Mbp), while averaging over all the 4-

Chr4 configurations gives L1:L2:L3 = 11.0(61.2):1.5(60.3):1.0. The

,2 times larger value found in the latter case is probably an artifact

of the setup (see also below).

In Figure 1 (panels B to E) we compare the simulation results for

mean-square spatial distances between marked sites on the

chromosomes to the experimental findings shown in Figure 1A

and discussed in the introduction. Gray lines represent spatial

distances between sites in the initial, compact ‘‘metaphase’’

configuration. To give an impression of the time dependence of

the results, we have averaged the R2(N22N1|) curves over three

exponentially spaced time windows: 240 s,t,2,400 s,

2,400 s,t,24,000 s, 24,000 s,t,240,000 s (dark red, magenta

and cyan lines respectively). In panels B–D we show results

averaged over the entire length of the simulated Drosophila

chromosome Chr2L, yeast Chr6 and Chr14 and human Chr4.

While the former two are in excellent agreement with the

experimental data, this is not the case for our first set of results for

the human Chr4. Here simulation and experimental data agree

quantitatively only on short length scales. It turns out, that there

are different explanations for the deviations on intermediate and

on large length scales.

Figure 1F shows the corresponding comparison to our data for

ring chromosomes. In this case, the experimentally observed

conformational statistics of human Chr4 on large scales is perfectly

reproduced. In fact, when we reanalyzed data for the linear

chromosome assuming the existence of a ‘‘centromere-hinge,’’ we

found nearly perfect agreement with the ring data (not shown).

This suggests to interpret the (nearly linear) large scale behavior of

our simulation results in Figure 1D as an artifact of the straight

initial configuration.

Interestingly, the simulation data follow the experimentally

observed effective power law R2,L2n with n<0.32 [29] already on

intermediate scales (L.1 Mbp). (We note that the relation

between the square of the gyration radius R2
g and the mean

square internal distances of a polymer R2(|N22N1|),

R2
g~1=2L2

c

Ð Lc

0
dN1

Ð Lc

0
dN2R2 N2{N1j jð Þ [7], is compatible with

chromosome territories being compact objects with R2
g*L

2=3
c .

However, the reverse conclusion [20,29] is incorrect: globular

polymer conformations also follow R2
g*L

2=3
c , but do not have a

fractal structure where the same exponent characterises the entire

chain conformation (see, for example the dashed line in Figure 1).

Simple confinement alone cannot explain the chain structure.) This

behavior seems to be robust, since all our simulation data for linear

chains and rings of different size beautifully collapse onto each other.

Similar, quasi-fractal structures were reported in [10]. Taken together

this suggests that our ring samples are relatively well-equilibrated and

that (in agreement with our working hypothesis) long, unentangled

linear chains initially relax to a very similar structure. However, we

still require an explanation for the deviations between this apparently

quite robust prediction and the experimental data in Figure 1D.

Reptation theory [30] would suggest that the further equilibra-

tion of linear chromosomes proceeds by a very slow escape of the

terminal parts of the chain from their initial environment.

Qualitatively, this effect is directly observable in Figure 3 where

we have marked the terminal parts of our model chromosomes in

red. Interestingly, the experimental data for the spatial distances

between sites with genomic distances in the Mbp range on human

Chr4 were determined in the <4.5 Mbp 4p16.3 region which is

located at the end of p-arm [17]. A good way to quantify the

consequences is to measure R2(|N22N1|,N1 = 0), i.e., mean-square

spatial distances between the chain ends and points along the fiber

(Figure 1E and Figure 5). These distances show a stronger time

dependence than results averaged over the entire chain. In

particular, they follow the WLC prediction up to much larger

contour length distances before crossing over to the bulk averages.

The point of departure from the WLC prediction can be used to

estimate up to which distance from the end the chains are

equilibrated after a certain time. (The temporal behavior of the

ratio between the escaped portion of the chain and the whole

contour length Lc at short times t is compatible with the power-law

,t1/2 predicted by reptation theory ([30], data not shown).) The

comparison to the experimental data in Figure 1E suggests that the

4p16.3 region of the human Chr4 was nearly equilibrated in the

experimental situation. We emphasize that we expect spatial

distances between marked sites in the interior of long chromo-

somes to fall onto the corresponding simulation data in Figure 1D

and 1F. This is at least qualitatively supported by a remark in [39]

where van den Engh et al. report the more centrally located 6p21

region on human Chr6 to be more compact than the 4p16.3

region near the end of Chr4.

