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Abstract

PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for
transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire
configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major
problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined
regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously
predicting binding sites in those modules—tasks that are usually done by two separate programs. PhyloGibbs-MP’s
performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that
use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that
differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one
group over the others. While other ‘‘discriminative motif-finders’’ have been published in the literature, PhyloGibbs-MP’s
implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this
algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and
compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include
significant performance and speed improvements, the ability to use ‘‘informative priors’’ on known transcription factors, and
the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-
finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data.
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Introduction

Complex, carefully orchestrated cascades of gene regulatory

events control various biological phenomena, from the cell cycle to

stress response to the development of an organism and

differentiation of its tissues. Gene regulation can be pre-

transcriptional (such as by epigenetic silencing of genes),

transcriptional (controlling the recruitment of the RNA polymer-

ase), or post-transcriptional (by degrading messenger RNA before

it is translated). Transcriptional regulation is mediated, in

prokaryotes and eukaryotes, by specialised proteins called

‘‘transcription factors’’ (TFs) that bind to the DNA near a gene

and recruit the RNA polymerase (or inhibit its recruitment). This

regulatory control is often combinatorial, with many TFs

controlling a gene, and highly complex. A gene that encodes a

TF, when turned on, may cause many more genes to be turned on.

To understand gene regulation, therefore, it is important to

identify potentially regulatory DNA and to understand how and

where individual TFs may bind there.

Typically TFs recognise short patterns or ‘‘motifs’’ in DNA that

they bind to. For this reason, ‘‘motif-finding’’, or detection of short

patterns that are over-represented in a generic ‘‘background’’, is

an important computational problem in studying gene regulation.

These motifs are generally not exact strings, but indicate weaker

site-specific nucleotide preferences. Though several highly efficient

substring-finding algorithms exist in computer science, they are of

limited utility here. Instead, a common approach is to assume that

the background is either random, or contains short-ranged

correlations that can be described by a Markov model, while

binding sites for transcription factors can be represented as

samples from ‘‘position weight matrices’’ (PWMs) [1]. For a motif

of length ,, a PWM is a 46, matrix giving the probability, at each

position, of seeing each of the four bases (A, C, G, T) at that

position. Two standard ways of detecting conserved regulatory

sites amidst ‘‘background sequence’’ are Gibbs sampling, first

described in this context by Lawrence et al. [2], and expectation

maximisation over mixture models, implemented in the MEME

algorithm of Bailey and Elkan [3].

Recently we presented a new implementation of the Gibbs

sampler, PhyloGibbs [4]. The primary goal was to deal

systematically with the case of orthologous sequence from

closely-related species, where naive scoring of overrepresentation

will fail because much sequence has not diverged sufficiently. This

is handled using a user-specified phylogenetic tree and a modified

scoring scheme for phylogenetically related sequence. Additional-

ly, PhyloGibbs evaluates its own site predictions via statistical

sampling of the entire state space, so that it can report the

posterior probability, given all prior assumptions, that a given site

is indeed a binding site. We showed that this self-assessment is an

improvement on previous programs, which either do not assess
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their predictions, or use other statistical significance measures that

do not evaluate to posterior probabilities.

A related point is that, in addition to individual site predictions,

PhyloGibbs outputs weight matrices that are constructed from the

predicted binding sites weighted by their significance, and are not

merely counts of nucleotides. A problem with experimentally

determined weight matrices is that they are often constructed from

a small number of annotated binding sites, all of which are

weighted equally, even though they may not all be of equal affinity

in practice. Indeed, not all experimentally-determined sites may be

known with equal confidence: binding assays often localise a much

larger region of DNA, within which the putative binding sites are

found bioinformatically. PhyloGibbs can be used to construct

weight matrices from such data, weighted by confidence, as

discussed below (Materials and Methods, ‘‘CRM Prediction’’), a

point that was not fully explored in the previous paper.

Here we present PhyloGibbs-MP, an extension of PhyloGibbs

in several directions that go well beyond standard motif-finding.

MP stands at the moment for ‘‘module prediction’’ (and possibly

also ‘‘multiprocessor’’: it has preliminary support for shared-

memory multiprocessor systems, using OpenMP, and future

support for distributed-memory clusters, via MPI, is planned).

N First and not least, the speed has been significantly improved

(by a factor of 5 to 10) by using an ‘‘importance sampling’’

scheme. Further speed increases have come from improved

code and more efficient data structures.

N PhyloGibbs-MP now takes account of ‘‘prior information’’ in

the form of weight matrices for already-characterised tran-

scription factors. This biases the search towards these known

weight matrices by specifying a Bayesian prior for each site to

be a binding site for each weight matrix. (A different approach

to this feature, due to Erik van Nimwegen, was in the

PhyloGibbs-1.0 code, though not discussed in the accompa-

nying paper.)

N While in simple organisms like bacteria and yeast, one may

safely assume that most intergenic sequence is regulatory, this

ceases to be true in higher organisms. Here, one can have

several tens of kilobases of potentially regulatory sequence,

upstream or downstream of the gene or in introns. But binding

sites for TFs are not uniformly scattered over all this sequence:

they are usually localised in ‘‘cis-regulatory modules’’ (CRMs)

which may be only about a kilobase or two in length.

Prediction of CRMs is a long-standing research topic. Most

approaches (such as Cis-Analyst [5,6], Cluster-Buster [7], and

Stubb [8–10]) use already-characterised PWMs to predict

binding sites and then look for local ‘‘clusters’’ of such sites. In

studying gene regulation in higher eukaryotes, predicting

CRMs is a necessary first step before running a motif-finder.

PhyloGibbs-MP can localise predictions to small modules, not

known a priori, in large quantities of input sequence. We

demonstrate that PhyloGibbs-MP in this form is a remarkably

effective module predictor, which, unlike previous module-

finding programs, can work a priori (without information

about already characterised WMs); when fed such prior

information, its effectiveness increases further. (A drawback is

that Gibbs sampling is much slower than a straightforward site

search for known factors.)

N PhyloGibbs-MP can also restrict the number of motifs detected

per module to a subset of the total. For example, while it may be

reasonable to assume that 20 factors regulate a set of genes

totally, each CRM may have inputs from no more than 4 or 5

factors.

N Motif-finding is often improved by identifying groups of co-

regulated genes, for example from microarray data, and it is

common to give regulatory sequence from several genes to a

motif-finder. However, one may also want to study groups of

genes that are believed to be differently regulated (for example,

microarray data analysis puts them in different clusters), and it

is of enormous interest to find motifs that appear preferentially in

one group rather than in the other. PhyloGibbs-MP now

implements a ‘‘discrimniative motif-finding’’ option to find

such motifs that distinguish each group from the others. We

are unaware of any other published program that implements

this feature, despite its obvious practical importance.

N Finally, for easier visualisation, PhyloGibbs-MP now outputs

annotations in the Generic Genome Browser (GBrowse)

format, which may be uploaded to any GBrowse server. (We

are also writing a stand-alone visualisation tool to handle such

data: S. Acharya and RS, in preparation).

In the Results section, we benchmark PhyloGibbs-MP in motif-

finding, module prediction and discriminative motif-finding. In the

Methods section, we describe the implementation of these features.

In addition, several smaller changes in the algorithm have been

made, discussion of which occurs towards the end of the Methods

section. Also, many command-line options are no longer

compatible with the earlier program. To avoid confusion, we

have renamed the program ‘‘PhyloGibbs-MP’’.

In this paper, ‘‘PhyloGibbs-1.0’’ and ‘‘PhyloGibbs-MP’’ are

used for statements specific to those versions of the program, and

‘‘PhyloGibbs’’ is used for remarks common to both programs.

Results

Binding Site Prediction in Yeast and Fruitfly
Before discussing new features, we first test the straightforward

motif-finding capability of PhyloGibbs-MP, on test datasets of

known binding sites in yeast (Saccharomyces cerevisiae) and fruitfly

(Drosophila melanogaster).

