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Abstract

Cellular interactions are subject to random fluctuations (noise) in quantities of interacting molecules. Noise presents a major
challenge for the robust function of natural and engineered cellular networks. Past studies have analyzed how noise is
regulated at the intracellular level. Cell–cell communication, however, may provide a complementary strategy to achieve
robust gene expression by enabling the coupling of a cell with its environment and other cells. To gain insight into this
issue, we have examined noise regulation by quorum sensing (QS), a mechanism by which many bacteria communicate
through production and sensing of small diffusible signals. Using a stochastic model, we analyze a minimal QS motif in
Gram-negative bacteria. Our analysis shows that diffusion of the QS signal, together with fast turnover of its transcriptional
regulator, attenuates low-frequency components of extrinsic noise. We term this unique mechanism ‘‘diffusional
dissipation’’ to emphasize the importance of fast signal turnover (or dissipation) by diffusion. We further show that this
noise attenuation is a property of a more generic regulatory motif, of which QS is an implementation. Our results suggest
that, in a QS system, an unstable transcriptional regulator may be favored for regulating expression of costly proteins that
generate public goods.
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Introduction

Cellular processes are subject to random fluctuations (or noise)

in quantities of interacting molecules. Cells may take advantage of

noise to achieve diverse functions [1,2]. In a mechanism called

stochastic resonance, noise may improve detection of weak

periodic input signals [3], whereas stochastic focusing may turn

a gradual response into a threshold-like response [4]. Also, noise is

often exploited to initiate cell differentiation or phenotypic

switching. A classical example is the lysis-lysogeny decision in

phage l development, where noise is necessary to trigger the

decision [5]. Similarly, noise is implicated in the competence

development of Bacillus subtilis [6].

However, noise often presents a major challenge for reliable

cellular function. To this end, cells use specific biochemical

networks or motifs to minimize deleterious effects of noise [1,7].

For instance, reducing translation burst rates (number of proteins

synthesized per transcript) attenuates noise in gene expression [8].

Based on this observation, it has been argued that evolution tends

to favor noise reduction in essential genes as they appear to have

smaller burst rates compared with non-essential genes in yeast [9].

Also, several regulatory motifs have been found to be effective in

reducing noise. Negative feedback reduces noise by shifting the

noise spectrum to a higher frequency region [10–12]. Ultrasen-

sitive switches and feedforward loops are able to attenuate noise in

input signals [13,14].

These noise regulation mechanisms all operate at the intracel-

lular level. At the population level, cell–cell communication may

play an important role in achieving robust gene expression

dynamics. For example, it has been shown to be important for the

proper function of many rhythmic processes in physiology [15,16].

Intuitively, intracellular noise, which primarily originates from the

stochastic nature of chemical reactions of interacting species and

fluctuations in cellular conditions, may be reduced when a

population of cells carries out their function cooperatively.

In bacteria, cell–cell communication can be established by

quorum sensing (QS), a mechanism by which many bacteria

broadcast and sense their density [17–19]. A canonical QS system

is the lux system from the marine bacterium Vibrio fischeri

(Figure 1A). This system consists of two genes encoding proteins

LuxI and LuxR. LuxI is an AHL (acyl homoserine lactone)

synthase; LuxR is a transcriptional regulator activated by the

AHL. The AHL signal is produced inside the cell but freely

diffuses across the cell membrane into the environment: therefore,

the AHL concentration is low at a low cell density. As the cell

density increases, the signal accumulates in the environment and

inside the cell. At sufficiently high concentrations, AHL can bind

to and activate LuxR, which will then activate downstream genes.

Lux-type QS systems are common in gram negative bacteria

[18,20], and they are critical for regulating diverse physiological

functions, such as bioluminescence, biofilm formation, and

bacterial pathogenicity [18,20,21].

In this study, we use mathematical modeling to analyze noise

regulation in QS-mediated gene expression. Recently, stochastic

simulations of QS-mediated dynamics have been carried out for

Vibrio fischeri [22] and Agrobacterium tumefaciens [23]. These studies
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have provided insights into dynamics of QS-regulated gene

expression coupled with positive feedback regulation and popu-

lation dynamics. In contrast, however, we have focused on a

minimal QS motif without feedback regulation, in order to dissect

the contribution of QS per se to noise regulation. Also, it should be

noted that not all QS systems have feedback regulation. For

instance, Ravn et al identified that production of 3-Oxo-hexanoyl-

homoserin lactone (OHHL, one type of AHL signal) in Serratia

proteamaculans (SprI/R system) and Erwinia carotovora (CarI/R or

ExpI/R system; both CarI and ExpI produce OHHL) is

approximately constitutive [24].