As a final point, we turn to the dynamics of chromosomes

during interphase. Figure 2 shows the msd of the 6 inner beads

(g1(t)) after the complete (yeast) and initial (human, Drosophila)

relaxation in comparison to the respective gyration radii R2
g. By

adjusting the time scale of the simulations, the simulation data can

be mapped on the experimental results from [24]. The good

agreement indicates that our model provides a simple, quantitative

explanation for the reported anomalous diffusion. In particular,
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the model reproduces the dynamic (entanglement) length scale

with no adjustable parameters. Moreover, the dynamic range of

the simulation data (0.1 s,t,3 days) significantly exceeds the

observation window in [24], allowing us to extrapolate to longer

times. For comparison, in Figure 2 we have included data for

equilibrated yeast chromosome solutions from simulation of a

model without excluded volume interactions and topological

barriers (cyan line). All simulations exhibit identical short time

behavior in agreement with theoretical expectations [25]. A Rouse

regime for g1 tð Þwl2
K is only observable in simulations without

topological barriers. The yeast chromosomes in equilibrated

entangled solutions exhibit instead g1(t),t0.25 reptation dynamics.

Interestingly, our data for human and Drosophila chromosomes

show the same behavior in spite of the very different microscopic

topological state and the (on these scales) weakly perturbed chain

statistics. (The small deviations from the yeast data are artifacts of

the constant-pressure simulations used for human and Drosophila

chromosomes.) In our simulations the asymptotic free diffusion

regime—where the center of mass has moved farther than the

chain size [7]—is reached only for yeast chromosomes. (Note that

the corresponding simulation data cannot be compared directly to

experiments, since we have neglected the nuclear confinement in

the present study.) While human and Drosophila chromosomes

remain confined to their territories and do not equilibrate,

individual sites are extremely dynamic. Cabal et al. [24] reported

that invidual loci on yeast chromosomes explore regions of linear

size ,0.4 mm. The simulations indicate that msd’s of ,1 mm2 are

reached on the time scale of ,5 hours.

Discussion

We have studied the decondensation, structure and dynamics of

interphase chromosomes using Molecular Dynamics simulations of

a bead-spring model of the 30 nm chromatin fiber. Our results

suggest that for sufficiently long chromosomes territories form as a

consequence of a generic polymer effect, the preservation of the

local topological state in solutions of long chain molecules

undergoing Brownian motion. In fact, we argue that such

interphase nuclei never equilibrate and behave like concentrated

solutions of unentangled ring polymers, which segregate due to

topological constraints [10]. Such cases are also know from

material science where they result in unusual material properties

[40]. The slow kinetics leads to memory effects. For example,

different chromosome arrangements in the nucleus at the end of

metaphase provide a rationale for the different territory shapes

observed in humans and flies. Similarly, the negligible relative

motion of territories provides a natural explanation for the

tendency of chromosomes to ‘‘reappear’’ at the end of interphase

at similar relative positions as those occupied at the end of the

preceeding anaphase [41]. Our simulations confirm this tendency:

the centers of mass of the large human chromosomes remain

confined to small regions of linear size <0.1 mm and retain their

relative positions (Figure 6). In contrast, individual sites are

extremely dynamic inside the territories and explore much larger

regions up to a linear size of <1 mm (Figure 2). We emphasize that

conservation of the local topology during decondensation discussed in

the present work considerably simplifies the reverse process of

chromosome condensation at the end of interphase, a process which

takes only about 1 hour in most animal cells [1] and which is

difficult to conceive for fully equilibrated nuclei [9].

Obviously, there is more to the structure and dynamics of

eukaryotic nuclei than can be captured by the present model in its

basic form. However, our results suggest that effects such as active

transport [22], chromosome anchoring to the nuclear envelope

[36], replication [34] and homologous pairing [19] should be

investigated in the framework of the polymer description presented

here. As we have shown, computer simulations along the present

lines can now reach the relevant time and length scales.

Materials and Methods

The Bead-Spring Polymer Model
To model chromatin fiber we used the generic bead-spring

polymer model of Kremer and Grest [31]. Chains are composed

of interacting beads of diameter s. There are three types of

interactions: ULJ, UFENE, and Ustiff. ULJ is a shifted, purely

repulsive Lennard-Jones potential

Figure 5. Mean square spatial distances R2(|N22N1|) between a site of the fiber located at N2 Mbp from one chosen end of the chain
and the end (here located at N1 = 0): comparison between simulated and the avalaible experimental data on Drosophila Chr2L (left)
and yeast Chr6 and Chr14 (right). Gray lines represent internal distances in the initial, ‘‘metaphase-like’’ chromosome configuration (Materials
and Methods). Internal distances have been averaged over 3 time windows of exponentially growing size: 240 s,t,2,400 s (dark red line),
2,400 s,t,24,000 s (magenta line) and 24,000 s,t,240,000 s (cyan line). Since yeast chromosomes rapidly equilibrate only averages over the first
24,000 s are here reported. The black continuous line is the plot of the average internal distances predicted by the WLC model, Equation 1.
doi:10.1371/journal.pcbi.1000153.g005
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gives the additional interaction between nearest neighbours along

the chain. Finally, the stiffness of the fiber is modeled by

Ustiff~bkh 1{cos hð Þ

where h is the angle formed by the oriented unit vectors of two

consecutive bonds. The bead diameter s equals 30 nm, thus each

bead corresponds to 3,000 bp [2]. The other parameters are given

by R0 = 1.5s, k = 30.0e/s2, and temperature KBT = 1.0e [31].