Author Summary

Proteins in a living cell are not expressed all the time:
instead, genes are turned on or off on demand. Indeed,
though nearly every cell in a multicellular organism has a
complete copy of the genome, each cell expresses only a
fraction of the encoded proteins. Regulation of gene
expression occurs in various ways. One of the most
important (especially in simpler organisms) is ‘‘transcrip-
tional regulation,’’ where specialised DNA-binding pro-
teins, ‘‘transcription factors,’’ attach to the DNA to recruit
the gene-transcriptional machinery. Detecting binding
sites in DNA for these factors has long been a problem
of interest in computational biology. Here, a program,
PhyloGibbs-MP, is presented that extends our previously
published motif-finder PhyloGibbs to handle some impor-
tant related problems, in particular, detecting ‘‘discrimina-
tive’’ sites that distinguish differently regulated groups of
genes and finding ‘‘cis-regulatory modules,’’ regions of
DNA that contain large clusters of regulatory-protein-
binding sites. PhyloGibbs-MP compares well on bench-
marks with the best specialised programs for all these
tasks, while being the first to integrate them in one
consistent formalism. Regulatory regions in higher eukary-
otes can be highly complex, and PhyloGibbs-MP is
expected to be a very useful tool in identifying and
analysing regulatory DNA.

PhyloGibbs-MP
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Yeast Benchmark
This is essentially a repeat of tests reported for PhyloGibbs-1.0

[4], using the SCPD database [11] of experimentally-determined

transcription-factor binding sites in S. cerevisiae. A filtered list of

these binding sites, rejecting very large and very small sites, was

used; this contains 466 binding sites upstream of 200 genes. The

advantage here is that every site in this database is experimentally

validated; it thus provides a very good measure of real-world

performance of various algorithms. The disadvantage is that there

may be many sites that are not known. We previously argued [4]

that we expect roughly one in three sites to be known (and present

in this database), and showed that PhyloGibbs’ self-assessment of

its predictions is consistent with this expectation.

For each of these 200 genes, we select up to 1000 bp upstream

sequence (not overlapping coding sequence) from S. cerevisiae,

orthologous sequence from S. paradoxus [12], S. mikatae, S.

kudriavzveii, S. bayanus [13], and run various motif-finders on them.

The orthologous sequences were determined ab initio using BLAST

and synteny as criteria.

The motif-finders tested were AlignACE [14,15], MEME [3],

PhyME [16], EMnEM [17], and the Gibbs sampler from the

Wadsworth Institute [2]. Other than AlignACE, the other

programs had been previously tested against PhyloGibbs-1.0 [4].

Here, however, we use an updated Wadsworth Gibbs sampler,

which has recently acquired [18] the ability to do ‘‘phylogenetic’’

sampling. We tested this program both in non-phylogenetic mode

and in the phylogenetic mode.

The results are shown in Figure 1, in the form of specificity

(fraction of binding sites predicted that are known) as a function of

sensitivity (fraction of known binding sites that are predicted).

The sensitivity and specificity are varied by choosing different

‘‘cutoff scores’’ for the significance scores assigned by various

programs; only sites with a significance above the ‘‘cutoff score’’

are considered. The higher the cutoff, typically, the lower the

sensitivity but the higher the specificity. In the case of AlignAce,

which does not assign significance scores to individual site

predictions, we used the different predicted motifs as cutoffs.

(That is, the different points on the sensitivity/specificity curve

correspond to the sensitivity/specificity calculated from all sites

predicted in the first n motifs, from n = 1 onwards.) PhyloGibbs-

1.0, PhyloGibbs-MP and EMnEM used multi-fasta sequences

aligned with Sigma [19] version 1.1.3, PhyME used sequences

aligned with a bundled version of LAGAN [20], and the

phylogenetic Gibbs sampler used sequences aligned with ClustalW

[21]. All other programs used unaligned sequences.

PhyloGibbs-1.0, MEME, PhyME and EMnEM perform

similarly to previously reported. AlignACE performs rather poorly

on this dataset. This is probably a result of the lack of site-specific

significance information in its output. The Wadsworth Gibbs

sampler, run in the normal (non-phylogenetic, non-centroid) mode

shows a much improved performance from the version we

previously reported. However, when run in phylogenetic mode,

the Wadsworth Gibbs sampler makes very few predictions indeed.

The Wadsworth Gibbs sampler in phylogenetic mode was run

with a commandline suggested by W. Thompson (personal

communication). Commandlines in other cases were chosen based

on available documentation. Details are in Materials and

Methods.

PhyloGibbs-MP is run in two modes: searching for a maximum

of 3 or a maximum of 8 simultaneous motifs; and in the latter case,

with or without ‘‘importance sampling’’. All choices show good

performance but performance is clearly superior when searching

for 8 motifs, with or without importance sampling. This is in

contrast to most other programs (not shown), including Phylo-

Gibbs-1.0, where searching for too many simultaneous motifs

hurts performance. Importance sampling (the default) gives a

speed increase of a factor of about 10, and these data show that the

effect on the quality of predictions is minor. This is further

discussed in ‘‘Materials and Methods’’ (subsection ‘‘Importance

sampling’’).

PhyloGibbs-MP performs well when searching for multiple

simultaneous motifs (‘‘colours’’) because it allows each colour to

contain only as many windows as actually belong (that is, it enables

toleration of overestimates of the number of binding sites). For

example, suppose one assumes that there are 3 regulatory motifs,

and 1% of a 1000 bp sequence is functional: that would yield 10

sites overall, or 3 to 4 sites per motif. In fact, however, there may

be only two sites per motif. Providing more allowed colours lets the

‘‘good’’ motifs be grouped together, and irrelevant motifs are

placed into other colours (and, since they are not selected often, do

not accumulate high tracking scores). To some extent this applied

to PhyloGibbs-1.0 too; but PhyloGibbs-1.0 insisted, for technical

reasons, on having at least one selected site for every colour, which

hurt performance when the number of colours was large.

Fruitfly Benchmark
We used the REDfly 2.0 [22] transcription factor binding site

database. Since many of these reported binding sequences are

much longer than the expected length of an individual binding

site, we chose a subset for which we could bioinformatically

determine the likely binding site with reasonable confidence using

independent data, as described in Materials and Methods.

Moreover, we wanted to include PhyloCon [23], a motif-finder

that makes somewhat different assumptions about the nature of

input sequences (in particular, it expects multiple sets of

orthologous sequences, with at least one binding site in each set).

Therefore, we chose only factors for which, after our processing,

multiple binding sequences were available.

Figure 1. The performance of various motif-finders on
predicting yeast binding-site data taken from SCPD. Specificity
(the fraction of predicted sites that are present in SCPD) is plotted as a
function of sensitivity (the fraction of SCPD sites that are found by the
motif-finder); sensitivity is varied by cutting off predictions below a
varying significance threshold as reported by the individual program.
Three runs of PhyloGibbs-MP are reported: phylogibbs-mp-n8 is a run
that specifies a maximum of 8 colours (types of motif); phylogibbs-mp-
n8-I is the same, but with ‘‘importance sampling’’ turned off; and
phylogibbs-mp-n3 is a run that specifies a maximum of 3 colours.
doi:10.1371/journal.pcbi.1000156.g001

PhyloGibbs-MP

PLoS Computational Biology | www.ploscompbiol.org 3 August 2008 | Volume 4 | Issue 8 | e1000156



Other than the addition of PhyloCon, all programs used in the

yeast benchmark were run on this data, except PhyME, which we

could not successfully run on this data (it crashed), and

Phylogenetic Gibbs, which showed poor performance on the

yeast data even after its commandline parameters were extensively

adjusted on the advice of one of its authors. Also, in the

PhyloGibbs family, only PhyloGibbs-MP with eight input sites was

run, since this showed the best results in the yeast benchmark.

In addition to D. melanogaster sequence, orthologous sequence

was used from the recently sequenced genomes of D. yakuba, D.

erecta, and D. simulans [24]. (Though many papers have used D.

pseudoobscura, the second fly genome to be sequenced, we rejected it

because its distance from melanogaster suggests that gene evolution

may have evolved significantly.)

The results are shown in Figure 2. They are largely similar to

the yeast results, but overall the sensitivity is poorer than in the

yeast data: that is, all programs perform with poor specificity for a

sensitivity greater than about 0.12, and their performance is

probably no better than random at this level. If one focuses on

high-quality predictions (which means poor sensitivity), Phylo-

Gibbs-MP sharply outperforms all other programs. PhyloCon

performs particularly poorly: a detailed look at the output shows

that it predicts sites only for two factors, ftz and bcd, and most of

these predictions don’t correspond with the annotated sites.

It should be noted that binding motifs in fly (and other higher

eukaryotes) are much fuzzier and less specific than in yeast, and

(especially with the homeotic factors) tend to be rich in A’s and

T’s; similar motifs may well occur by chance, to lead the motif-

finders astray. Moreover, all the input sequences probably

contained several binding sites for several factors other than the

ones annotated by REDfly. Many of these unknown binding sites

may have been successfully detected but not measured in the

benchmark. Nonetheless, PhyloGibbs-MP performs clearly better

at the high-confidence end, suggesting that it is indeed better at

distinguishing conserved binding sites from background. Indeed,

the top few sites predicted by PhyloGibbs-MP are all known sites

(specificity 1.0) and account for about 2% of the total number of

sites in this benchmark.