We find that QS can serve as an effective noise-reduction

mechanism. In particular, diffusion of the QS signal and fast decay

of the transcriptional regulator can reduce noise by synergistically

attenuating low-frequency components of extrinsic noise. We term

this noise reduction mechanism ‘‘diffusional dissipation,’’ as its

defining feature is fast dissipation of signal molecules through

diffusion. Further analysis indicates that this noise attenuation is

the result of a more generic regulatory motif—bimolecular

interaction—of which QS is an implementation. Our results

further suggest a connection between QS-regulated functions and

the decay of the QS transcriptional regulator. An unstable

transcriptional regulator may be favored for regulating expression

of costly proteins that generate public goods, as QS-mediated

noise reduction in the target protein can increase the average

population fitness, thus providing a selection advantage.

Results

Model Development
To analyze noise regulation by QS, we develop a simple kinetic

model (Materials and Methods and Text S1) to account for the

reactions illustrated in Figure 1A. In order to isolate and examine the

role of the communication feature of the QS system per se, we omit

additional feedback regulation of signal synthesis. Briefly, we assume

constitutive production of the QS signal (A) and the LuxR protein

(R), which interact to form a complex (C). The complex further forms

homodimers to activate a target gene (X) controlled by the lux

promoter. We omit the dimerization process and focused on the

fluctuations of the complex at steady state, although incorporation of

the dimerization does not seem to change our conclusion (Figure S1).

Also, to simplify analysis and to gain deeper insight, we focus on a

single cell that is coupled with its extracellular environment by signal

production, diffusion, and detection. Numerical simulations indicate

that noise regulation by multiple cells (coupled by QS) is similar to

that by a single cell (Figure S2).

In this model, we consider two types of noise sources: (1)

intrinsic noise source, which arises from the stochastic nature of

chemical reactions in the QS system (Table S1); and (2) extrinsic

noise source, which originates from fluctuations in cellular

machinery outside the QS system (Materials and Methods). While

its exact origin remains unclear, extrinsic noise is a major

component of the total noise in bacterial systems [25–27].

Intuitively, we can consider QS system as a signal processing

module that takes noise sources as inputs and transmits them to C

as noise (Figure 1B).

Diffusion Reduces Extrinsic Noise
We first examine the effect of diffusion on noise in C by varying

the diffusion rate constant (P) from 0 (no diffusion) to

2610211 L min21. The diffusion rate constants of glucose and

lactose through the outer membrane of wild type E. coli have been

experimentally estimated to be 3.6610212 and 1.8610213 L min21,

Figure 1. QS system. (A) A minimal QS motif. AHL and LuxR are produced at constant rates inside the cell. AHL can diffuse across the cell
membrane. At sufficiently high concentrations, the intracellular AHL binds to and activates LuxR. The active LuxR (the complex) further dimerizes and
activates a downstream gene (X) controlled by the Plux promoter. Many natural QS systems share this common motif. (B) Noise processing by QS.
Noise sources can be considered as inputs to the system. A QS motif processes the noise sources and results in noise in C as an output.
doi:10.1371/journal.pcbi.1000167.g001

Author Summary

Quorum sensing (QS) is a mechanism by which many
bacteria regulate gene expression via the synthesis and
detection of small, diffusible signals. Since its discovery, QS
has been shown to control diverse physiological functions
in numerous types of bacteria. It provides an elegant
strategy for bacteria to sense their density and to achieve
coordinated population behavior. By stochastic modeling,
we show that QS can effectively reduce variability (‘‘noise’’)
in the expression of its target genes. Surprisingly, the noise
reduction does not significantly depend on the number of
bacteria but rather results from the coupling of a
bacterium and its environment through signal diffusion.
Diffusion enables fast signal turnover, which, together with
fast intracellular turnover of the cognate receptor of the
signal, leads to noise reduction. Our work suggests a
unique role of QS in achieving robust gene regulation,
which is distinct from noise-regulation mechanisms that
act at the intracellular level. As such, it offers novel insights
into evolution of QS as well as its application in
construction of synthetic gene circuits.

Noise Reduction by Diffusional Dissipation
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respectively [28]. Also, the diffusion rate constants of sugars show

a strong dependence on their molecular weights [28]. Although

AHL is not a member of the sugar group, we first apply the same

dependence on AHL to obtain an estimate of its diffusion rate

constant. Accordingly, 3-oxo-hexanoyl-homoserine lactone

(3OC6HSL), the AHL signal produced by Vibrio fischeri, is estimated

to be ,2610212 L min21. Different QS modules may use different

AHLs that have different diffusion rate constants. Thus we set the

fastest diffusion rate constant as 2610211 L min21, which is 10-fold

larger than the estimated value. We then modulate the production

rate constant of A to ‘‘balance’’ changes in the diffusion rate constant,

in order to maintain the same steady-state level of C. By doing so, we

aim to reveal noise modulation in C due to different diffusion rate

constants that is otherwise masked by changes in average protein

levels.