Since the Kuhn’s length of the 30-nm fiber is lK = 300 nm = 10s
[16,20], the stiffness constant bkh is taken = 5 [42].

Design of the Initial Configuration
Experimental evidence suggests that metaphase chromosomes

are folded into loops 30–100 kbp long (rosettes), arranged radially

along the axis of the chromatid (see [9] and references therein).

Metaphase chromosome are <700 nm thick and the length of

each chromosome is related to its size [6]. On average, a typical

human chromosome has 108 bp, i.e., a contour length

Lc = 106 nm and a length hchr<5,000 nm [43].

As a starting configuration, we have placed chain beads along

the generalized helix described by the equation:

x wð Þ
y wð Þ
z wð Þ

0
B@

1
CA~

rchr xz 1{xð Þcos2 kwð Þcosw
� �

rchr xz 1{xð Þcos2 kwð Þsinw
� �

pw=2p

0
B@

1
CA,

where rchr = 12s, p = s, and hchr = 170s. With this choice of

parameters, the length of each turn is approximately = 200s. Given

an average loop length of 50 kbp <17s, we have <12 loops/turn.

That fixes the remaining parameters k = 6 and x = 0.38.

The contour lengths of the simulated human Chr4 and Drosophila

Chr2L are, respectively, Lc = 97.2 Mbp and Lc = 21.6 Mbp, which

corresponds to chains composed of 32,400 and 7,200 beads.

The ring setup is described by the following equation:

x wð Þ

y wð Þ

z wð Þ

0
BB@

1
CCA~

rt

rchrzrt

rchr xz 1{xð Þcos2 kwð Þ
� �

coswzrtcos
w

T

� �� �

rchr xz 1{xð Þcos2 kwð Þsinw
� �

rtsin
w

T

� �

0
BBBBBB@

1
CCCCCCA

,

where the period T~378, Q[ 0,2pT½ �, and rt = 42s.

Details of the Simulations
The simulations have been performed in a constant isotropic

pressure ensemble. Since the value of the pressure which must be

imposed to the system is not known a priori, we have designed the

following procedure: the decondensation of a ring chain of contour

length Lc = 5.4 Mbp (1, 800 beads) has been simulated in a constant

volume ensemble and the average diagonal components of the

pressure tensor Pab (a,b = x,y,z) [44] have been calculated. We

have found Pxx = Pyy = Pzz = 0.01 and this value has been used

throughout the paper. However, simulations of yeast chromo-

somes dynamics have been performed in a constant volume ensemble,

because in the constant pressure ensemble the small system size

leads to large unphysical fluctuations of the simulation box. In this

constant volume ensemble, simulated yeast chromosomes have

been initially arranged in an equilibrated configuration.

We have chosen the integration time tint = 0.012t, where t = s(m/

e)1/2 is the Lennard-Jones time and m is the mass of each bead [31].

Each simulation runs up to time 109tint = 126106t. Since we have

sampled each 106tint, each running produces 103 configurations.

Notice that the time behavior of the msd of the 6 inner beads

(g1(t)) (Figure 2) has been calculated after shifting to the frame

where the center of mass of the whole system is at rest. For human

and Drosophila chromosomes, g1(t) and R2
g have been calculated

neglecting the first 66105t<12,000 s of the simulated trajectory.

Gyration Tensor
The gyration tensor T of an object composed of N beads is the

363 symmetric matrix whose elements are Tij~1=N
PN

l~1

rl{rcmð Þi rl{rcmð Þj , where rl is the vector pointing at the lth

bead, rcm~1=N
PN

l~1 rl is the center of mass of the beads and

i,j = 1,2,3 are the three indices for cartesian components. The trace

of T,
P3

i~1 Tii~R2
g where R2

g is the square of the gyration radius

Figure 6. Three dimensional spatial trajectories of the centers
of mass of the 4 simulated human Chr4. The color code used
corresponds to the snapshots A shown in Figure 2. Motion resembles
confined diffusion.
doi:10.1371/journal.pcbi.1000153.g006
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of the object [7]. It also equals L1+L2+L3, where Li is the ith

eigenvalue of T. For objects with spherical symmetry,

L1 =L2 =L3. Then, differences between the eigenvalues measure

the anisotropy of the object [38].
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