Discriminative Motif-Finding
Discriminative motif-finding has been discussed in the literature

previously. We choose three previously published programs, ALSE

[25], Dips [26], and DEME [27], which are available for

downloading and running locally, to benchmark against Phylo-

Gibbs-MP. Other published programs, not available for down-

load, include LearnPSSM [28], DME [29], and dPattern [30].

Unlike previous programs, PhyloGibbs-MP handles multiple

input data sets, and treats them symmetrically: rather than

requiring a ‘‘positive’’ and a ‘‘negative’’ set, it seeks sites in any one

‘‘discriminative group’’ that are over-represented in that group but

under-represented in the other groups. (A set of genes A may be

up-regulated relative to another set B, not only because genes in A

are being activated by a common factor, but because genes in B

are being repressed by a common factor. Moreover, one is often

interested in the regulation of multiple sets of genes, that are

differently expressed over a set of conditions, even if no one set of

genes is preferentially expressed overall.) Moreover, the degree of

differential discrimination may be controlled by a command-line

parameter (-d). If this parameter is provided but is zero, sites are

found in a single group without regard to how much they may be

represented in other groups. Very high values of the parameter

strongly repress prediction of sites that have counterparts in other

groups (this is similar to how other discriminative motif-finders

work). In addition, PhyloGibbs-MP takes systematic account of

phylogenetic relationship between species.

We performed four tests: on synthetic data; on yeast data using

the same SCPD database as in the previous section; on fruitfly data

using REDfly binding site data, again as in the previous section;

and on groups of putative co-regulated yeast genes obtained from

genome-wide binding data from Harbison et al. [31]. Results from

these tests suggest that making the discrimination too aggressive is

counterproductive, which may account for why discriminative

motif-finders have not achieved as much popularity as conven-

tional motif-finders. On actual genomic data, the performance of

PhyloGibbs-MP compares well with, or exceeds, the performance

of DEME and ALSE.

Synthetic Data Benchmark
For synthetic data, we generated two sets of phylogenetically-

related sequence as follows: first, three random motifs A, B, C of

10 bp each were selected, drawn position weight matrices where

the consensus base had 85% weight, with the remainder uniformly

distributed. Two ‘‘ancestral’’ sequences were generated, each

containing five copies of motif A; one of these also contained five

copies of motif B, while the other had five copies of motif C. These

ancestral sequences were then evolved, according to our

evolutionary model with an expected mutation rate of 0.5 per

nucleotide, to five descendants; mutated background bases are re-

sampled from the background model, and mutated bases in

binding sites are re-sampled from the PWM. Thus we have two

sets of five phylogenetically related sequences, each containing 5

copies of a ‘‘common’’ motif and 5 copies of a ‘‘discriminative’’

motif. 200 such pairs of sequence sets were generated, and

PhyloGibbs-MP, ALSE, DEME and Dips were benchmarked on

them, for sensitivity and specificity in detecting the common motifs

and the discriminative motifs.

The results, with different choices of the discriminative

parameter for PhyloGibbs-MP, are shown in Figures 3 and 4.

When we are not seeking discriminatively occurring motifs,

PhyloGibbs-MP finds the common motifs (which are abundant)

with high sensitivity and high specificity, while the discriminative

motifs are found with poor sensitivity and specificity. As we turn

up the discriminative parameter, the significance of common

Figure 2. The performance of various motif-finders on
predicting binding sites in D. melanogaster taken from REDfly
2.0. The interpretation is similar to that in Figure 1.
doi:10.1371/journal.pcbi.1000156.g002

PhyloGibbs-MP
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motifs is reduced, and discriminative motifs are found more

significantly. At ‘‘ -d 0.4’’, discriminative motifs are found with

moderate sensitivity but very high specificity; common motifs are

significantly suppressed. Further increasing the parameter yields

smaller gains.

DEME picks up hardly any common motifs, and ALSE also

picks up very few. Dips picks up common motifs, but with a

specificity of about 0.1 (independent of sensitivity) that indicates

random performance. (Each 1000 bp sequence contains 5

embedded common motifs each 10 bp long, but overlaps of up

to 5 bp in predictions would be considered ‘‘hits’’; therefore about

10% of each sequence would be ‘‘hit’’ randomly.)

On the other hand, ALSE and DEME both perform very well

in picking up differential motifs; PhyloGibbs-MP, with differential

parameters -d 0.4 and -d 0.99 performs reasonably well,

outperforming Dips.

Yeast Binding-Site Data Benchmark
With yeast data, we selected pairs of genes for which differing

regulatory factors are listed in SCPD, and picked 1000 bp

upstream sequence (excluding overlapping coding sequence) with

orthologous sequence from other sensu stricto species, as for the

motif-finding benchmark. Having generated 571 such pairs, we

ran PhyloGibbs-MP (with discriminative setting 0.4), ALSE,

DEME and Dips on each pair and measured their performances.

(PhyloGibbs-MP treats the members of a pair symmetrically; the

other programs were run twice on each pair, alternately

choosing one member as the ‘‘positive’’ set and the other as

the ‘‘negative’’ set.) The results are in Figure 5. DEME is the

best performing program on this set, except for high-significance

(low sensitivity) predictions, where PhyloGibbs-MP is competitive

with it.

In interpreting this data (and the data in the following fruitfly

benchmark), one should note that, first, there could well be

unknown common factors regulating many of these pairs of genes,

and second, different factors may nevertheless bind to somewhat

similar binding sites (since proteins have a limited number of

DNA-binding domains). The second point is even more important

in the fruitfly case.

Fruitfly Data Benchmark
We used the same sequences and binding-site data as in the

fruitfly motif-finding benchmark, but also included factors for

which only one sequence was available. Similarly to the

discriminative yeast benchmark, we chose pairs of sequence sets

that contained binding sites for different known factors. It should be

emphasised that it is very likely—even more so than in the yeast

case—that these pairs of sequence sets contained unknown

common binding sites, and also that many different factors in

this case contain rather similar motifs.

The results are in Figure 6. In this case, the gap between

PhyloGibbs-MP and ALSE is quite low; DEME, surprisingly,

performs significantly worse.

Figure 3. The performance of PhyloGibbs-MP in discriminative
and non-discriminative mode, on synthetic data, compared
with other programs. Each data set consists of two sets of
sequences, with one ‘‘common’’ motif embedded in both sets and
two ‘‘discriminative’’ motifs embedded one in each set, with five copies
per sequence per motif per set. Specificity as a function of sensitivity is
shown. For PhyloGibbs-MP, ‘‘nodiff’’ indicates non-discriminative mode,
while the other labels indicate the value of the discriminative parameter
( -d): 0.1, 0.4 or 0.99. This figure shows performance in detecting
common motifs on these data; Figure 4 shows performance in
detecting discriminative motifs.
doi:10.1371/journal.pcbi.1000156.g003

Figure 4. Performance of various programs in detecting
discriminative motifs, on the same data as in Figure 3.
doi:10.1371/journal.pcbi.1000156.g004

Figure 5. Performance of discriminative motif-finders on pairs
of regulatory regions from yeast.
doi:10.1371/journal.pcbi.1000156.g005

PhyloGibbs-MP

PLoS Computational Biology | www.ploscompbiol.org 5 August 2008 | Volume 4 | Issue 8 | e1000156



Yeast Genomewide Binding Data Benchmark
Finally, as a test on realistic data of the sort where a

discriminative motif-finder would be useful, we considered

DNA-binding data from genome-wide location microarray

experiments (‘‘ChIP-chip’’) reported by Harbison et al. [31] in S.

cerevisiae. We chose 15 factors with ‘‘known’’ motifs (as reported by

them) that bind between 4 and 9 probes, under at least two

conditions including rich medium, with a p-value below 0.001;

reported binding sequences (and orthologues) were in the

‘‘positive’’ set and an equal number of randomly chosen non-

binding sequences were in the ‘‘negative’’ set. The factors thus

chosen were AFT2 (YPL202C), BAS1 (YKR099W), CBF1

(YJR060W), DAL81 (YIR023W), GAL4 (YPL248C), HAP2

(YGL237C), MET4 (YNL103W), MSN4 (YKL062W), PUT3

(YKL015W), RCS1 (YGL071W), RDS1 (YCR106W), ROX1

(YPR065W), RTG3 (YBL103C), STP1 (YDR463W), YAP1

(YML007W). Details are in Materials and Methods.