Figure 2A demonstrates that the presence of diffusion drastically

reduces total noise in C g2
T

� �
. This reduction increases with an

increasing diffusion rate constant: g2
T is reduced by 90% as the

diffusion rate constant increases from 0 to 2610213 L min21

(numeric simulation shows ,80% reduction. See Materials and

Methods and Text S1 for more discussion). The reduction of total

noise is evident in time courses of C for the two cases (Figure 2B,

inset). Decomposition of the total noise reveals that this noise

reduction is primarily due to reduction of the extrinsic noise

(Figure 2A). The intrinsic noise in C g2
I

� �
actually increases slightly

(,0.2%) for the same changes in the diffusion rate constant. Close

inspection of g2
I indicates that some intrinsic noise sources increase

but the others decrease (g2
I is a sum of contributions of intrinsic

noise sources from different reactions) with increasing diffusion

rate constants (Figure S3).

Frequency analysis provides further insights into the noise

reduction mechanism. The transfer function of the extrinsic noise

source (|Hj(f)|, Materials and Methods) shows that the extrinsic

noise becomes band-limited by the QS system. With diffusion

(P = 2610213 L min21), the gain of low-frequency components

(f,0.02 min21) decreases by about 8-fold (Figure 2B). There is a

slight but negligible increase in the gain of high-frequency

components (f.7.9 min21). In essence, diffusion effectively

reduces extrinsic noise by reducing the transmission of fluctuating

signals (including noise) in the low-frequency domain.

Fast R Decay Reduces Extrinsic Noise
In a lux-type QS system, the R protein is often highly unstable in

the absence of its cognate signal [29–31]. It is seemingly a waste of

energy for bacteria because a faster R decay rate constant would

require faster production to maintain the same R level, everything

else being equal. Here we investigate whether the noise may be

affected by different R decay rate constants (cR). Again, the

steady-state level of C was maintained by modulating the

production of R.

We find that faster R decay results in much more reduction in

the extrinsic noise of C than in its intrinsic noise in the presence of

diffusion (Figure 3A). For P = 2610213 L min21, g2
T decreases by

more than 80% when cR varies from 0.02 to 2 min21 (solid black

line). However, the noise reduction becomes negligible (,2%) in

the absence of diffusion (dotted black line). This result indicates a

synergistic coupling between signal diffusion and faster decay of R

in reducing cellular noise. That is, the noise reduction by increased

cR is enhanced by larger P and vice versa. In contrast, intrinsic

noise is not significantly affected (,1%) with or without diffusion

(red solid or dotted line).

Again, we examine how the transfer function of the extrinsic noise

is affected by increasing cR. |Hj(f)| shows the similar tendency to the

case of diffusion (Figure 3B). In the presence of diffusion, fast R decay

(cR = 2 min21) reduces the gain of low-frequency components by

,20-fold compared with the case with slow R decay (cR =

0.02 min21). Similar to fast diffusion (Figure 2B), fast R decay

causes slight but negligible increase in the gain of high-frequency

noise components (f.0.16 min21, Figure 3B).

QS as an Implementation of a More Generic Regulatory
Motif

As shown in Figures 2B and 3B, the behavior of the low

frequency component plays an important role in extrinsic noise

attenuation. This characteristic can be captured by a simpler

system (Figure 4A) when P=Ve%cAe
by treating the export of Ai by

diffusion as effective decay (Text S1). This simplification makes

intuitive sense as fast signal diffusion and fast decay of R would

have the same qualitative consequence: they both increase the

turnover of the corresponding cellular component. We set a new

decay rate constant of A, c0A~cAi
z P=Við Þ while maintaining the

Figure 2. Diffusion reduces the output noise by reducing the extrinsic noise component. (A) Diffusion drastically reduces the total noise
(black) by primarily attenuating the extrinsic noise (blue) without significantly affecting the intrinsic noise (red). Circles represent levels of total (black),
extrinsic (blue) and intrinsic (red) noise without diffusion. (B) Diffusion significantly reduces the gain of the low-frequency extrinsic noise components
transmitted to the complex. P = 2610213 L min21 for the with-diffusion case. Inset: The corresponding time courses of the complex without diffusion
(black) and with diffusion (red). Numerical simulation is implemented using the fixed time step 4th order Runge-Kutta method [56] for the
deterministic terms and Euler-Maruyama method for the stochastic terms.
doi:10.1371/journal.pcbi.1000167.g002