Figure 7 summarises the results. Unlike other benchmarks, the

comparison here is qualitative, and at the motif-level not the site-

prediction level. On the whole, most predicted motifs bear little

resemblance to the ‘‘known’’ motifs. The various programs

perform as follows:

N In 9 out of 15 predictions of PhyloGibbs-MP, there is at least a

core element of the predicted motif that resembles the known

motif. These are for AFT2 (GGG[T/C]GC), DAL81

(CCGC[C/G]G or CCGCC[C/G])), GAL4 (CGG), MET4

(T[G/T]GCGC), PUT3 (CCG), RCS1 (G[G/T]GTG),

RTG3 (G[G/C]TCAC), STP1 (CGGC), YAP1 (TTAGT).

Of these, the full GAL4, PUT3, and STP1 motifs are

homodimers with weak spacers, and PhyloGibbs-MP predicts

one half of these dimers. The GAL4 motif, in particular,

contains a very long (11 bp) spacer which is hard to find with

motif-finders, especially as the expected length of the motifs

was specified as 10 in all these programs.

N ALSE predicts extremely indistinct motifs with low informa-

tion content, except in the case of RTG3, where its prediction

bears little resemblance to the known motif.

N DEME predicts core sequences for 8 out of 15 factors: AFT2

(GGT, much shorter than PhyloGibbs-MP’s prediction), BAS1

(AGTCA, a strong prediction missed entirely by PhyloGibbs-

MP), DAL81 (CTTTT), HAP2 (CCA[A/T]T), MET4

(TTTT[T/C]), RCS1 (GCACCC, a sharper prediction than

made by PhyloGibbs-MP), STP1 (CGGC), YAP1

(CTGACTA, partially overlapping with PhyloGibbs-MP’s

prediction).

N Dips makes (comparatively weak) predictions for five factors:

BAS1 (GAGT), DAL81 (TTTT), HAP2 (CCANT), MET4

(TTTTT), MSN4 (CCCT), ROX1 (AACAA).

This is a qualitative comparison and many of the above

comparisons are rather nebulous. In particular, if one omits poly-A

or poly-T predictions (which are plentiful in the yeast genome), the

number of ‘‘predictions’’ for DEME and Dips falls sharply.

Though DEME makes only eight predictions that match (or

somewhat match) the known motifs in these data, its authors

report benchmarks that predict 13 of 15 motifs in sequences drawn

from the same ChIP-chip data [27]. However, both their selection

of sequences (which is not described in detail) and their

methodology differ from ours. In particular, where we assume

no prior knowledge of the motif width and use a width of 10 in all

cases, they use the actual width of the motif as prior information.

In realistic situations, one is unlikely to know the width of an

uncharacterised transcription factor’s binding site.

Interpretation of Discriminative Benchmarks
When one takes the four benchmarks together—one on

synthetic data and three on actual genomic data of the type likely

to arise in realistic research situations—it is clear that, in this

particular problem, synthetic data captures very poorly the

complexities of an actual situation. There are various issues at

work in actual genomic sequence: motifs for different transcription

factors may resemble each other strongly, especially if they come

from the same family; weak, non-specific motifs may have close

matches by ‘‘chance’’; there could be many relevant factors

regulating a gene or set of genes, only some of which are

discriminative; and, in data arising from high-throughput

experiments, there could be ‘‘noise’’ in that not all sequences

reported to bind a protein may actually do so. Over-aggressiveness

in discriminative motif-finding leads to excellent synthetic-data

performance but poor sensitivity and/or specificity with real

genomic data. All the programs tested suffer from this issue, but

PhyloGibbs-MP mitigates the problem with the tunability of its

discriminative parameter.

The benchmarks do indicate that, over a somewhat broad range

of data, DEME and ALSE are excellent discriminative motif-

finders, performing far better than PhyloGibbs-MP on synthetic

data and very well on real data. However, with real data,

PhyloGibbs-MP is competitive with or superior to both those

programs (in particular, it appears markedly superior on the ChIP-

chip benchmark), while including the flexibility of a general-

purpose motif-finder.

CRM Prediction
An example of PhyloGibbs-MP’s ability to predict cis-regulatory

modules is shown in Figure 8, which depicts the region upstream

of the eve gene. Without prior information, PhyloGibbs-MP

successfully predicts all four annotated upstream CRMs from the

REDfly database: the proximal promoter, the stripe 2 enhancer,

the stripes 3+7 enhancer, and the mas enhancer. (In the case of

mas, the predictions are not exactly overlapping the annotated

enhancer, but are nearby and over a broader region. In the case of

stripe 2, the annotated 500 bp enhancer in REDfly is somewhat

shorter than other reports (e.g., Ludwig et al. [32]) that suggest an

enhancer close to 800 bp in length; most of the predicted sites fall

in this larger region. With prior information in the form of nine

Figure 6. Performance of discriminative motif-finders on pairs
of regulatory sequence from fly.
doi:10.1371/journal.pcbi.1000156.g006
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weight matrices corresponding to gap factors, PhyloGibbs-MP fails

to pick up the proximal promoter, but finds the remaining CRMs

with greater confidence than before.

For a more thorough and quantitative benchmark, we used the

REDfly database [22,33] of cis-regulatory modules in D.

melanogaster. We filtered the REDfly CRM list for CRMs of

suitable length (,3000 bp), fused nearby CRMs, and selected

sufficient neighbouring sequence (details are in Materials and

Methods) that we were left with 234 stretches of DNA that were at

least 10000 bp long and contained at least one annotated CRM.

PhyloGibbs-MP, and four other downloadable programs—

Stubb [8,9], Cluster-Buster [7], EMCMODULE [34], and

CisModule [35]—were run on these segments. (Details and exact

command-line parameters are in Materials and Methods.) Cis-

Analyst [36,37], and other programs that are not downloadable or

can only be run via a web-server, were not tested. For priors we

used a set of 73 weight matrices, that we created from DNAse I

footprints in the FlyReg database [38] and orthologous sequence

in five other species (details of how these matrices were generated

are in Materials and Methods, and the matrices themselves

are available at http://www.imsc.res.in/,rsidd/phylogibbs-mp/

supporting-data/.

As in the motif-finding case, sensitivity was varied by varying the

significance cut-off of individual site predictions (or, in the case of

Stubb, of individual free-energy ‘‘windows’’ of 100 bp each). The

sensitivity of the output was measured, for predictions above

various cutoff thresholds, by what fraction of CRMs (weighted by

length), of the total known, were successfully predicted by the

programs. A predicted site that lay within the boundaries of a

module was counted as a ‘‘prediction’’ of that module. The

specificity was measured by what fraction of site predictions, for

each program, occurred within known CRMs.

Figure 8. Results of running PhyloGibbs-MP, in module-prediction mode, on the 8 kb sequence upstream of the eve gene in
Drosophila. When run without priors, predictions lie on or close to all four annotated modules in this region from the REDfly database. When
weight matrices for the gap transcription factors are used as priors, PhyloGibbs-MP fails to find the proximal promoter, but the stripe 2 and stripes
3+7 enhancers are detected with increased confidence. Predicted sites for individual motifs, as well as cumulative predictions over all motifs, are
shown.
doi:10.1371/journal.pcbi.1000156.g008

Figure 7. For fifteen transcription factors bound by between 4 and 9 sequences with p,0.001 in ChIP-chip experiments reported by
Harbison et al. [31], weight matrices reported by those authors, in both orientations, compared with predictions of four
discriminative motif-finders on binding sequences discriminated against randomly chosen non-binding sequences. No other prior
information was used. PhyloGibbs-MP does not internally characterise discriminative sets as ‘‘positive’’ or ‘‘negative’’ but only predictions from the
positive set (including, in some cases, multiple predictions) are reported. Other programs make at most one prediction per set. All programs report
position weight matrices, which were used directly to generate sequence logos (using WebLogo [41] and some helper scripts). The predictions are
discussed, qualitatively, in the text.
doi:10.1371/journal.pcbi.1000156.g007
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To test the effect of prior information and orthologous sequence

availablity on the performance of PhyloGibbs-MP, it was run with

and without priors, and with one (D. melanogaster only), two D.

melanogaster and D. yakuba) or four (D. melanogaster, D. yakuba, D.

simulans and D. erecta) aligned species. The results are in Figure 9.

The best performance came when prior information was supplied,

but (somewhat surprisingly) when only two input species, not four,

were used. This suggests that spurious conservation across multiple

species may lead PhyloGibbs-MP astray.

Next, PhyloGibbs-MP (best-performing parameters) was com-

pared with the output of the other programs. The results are in

Figure 10.

In terms of speed, PhyloGibbs-MP is much slower than the

other programs: being a Gibbs-sampling ab initio motif-finder, it

runs roughly quadratically in sequence length (given typical

parameters), whereas a search and clustering for motifs can be

done in linear time. Its utility becomes apparent when used as a

combined CRM predictor and ab initio motif-finder, and it

performs competitively with dedicated programs at both these

tasks. In recent work, we have used a subset of the above FlyReg-

derived matrices, and a few additional literature-derived weight

matrices, to make detailed studies of a myoblast-related enhancer

that exhibits a complex modular expression pattern (K. G.

Guruharsha et al., in preparation).

Discussion

While transcriptional regulation, especially in most eukaryotes,

is only one component of a complex machinery controlling gene

expression, it is an important and the best understood component

today. According to benchmarks on two different species reported

here, PhyloGibbs-MP appears to be superior to all other tested

programs (including its predecessor PhyloGibbs-1.0) in its core task

of ab initio motif finding. In addition, it shows excellent

performance, comparable or superior to that of dedicated

programs, at prediction of cis-regulatory modules (CRMs) and

discriminative motif-finding. All these are of importance in the

computational study of transcriptional gene regulation. While

comparably good or faster tools may exist for module prediction

and discriminative motif prediction, the ability to integrate all

these tasks, while taking systematic account of phylogenetic

relationships between species and performing a careful self-

assessment of its own predictions via extended sampling, are

unique to PhyloGibbs-MP.

There are some subtleties and many unaddressed problems that

we intend to address in future; we discuss some of these below.

While PhyloGibbs-MP predicts multiple CRMs upstream of a

single gene, and regulatory sites that occur differentially upstream

of different genes (as well as CRMs known a priori for the same

gene), it is incapable of predicting discriminative sites for different

CRMs that it itself predicts for a given gene. Yet the reason that a

gene may have multiple CRMs is precisely that it is differently

regulated by different CRMs in different contexts. At the moment,

we approach this situation by first predicting CRMs, using either

PhyloGibbs-MP or another program, and then predicting

discriminative motifs in those CRMs. Also, PhyloGibbs-MP can

restrict the number of different factors (colours) per CRM: for

example, we can stipulate that there may be up to 40 factors

regulating the gene, but only 10 at most per CRM. A more

satisfactory solution will be implemented in the future.

Co-regulated and differentially-regulated clusters of genes are

often predicted from high-throughput (microarray) expression data,

which is itself noisy. Feedback between motif-finding and clustering

of microarray data would benefit both tasks, and this is a future goal.

PhyloGibbs-MP, like its predecessor and like other phylogenetic

motif finders, requires pre-aligned input data; we have written a

program, Sigma, specifically for aligning non-coding DNA, and use

it in the benchmarks above and elsewhere. But no alignment

program is perfect, so it is a goal to include the capability of aligning

sequence (using an algorithm similar to that implemented by Sigma)

in PhyloGibbs-MP directly. The alignment can then be refined in

tandem with the predictions being made by PhyloGibbs-MP.

Availability
PhyloGibbs-MP is available at http://www.imsc.res.in/,rsidd/

phylogibbs-mp/. It is open source, licensed under the GNU

Figure 9. Performance of PhyloGibbs-MP with various param-
eter settings (with flyreg priors or without priors, and with 1, 2
or 4 orthologous aligned sequences), on detecting known cis-
regulatory modules in regulatory regions of fly.
doi:10.1371/journal.pcbi.1000156.g009

Figure 10. Performance of PhyloGibbs-MP (with flyreg priors,
and 2 species) in detecting known CRMs in fly, compared with
four other module finders. Dotted lines indicate the performance
expected if programs made predictions at random (that is, if, for each
input sequence, the same number of site predictions were made but at
random locations). Note that, in this data, 816457 bp out of 2448515 bp
is in annotated CRMs; so a completely random program would exhibit
roughly a specificity of 0.33, in agreement with the dotted lines at high
sensitivity.
doi:10.1371/journal.pcbi.1000156.g010
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General Public License. Supporting data is available at http://

www.imsc.res.in/,rsidd/phylogibbs-mp/supporting-data/.

Materials and Methods

Overview of the PhyloGibbs Algorithm
The PhyloGibbs algorithm was described in detail earlier [4], so

a brief summary will suffice here. (Some changes in PhyloGibbs-

MP from PhyloGibbs-1.0 are described in Materials and Methods,

‘‘Changes to Algorithm’’.)

PhyloGibbs models ‘‘generic’’ non-coding DNA sequence by a

Markov model of order k (where typically k is 1, 2, or 3) whose

parameters are estimated (preferably) from an auxiliary file of

background sequence, or (less reliably) from the input sequence

itself. It assumes that some locations in the input sequence are

binding sites for transcription factors, and are not described by the

background model but by ‘‘position weight matrices’’ (PWMs):

matrices of order 46, that give the probabilities of seeing each of

the four nucleotides at positions 1 through , in the site. All binding

sites belonging to a common transcription factor are given by the

same (often unknown) PWM. A ‘‘parse’’ of the sequence consists of

a selection of particular sites as putative binding sites. For each

such parse, C the likelihood of seeing the given sequence P(S|C)

can be calculated (as described in [4]), and then the posterior

probability of C follows by Bayes’ theorem:

P C Sjð Þ~ P S Cjð ÞP Cð Þ
P Sð Þ ð1Þ

Here, P(S) (loosely, the ‘‘prior probability’’ of the sequence S) is a

constant, equal to SCP(S|C9)P(C9), while P(C) is the prior

probability of the parse, which is chosen to incorporate as much

prior information as possible. For example, it can be chosen to be

constant for a given number of colours and a given number of

sites, and zero otherwise. One can also use a ‘‘chemical potential’’

to allow flexibility in the number of allowed sites. PhyloGibbs-MP

fixes a maximum number of colours, and an expected number of

binding sites (in contrast, PhyloGibbs-1.0 fixes the number of

windows, that could encompass many sites). PhyloGibbs-MP also

adjusts P(C) when dealing with informative priors, module

prediction, and discriminative motif-finding.

PhyloGibbs uses a moveset that preserves detailed balance

(some caveats apply to PhyloGibbs-MP: see the appendix). It

samples the space of parses, first finding the parse with maximum

a posteriori probability P(C|S), then evaluating the significance of

each predicted site by further sampling. It can simultaneously

detect binding sites for multiple different TFs by labelling each

with a different ‘‘colour’’; the posterior probability is a product

over all colours.

In addition, PhyloGibbs can deal with phylogenetically related

sequence that has been pre-processed by a multiple sequence

alignment program. It does this by treating sites in an aligned

block not as independent, but as descendants of a common

ancestor, and modifying the scoring appropriately (whether as

‘‘binding sites’’ or as ‘‘background’’). The scoring is governed by

the transition probability

T a ajð Þ~qdaaz 1{qð Þwa

where a is the (unknown) ancestral base, a is the descendant base, q

is the rate of conservation (‘‘proximity’’) between the ancestor and

the descendant, and wa is the probability of seeing a at that position

in the descendant under the assumption that this is a binding site

for a weight matrix (or a background site, as the case may be). In

other words, the ancestral site is conserved with probability q and

mutated with probability 12q; if mutated, it has undergone

fixation that preserves the functionality, or the background

statistics. This transition probability is transitive and has the

correct limits at extreme q. The above applies directly to ‘‘star

phylogenies’’ (where all species are independently descended from

a common ancestor), but arbitrary phylogenetic trees are handled

by converting them into sums of products of ‘‘subtrees’’ that

individually have ‘‘star phylogenies’’. (This is exact, but approx-

imations are made in dealing with the subtrees.) Internally,

PhyloGibbs represents such related sites by ‘‘windows’’, aligned

blocks of sequence that are either all functional, or all non-

functional. Details, again, are in the earlier PhyloGibbs paper [4]

and are unchanged in PhyloGibbs-MP.

Cis-Regulatory Module Prediction
PhyloGibbs-MP takes as optional parameters the maximum

length l of a cis-regulatory module, and the average spacing d

between two CRMs. Then, on each input sequence, it requires

that not more than max(1,(L+d)/(l+d) modules exist, where L is the

length of the sequence.