Noise Reduction by Diffusional Dissipation
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steady state of each molecule the same as before the simplification

by modulating the production rate constant of A (other parameters

remain the same). As expected, fast turnover of A and R, which

corresponds to fast dissipation of A and R, synergistically reduces

extrinsic noise in C when the condition is satisfied (Figure 4B,

P,2610214 L min21). Also, we show analytically that the DC

component (or the low-frequency components whose behavior can

be approximated by the DC component) of the transfer function of

extrinsic noise sources decreases monotonically as the turnover of

A and R becomes faster (Text S1). Interestingly, even when the

condition is not satisfied (P.2610214 L min21), g2
T differs by less

than 3% from the original model (data not shown). Therefore, in

this framework, the QS system can be considered as a special case

of a structurally symmetric regulatory motif.

Figure 3. Fast R decay reduces the extrinsic noise in the presence of fast signal diffusion. (A) With diffusion (P = 2610213 L min21), faster
R decay drastically reduces total noise (black line) by decreasing the extrinsic noise (blue line) without significantly affecting the intrinsic noise (red
line). Without diffusion, faster R decay has little effect on either the intrinsic or the extrinsic noise (dotted lines). (B) Fast R decay significantly reduces
the gain of low-frequency extrinsic noise components transmitted to the complex in the presence of diffusion. For these calculations,
P = 2610213 L min21, cR = 0.02 min21 for slow R decay, and 2 min21 for fast R decay.
doi:10.1371/journal.pcbi.1000167.g003

Figure 4. The QS module represents an implementation of a more general regulatory motif. (A) This motif entails constant production
and decay of A and R, which bind reversibly to form C, the system output. Fast signal diffusion in the QS system corresponds to a fast turnover in A.
(B) Assuming identical extrinsic noise inputs into A, R and C, faster turnover in A and R synergistically reduces the extrinsic noise in C. (C) If only R is
directly affected by the extrinsic noise, faster turnover in A results in a slight increase in the extrinsic noise in C.
doi:10.1371/journal.pcbi.1000167.g004

Noise Reduction by Diffusional Dissipation
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Parameter Dependence
Overall, our results are insensitive to variations in the base

parameters, except for those that characterize extrinsic noise sources

(Text S1 and Figure S4). We have so far assumed that different

extrinsic noise sources were fully correlated and identical for all

species (Ai (or A in the simplified model), R and C). However, this

assumption may not always hold in a real system. In an extreme case,

when the extrinsic noise completely arises from R, increasing

turnover of A results in an increase in the extrinsic noise in C

(Figure 4C). In fact, faster turnover of A increases extrinsic noise

originating from R while that of R reduces it. Thus, if turnover of

both molecules becomes fast enough, we still see a significant noise

reduction in C (Figure 4C, from lower left corner to upper right

corner). The opposite is also true: faster turnover of R increases

extrinsic noise from A while that of A reduces it (data not shown). As

actual magnitudes of extrinsic noise sources to each species are

unclear, we cannot exclude the possibility of unbalanced extrinsic

noise sources exemplified above. However, the framework of our

analysis is still able to account for these alternative scenarios.

In this study, we have assumed the extrinsic noise sources to be

white. This assumption may appear at odds with experimental

observations, which suggest that extrinsic noise is band-limited by cell

division [25]. However, according to our results, QS-mediated

reduction of the extrinsic noise happens for low-frequency compo-

nents. As such, assuming band-limited extrinsic noise sources will not

change our conclusions. We have also assumed perfect correlation

between the extrinsic noise sources. For arbitrary correlation, we

examine 10,000 randomly generated combinations of correlations

and find that ,95% of them exhibit the synergistic noise reduction in

C by fast diffusion and R decay (Text S1 and Figure S5).