Each site, or multispecies ‘‘window’’, that is selected now must

satisfy existing module constraints on all sequences that it is a part

of. In other words, only windows that can satisfy the current

constraints are sampled for. For example, if two modules are

allowed on a sequence, but all windows that currently occupy that

sequence fit within the width of one module (any two windows are

within a distance l of each other), a new window can be sampled

anywhere on that sequence (provided it satisfies constraints on

other sequences that it is a part of), and will define a new module.

However, if the currently selected windows must be spread across

two modules, newly selected windows must fit within the

constraints of those two modules—that is, they must be no more

than l nucleotides away from any window in their module.

Thus, the allowable window placements, and the modules

defined by the selected windows, are dynamically updated and

need not stay localised as sampling proceeds. At the end of the run,

the tracking scores, visualisable via the GBrowse annotation (see

Figure 8) for an example), reveal the positions of the predicted

modules, which may be sharply localised or may be spread all over

the sequence.

Discriminative Motif-Finding
When given sets of regulatory regions for genes that are believed

to be regulated differently, it is of interest to find motifs that occur

preferentially in one set rather than in the other. When run in

discriminative mode, PhyloGibbs-MP accomplishes this by, for

each ‘‘colour’’, selecting sites only in one regulatory set. However,

it also selects ‘‘mirror’’ sites in other groups. The total number of

mirror sites, across all groups and all types of motifs (‘‘colours’’), is

the same as the total number of actual binding sites expected.

The mirror windows are sampled for in the same way as the

‘‘real’’ windows, by scoring them together with the real windows.

Thus, if a colour has n real windows and m mirror windows

selected, a new window is sampled with the posterior probability

Pn,m of being drawn from the same weight matrix as these n+m

sites. It is possible for a colour to contain no mirror windows. If a

colour gets emptied of real windows, the mirror windows are also

emptied and re-sampled into other colours.

These ‘‘posterior probabilities’’ are calculated as described in

our earlier paper [4]. However, it is convenient below to use the

language of thermodynamics. By analogy with the Boltzmann

probability of finding a thermodynamic system in a state of free

PhyloGibbs-MP
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energy F, which is equal to exp(2bF) where b is the inverse

temperature, we define a ‘‘free energy’’ F~{
1

b
logP correspond-

ing to a posterior probability P. In our case the temperature is

fictitious: b = 1 during the initial equilibriation and tracking

phases, and is slowly increased during the simulated anneal.

In the usual (non-discriminative) Gibbs sampler, we start from a

state with n+1 windows, remove a window (to leave n windows

selected), and sample replacements according to the ‘‘free

energies’’ Fn+1, which correspond to the posterior probabilities

that the n selected windows plus the one new window are all

sampled from the same position weight matrix. (More accurately,

the new window may be placed into any existing ‘‘colour’’, not

necessarily the one from which a window was removed. Below we

write a ‘‘colour index’’ explicitly for clarity.)

For the discriminative motif-finder, in any given configuration,

each colour has ‘‘real’’ windows as well as ‘‘mirror’’ windows

selected. A move starts with removing a real window, and a mirror

move by removing a mirror window; these are then resampled.

Let’s say, after the removal, one is left with n real windows and m

mirror windows. The ‘‘mirror’’ sites are sampled as above, but

treating real and mirror sites as the ‘‘same’’. That is, they are

sampled using the free energies Fn+m+1,c, which correspond to the

posterior probability of all n real windows, all m mirror windows,

and the newly selected mirror window all being sampled from the

same PWM (that corresponds to colour c). The goal here is to

maintain a mirror list that is as faithful as possible to the real list.

The ‘‘real’’ sites are instead sampled according to

Freal,c~Fnz1,cza Fnz1,czFm,c{Fnzmz1,cð Þ ð2Þ

where c stands for the colour (motif type) into which the window is

being sampled Fn+1 has the same meaning as in the non-

discriminative case, Fm is the free energy for the case that the m

mirror windows are sampled from a common PWM (not necessarily

the same as the ‘‘real’’ windows), and Fn+m+1 is the free energy for

all n selected windows, all m mirror windows and the one newly

selected window are all sampled from the same PWM. A window

may be sampled into any colour, and each colour has a different

set of mirror windows associated with it (thus n and m both depend

on c); so this free energy is calculated for each candidate window

and for each colour into wich it may be sampled. The bracketed

term has the effect of penalising cases where the mirror windows

strongly resemble the real windows. Here, a is a parameter,

greater than 0, that determines how strongly to penalise motifs that

are well represented outside the current discriminative group. For

very small a, sites for a given colour are selected only from one

discriminative group but little consideration is made to whether

similar sites occur elsewhere. For larger a, similar sites in other

discriminative groups will penalise the score more severely.

Typically we find that a = 0.4 suffices to predict genuinely

discriminative motifs, while excessively large values of a will cause

chance occurrences of the motif in other groups to excessively

penalise the ‘‘good’’ motifs—which is also noticed in the

benchmarks for discriminative motif-finders (cf. section ‘‘Results’’,

subsection ‘‘Discriminative motif-finding’’).

Informative Priors
Optionally, PhyloGibbs-MP can take a file containing prior

position weight matrices corresponding to possibly relevant

transcription factors, and bias its search to sites corresponding to

those prior PWMs. This is done as follows: Input sequence is pre-

parsed in PhyloGibbs-MP (as in PhyloGibbs-1.0), into ‘‘windows’’

of specified length. When prior PWMs are given, each prior PWM

is associated with a unique ‘‘colour’’. Then each window is given a

prior probability of being a binding site for each of the given prior

PWMs, as well as of being background. This probability is

calculated as follows: Let Pbg be the probability that the window is

background (estimated from a background model), and Pd(W) be

the probability that the window contains a binding site for PWM

W with offset d from the start of the window. Then the probability

that the window is a binding site for W is given by

Pbinding(W )~

P
d Pd(W )

Pbgz
P

allW 0
P

d Pd(W 0)
ð3Þ

where only offsets where at least 50% of the PWM is in the

window, or at least 50% of the window is covered by the PWM,

are considered in the sums over d. (PWMs that are too large or too

small to satisfy these criteria are filtered out.) Then, during the

window-shift moves, when a new window and colour are being

sampled, the posterior probability calculated for the new

configuration is multiplied by the prior probability of that window

being in that colour.

Annotations
Optionally, PhyloGibbs-MP can output annotation files for its

predictions that are readable by the Generic Genome Browser

[39] as well as by a visualisation tool that we are developing and

have used to generate Figure 8 in this paper (S Acharya and RS, in

preparation). Annotations are for one species only, the ‘‘anchor

species’’ that must be the first specified in the phylogenetic tree.

The headers for sequences from that species must be formatted

appropriately; details are in the PhyloGibbs-MP manual, distrib-

uted with the software.

Changes to Algorithm in PhyloGibbs-MP
While PhyloGibbs-MP can be used as a conventional motif-

finder, for the most part in the same way that PhyloGibbs-1.0 can,

several changes have been made to the details of the algorithm,

with an aim at improving performance.

Detailed Balance
PhyloGibbs-1.0 strictly maintained detailed balance in all

movesets; PhyloGibbs-MP is not quite so rigid. We discuss the

deviations below. While we would prefer to maintain detailed

balance strictly, we note that detailed balance, combined with

ergodicity, ensures a sampling of state space with the appropriate

posterior probability distribution only in the infinite time limit. But

a useful program must run in limited time, and therefore good

convergence of the moveset is equally important in practice. (For

example, in PhyloGibbs-1.0, the ‘‘colour-change move’’ [4] is by

itself ergodic and satisfies detailed balance, and therefore should

suffice in the infinite time limit. But in any realistic running time it

does nothing useful by itself. Similarly, in the infinite-time limit the

‘‘global shift moves’’ would not be necessary.)

We argue that our breaking of detailed balance is sufficiently

rare to be harmless, and sufficiently useful to be justifiable. Rare

detailed-balance-breaking moves correspond to having several

Markov chains through state space, where links within a chain

satisfy detailed balance, but the moves connecting different chains

do not. If the number of links within a chain is much greater than

the number of chains, (in particular, if each chain is allowed to

grow infinitely long while the number of different chains remains

finite), the desired posterior probability distribution will be reached

(since it is reached separately by each of the chains).

PhyloGibbs-MP
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Window-Shift Moves
In PhyloGibbs-1.0, these moves maintained a constant number

of windows (which may contain multiple orthologous sites), by

replacing one window with another. In PhyloGibbs-MP, the

window-shift move maintains a constant number of sites.

This is done as follows: First, an initial input parameter is p (by

default 0.01), which is the expected ‘‘density’’ of sites in the input

sequence. For example, if the input sequences have lengths Li, the

total expected number of sites in these sequences is NE =

Sip(Li2w+1) where w is the width of a window.

Each window-shift move removes an existing coloured window

(randomly chosen, of any colour), and replaces it with a new

coloured window. However, the weight (posterior probability) of

the move is multiplied by the heuristic exp(2b((Ns2NE)/Nm)8).

Here, Ns is the number of sites that would be selected if that

window were picked, and Nm is the maximum number of

sequences in any window in the set, and serves as a ‘‘margin’’

for the amount that Ns can deviate from NE. The inverse

temperature b is unity except during the simulated anneal, where

it is increased gradually. We use the eighth power to allow

deviation with little penalty within the margin Nm, but rapidly

growing penalties for any larger deviation.

This satisfies detailed balance. However, we make two

exceptions: if, before the move, Ns (the number of selected sites)

is smaller than NE2Nm, we do not remove any window, but

directly pick a new window. And if, after removing a window, Ns is

larger than NE+Nm, we do not pick a new window. These

exceptions occur sufficiently rarely that the breaking of detailed

balance is not serious. The ability to specify a ‘‘density of sites’’,

independent of the input sequence length or the degree of

homology, is a large advantage, which contributes to PhyloGibbs-

MP’s superior performance over PhyloGibbs-1.0.

Another breakage in detailed balance occurs when module

prediction is enabled: adding or removing windows may change

module boundaries, with the result that the set of available states is

different before and after the move. Again, this is relatively rare

and in a useful cause.

Global-Shift Moves
In this move, an attempt is made to shift all windows of a given

colour by a fixed distance, left on one strand or right on the other.

This is to move out of ‘‘local minima’’ where the sampler has

found a non-optimal solution that is offset by a fixed amount, and

moving one window at a time would take a long time to happen.

To maintain detailed balance, PhyloGibbs-1.0 sampled all possible

shifts, up until such distance as no shift was possible (for instance,

because it was blocked by other windows, or because it would run

off the edge of the sequence). While this does maintain detailed

balance, it fails to sample some legitimate shifts: in particular, if a

window was at the edge of an aligned block, PhyloGibbs-1.0 could

not shift it beyond, because the number of sequences in the

window would change, and therefore would not shift any window

in that colour.

Instead, PhyloGibbs-MP samples shifts of only one space left or

right, and allows shifts beyond window boundaries (such windows

may either ‘‘gain’’ sequences from other species, or be broken into

smaller windows with fewer sequences).

In this case, general balance is significantly broken for a given

global shift move, because the set of available states is not the same

before and after the move. (A window at position i could be

shifted, with other windows of that colour, to i+1 or i21 or could

stay at i; if it shifts to i+1, the available states are now i, i+1, i+2.

Also, in case of blocked windows that are ‘‘thrown away’’ after the

shift, new windows are resampled, and again the set of possible

states is not the same.) Again, the rareness of the moves compared

to the window-shift moves, and their utility in practice, justifies the

breakage.

Colour-Change Moves
The colour-change move in PhyloGibbs-1.0 has been removed.

Instead, a maximum number Nc of colours is specified, but (unlike

in PhyloGibbs-1.0) fewer than Nc colours may actually be selected

at any time.

Mask Bits
PhyloGibbs-1.0 had an optional ‘‘maskbit flip’’ move, where

certain columns are optionally not scored; these columns are

sampled for using Metropolis moves. In practice, however, motifs

tend to be strong at the centre and weak at the edge, except for

symmetric dimer motifs (mainly in bacteria), where they can be

weak in the middle. Therefore PhyloGibbs-MP allows such

unscored columns only at the edge of the window (and, in the

case of symmetric motifs, in a contiguous symmetric block at the

centre). The advantage of this is that, when a length w is specified,

smaller motifs (for example, of length w21 and w22) may also be

found.

Simulated Anneal
PhyloGibbs-1.0 used an annealing schedule where b (the inverse

temperature) was increased linearly from 1.0 to a final lower value,

followed by a short ‘‘deep quench’’ with b = 20.

Instead, PhyloGibbs-MP uses the ‘‘free energy’’ E (the logarithm

of the posterior probability), averaged over a cycle, to determine

the start and stop of the simulated anneal. The starting

temperature is chosen to be a value where the fluctuations in

energy, DE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S E{Eavg

� �2T
q

(averaged over one cycle of

moves), are at least 0.3 times the average energy Eavg. Then b is

increased exponentially, by a factor of 1.2 at each step. At least two

cycles are run at each b, and b is increased only when the

difference in average energy in the last two cycles at that b is less

than the fluctuation DE in the last cycle. The anneal is stopped

when the relative difference in average energy at the last two

values of b is less than 0.005. There is no ‘‘deep quench’’.

The number of moves used in the tracking phase is, by default,

the same as the number (excluding the equilibriation moves to find

the initial temperature) in the simulated anneal. This can be

overruled.

Importance Sampling
A significant improvement in running time (typically a factor of

10 or so) is obtained by using a form of ‘‘importance sampling’’ on

top of the Gibbs sampling scheme implemented in the ‘‘window

shift moves’’. When sampling a replacement window, PhyloGibbs-

1.0 would consider every available window, with every possible new

colour for that window; this requires NwNc calculations, where Nw

is the number of windows and Nc is the number of colours

available. Typically Nw is large, several thousands or tens of

thousands; but only a small fraction of available windows tends to

get selected. This is not an unusual situation in sampling problems.

When one has an estimate of the bias, one often uses an

‘‘importance function’’ F(C) to indicate which configurations C are

more frequently visited. This is chosen (often heuristically) to be

large where P(C) (the posterior probability of C) is likely to be large

large, and small where P(C) is small. Then states are sampled not

according to P(C) but according to P(C)F(C); but their contribution

to running averages of the form ÆE(C)æC are taken to be not E(C)

but E(C)/F(C). This makes the average come out right, while

PhyloGibbs-MP
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causing the sampler to spend most of its time in ‘‘important’’ parts

of configuration space.

In our case, we have a related situation: some windows tend to

be selected much more often than others, and therefore, during a

particular Gibbs move, although we need to select from Nw

windows, only a few of these are actually likely to be selected.

Therefore we maintain an ‘‘importance’’ for each window, a

number between 0 and 1, which is the fraction of time that that

window has actually been selected (in any colour and either

orientation) up until that time. During the setting of the initial

temperature, all windows are treated as important (their

importance counter is incremented whether or not they are

selected). Thus, at the start of the anneal, all windows have

importance 1, but as the running time proceeds, the importance of

many windows decreases rapidly.

Let the importance of a window at any time be I(w). Normally, if

Nw windows may possibly be selected, we need to calculate the

posterior probability P(wi,c) for each available window wi into each

available colour c. The time-consuming step is the calculation of

P(wi,c) which is a wasted calculation for most available windows,

which are in fact never selected. Therefore, we pre-select a subset

of the Nw windows: Each available window wi is selected to be

sampled with a probability proportional to I(wi). (I is normalised in

such a way that the importance of the most important available

window is 1, i.e. it will always be pre-selected, so the pre-selected

subset is never null.) However, it will then be selected with a

probability proportional, not to P(wi,c), but to P(wi,c)/I(wi). In other

words, if a subset {W} of windows is preselected by importance,

windows in that subset are sampled according to

P wi,cð ÞP
wj[fWg,c0 P wj ,c0

� �

(the importance cancels because the P’s have been preselected with

probability i, but then been multiplied by 1/I).

When the reverse transition is considered, in individual cases a

different subset of windows {W9} will be used in the denominator,

and therefore the sum in the denominator will not be the same.

However, on average (for times not too far apart) it will be the same:

there is no systematic bias and detailed balance should apply. In

the long time limit, I(wi) will tend to

Limt??I(wi)~

P
states S where wi selected P(S)P

all states S P(S)
: ð4Þ

This is a non-rigorous argument, for which the justification is as

earlier: statements about detailed balance are rigorous only in the

infinite-time limit, while running-time efficiency is important in

real life. For those who are unconvinced, importance sampling

may be turned off by a command-line parameter. Results do not

seem greatly affected by this. An example is in Figure 1, where

PhyloGibbs-MP with 8 possible motifs is run with (black line) and

without (blue line) importance sampling. The effect of importance

sampling seems, as one would expect, to somewhat inflate the

reported significance of high-confidence predictions and somewhat

deflate the significance of lower-confidence predictions.

Benchmarks
For all benchmarks, detailed commandlines for individual

programs and all input and output files are available at http://

www.imsc.res.in/,rsidd/phylogibbs-mp/supporting-data/. Sever-

al scripts used to process the data are also included.

Motif-Finding
For the yeast benchmark, the SCPD database [11] was used,

but edited to remove very long and very short sites. The edited

database contained 466 binding sites upstream of 200 genes. For

each gene, sequence upstream of that gene in S. cerevisiae up until

the next coding sequence was used, to a maximum of 1000 bp.

Orthologous sequence was found in other sensu stricto species

(S. bayanus, S. mikatae, S. kudriavzveii, S. paradoxus) using BLAST.

For PhyloGibbs-1.0, PhyloGibbs-MP, and EMnEM, these

sequences were aligned with Sigma [19], version 1.1.3. For the

phylogenetic Gibbs sampler [18], the sequences were aligned with

ClustalW [21], and for PhyME [16], they were aligned with the

bundled version of LAGAN [20].

Command-line options were chosen to be roughly comparable

for all programs; for the phylogenetic Gibbs sampler, they were

suggested by one of the authors (W. Thompson, private

correspondence).

For the fly benchmark, we used the REDfly 2.0 [22] database of

transcription factor binding sites. The ‘‘sites’’ in this database are

often many times longer than the expected length of an individual

binding site, so the most probable binding site needed to be found

bioinformatically. Therefore, we selected a subset of these binding

sequences corresponding to factors for which high-quality position

weight matrices were available from the TRANSFAC 7.0 public

database [40], and used these matrices to find the most probable

(highest log-odds) binding sites within the binding sequences in the

database. (As noted in ‘‘Module prediction’’, we have indepen-

dently constructed position weight matrices for a much larger set

of factors from the Flyreg [38] database, which formed the basis

for REDfly’s binding site database, using PhyloGibbs-MP. But for

the purposes of this benchmark, we prefer to use matrices of a

‘‘neutral’’ origin.)

The specific factors chosen from the TRANSFAC database

were Abd-B, Adf1, Cf2, Dfd, Eip74EF, Stat92E, Su(H), Ubx, bcd,

dl, ftz, hb, ovo, pan, sna, z. Binding sites located less than 200 bp

apart were clubbed together; then surrounding sequence was

selected, such that the total length of the sequence was 250 bp per

binding site, to a maximum of 2000 bp.

In addition to the programs benchmarked on the yeast data, we

wanted to include PhyloCon [23], a somewhat different category

of motif-finder that requires multiple input sequences, each with its

own orthologous sequences, and expects one site per input

sequence. We therefore chose only a subset of the above factors for

which, after the above process, multiple binding sequences were

available for each factor. These were Adf1, Cf2, Stat92E, Su(H),

Ubx, bcd, dl, ftz, hb, ovo, and sna.

Orthologous sequence was identified in D. yakuba, D. erecta and

D. simulans using multiple sequence alignments from VN Iyer, DA

Pollard and MB Eisen (personal communication), but were re-

aligned using Sigma.

Discriminative Motif-Finding
For the synthetic-sequence benchmark, 200 sets of input files

were generated. Each set consisted of two files; each file contained

five sequences. These sequences were generated from a single

ancestor, containing five copies each of two embedded motifs, and

evolved according to the evolutionary model assumed by

PhyloGibbs, with q = 0.5 and no indels. (As in the evolutionary

model, embedded sites, when mutated, were re-sampled from the

weight matrix that described them.) Three motifs were used for

each set, where one was common to both files in the set and one

each was unique to each file in the set. The motifs were random

weight matrices with a ‘‘polarisation’’ (maximum element in each

column) of 0.85 (with the remaining weights 0.05 each). The

PhyloGibbs-MP
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performance of PhyloGibbs-MP (with different settings of the

‘‘discriminative parameter’’ -d), ALSE, DEME and Dips in

detecting the common, and the discriminative, motifs was

measured.

For the yeast motif-finding benchmarks, 571 pairs of genes were

chosen such that the pairs had no documented binding sites in

SCPD from a common transcription factor. As in the motif-finding

case, orthologous sequence from the four other sensu stricto species

was used. PhyloGibbs-MP was run in discriminative mode (-d 0.4),

and performance in detecting known sites was compared with

ALSE, DEME and Dips.

For the fly benchmarks, we used the REDfly data used in the

motif-finding example, but removed the PhyloCon-imposed

requirement of multiple sequence sets per transcription factor

(allowing both single and multiple sequences per set). We ended

with 1404 pairs of sequence sets in which each member of a pair

was associated with a different factor. As in the motif-finding

benchmark, orthologous sequence from D. yakuba, D. erecta, and D.

simulans was used. Similarly to the yeast case, the four

discriminative programs were run.

For the yeast ChIP-chip benchmarks, we used the spreadsheet

Harbison_Gordon_yeast_v9.11.csv from the supplementary data

of Harbison et al. [31] to extract transcription factors that bind to

between 4 and 9 regulatory sequences, both in rich medium and in

at least one other environmental condition, with a p-value better

than 0.001; and for each factor we retrieved the sequences it

bound to. We used intergenic sequence upstream of the regulated

gene, to a maximum of 1000 bp, as in the SCPD benchmarks. 17

such factors were found, of which 15 included motifs reported in

their supplementary data file Final_InTableS2_v24.motifs.

Figure 7 lists these factors, and sequence logos constructed from

the motifs listed in that file.

For each factor, also, if it was reported to bind to n sequences

(4#n#9), we selected n sequences at random to which it was not

reported to bind, to a p-value of 0.01 or less. These were used as the

‘‘negative’’ set. Orthologous sequence from sensu stricto species were

included, aligned for PhyloGibbs-MP with Sigma version 1.1.3 (as

in other benchmarks). In the case of PhyloGibbs-MP, predictions in

the negative set were discarded (PhyloGibbs-MP does not

distinguish between positive and negative sets), and only predictions

from the positive set that arose from multiple tracked windows, at

least one of which had a tracking score better than 0.2, were

considered. The other programs reported at most one motif each for

the positive set, and each such prediction was considered.

All input and output files, and detailed commandlines, are

available at http://www.imsc.res.in/,rsidd/phylogibbs-mp/

supporting-data/.

CRM Prediction
CRMs documented in the REDfly [33] database were chosen,

that were under 3000 bp long. Surrounding sequence was

included to bring the total length of the sequence to 10000 bp.

If two CRMs lay within 15000 bp of each other, the associated

sequence was fused into a single sequence. In this way, 234 CRM-

containing sequences were identified in D. melanogaster. Ortholo-

gous sequence was selected from D. pseudoobscura, D. yakuba, and D.

simulans. Orthology identification was made using multiple

sequence alignments from VN Iyer, DA Pollard and MB Eisen

(personal communication). The sequences were re-aligned with

Sigma 1.1.3. PhyloGibbs-MP was run without priors and with

priors constructed from the FlyReg database [38] (see below).

Stubb (version 2.1) and Cluster-Buster were run using the FlyReg

priors. Cis-Module requires no priors. EMC-Module requires a

prior set of known binding sites, so the FlyReg priors were used to

predict these sites (sites with a log-odds larger than 7 were

included, and the specified width of sites was 8). PhyloGibbs-MP

was run with 1, 2 (melanogaster and yakuba) or all 4 input sequences,

aligned with Sigma 1.1.3; Stubb was run with 2 input sequences,

melanogaster and yakuba. Other programs were run on melanogaster

alone.

All input and output files, and detailed commandlines,

are available at http://www.imsc.res.in/,rsidd/phylogibbs-mp/

supporting-data/.

Construction of Prior Weight Matrices
The FlyReg [38] database of DNAse I footprints in D.

melanogaster was used. Only those TFs were considered for which

two or more footprints were available. For each footprint,

orthologous sequence was extracted for D. pseudoobscura, D. yakuba,

D. simulans, D. erecta, and D. ananassae using multiple sequence

alignments from VN Iyer, DA Pollard and MB Eisen (personal

communication). Thus, where N footprints may have been

available in FlyReg, up to 6N sequences were used including

orthologous sequences. The command-line for PhyloGibbs-MP

was chosen via a heuristic depending on the number and lengths of

footprints. The detailed commandlines and output files, and the

generated weight matrices, are available at http://www.imsc.res.

in/,rsidd/phylogibbs-mp/supporting-data/.
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