Discussion

Extensive studies have been carried out to define characteristics

of noise generation [8,26,32–36], propagation [13,25,27,37], and

regulation (negative feedback [10–12], ultrasensitivity [13], and

feedforward loop [14]). Complementary to those mechanisms that

operate at the intracellular level, quorum sensing may serve as an

additional layer of control for regulating robust cell behavior. On

one hand, it may facilitate synchronization of complex dynamics

generated by otherwise independent circuits in a population of

cells [38–40], or enable generation of coherent population

dynamics by integration of cell populations [41–44]. On the

other, it may directly modulate the noise characteristics in

individual cells. To this end, Cox et al analyzed stochastic

dynamics of QS in V. fischeri in two aspects: the role of positive

feedback and the modulation of noise frequencies by reversible

reactions [22]. By analyzing a minimal QS motif without feedback

regulation, our study aims to expose the contribution to noise

reduction by communication per se. To simplify analysis, we focus

on noise reduction in the complex (C), which, upon dimerization,

leads to activation of downstream genes. We find that fast diffusion

and fast R decay can synergistically reduce the extrinsic noise in C

but has relatively little impact on its intrinsic noise. The noise

reduction is achieved by decreasing the gain of low-frequency

fluctuations in the extrinsic noise.

Importantly, our analysis reveals that QS is a unique

mechanism to attenuate extrinsic noise, which we call diffusional

dissipation to underscore the importance of the signal and the R

protein turnover. The term ‘‘diffusional’’ reflects fast signal

turnover achieved by diffusion, a defining feature of AHL-based

QS. Moreover, our analysis suggests that QS is an implementation

of a more generic regulatory motif (Figure 4) in which the fast

dissipation of two species (A and R), which together form a

heterodimer (C), reduces extrinsic noise by suppressing low

frequency components (Text S1); the signal diffusion in QS is a

specific implementation to increase effective signal dissipation.

The importance of A and R turnover also explains the

counterintuitive observation that noise reduction by multiple cells

(coupled by QS) is similar to that by a single cell (Figure S2).

Although the coupling of a cell with its environment via diffusion

effectively speeds up Ai turnover, further coupling with other cells

does not significantly affect turnover of either Ai or R. Also,

although coupling among multiple cells reduces noise of

extracellular AHL (Ae) by increasing the total number of molecules,

this reduction is unlikely to impact downstream gene expression, as

the noise in Ae is already much smaller than that in other species

even for a single cell (Figure S2).

How does the noise reduction in C affect downstream gene

expression? In general, unbranched gene expression machinery (e.g.,

linear cascade) works as a low-pass filter whose critical frequency is

largely determined by the decay rate constant of the output protein

[11,45]. Thus, high-frequency fluctuations in C will be filtered out by

downstream genes. This makes modulation of low-frequency

fluctuations in C particularly relevant. In fact, only reduction in

low-frequency fluctuations can effectively affect downstream gene

expression. Also, given that dimerization of C confers cooperativity

to the downstream gene expression, fluctuation of C around the

intermediate level could have a significant effect on gene expression

[27]. As extrinsic noise often dominates total noise in gene expression

[25,26], noise reduction in C can thus effectively attenuate noise in

downstream gene expression.

In a lux-type QS system, an R protein is often highly unstable in

the absence of its cognate signal [29–31]. Fast R protein turnover

may prevent premature activation of QS genes [46] or improve

fidelity in recognizing the cognate signal (Smith, Song, and You,

Signal discrimination by differential regulation of protein stability

in quorum sensing, submitted). Our results suggest yet another

scenario: this apparently wasteful process may facilitate reduction

of extrinsic noise in the QS-regulated gene expression. However,

under what conditions is reduction of extrinsic noise beneficial to

cells? We note that QS often controls functions costly to individual

but beneficial to the population. Examples include secretion of

exoenzymes [47–49], production of antibiotics and exotoxins

[18,21], as well as bioluminescence [50]. In these scenarios, the

benefit of the effector to an individual cell is determined by its total

level in the population, whereas its cost to each cell solely depends

on its expression rate in the cell. Therefore, noise in effector

expression can lead to significant variations in the division rates of

individual cells. If the cost of the effector increases with its level

more than linearly, mathematical analysis indicates that reduction

in the effector noise can increase the average fitness of the

population (Figure S6). That is, in cooperative production of a

common good, noise attenuation by QS might provide an intrinsic

mechanism to resist decline of average population fitness and

invasion of cheaters. In contrast, not all QS-regulated functions

may benefit from noise reduction. However, as signal diffusion is

essential for communication, noise reduction originating from fast

turnover of the signal appears to be an indivisible side effect of QS

systems. Again, it is worth emphasizing the noise modulation by

the stability of R proteins. It would be interesting to explore a

potential connection between the stability of R proteins and QS-

regulated functions in the context of noise regulation.

Materials and Methods

As detailed in Text S1, we model the system using the following

coupled stochastic differential equations:

Noise Reduction by Diffusional Dissipation
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dAi

dt
~kA{cAi

Ai{kC1AiRzkC2C{P
Ai

Vi

{
Ae

Ve

� �

z
X
‘

fAi ,‘zjAi

dAe

dt
~{cAe

Ae{P
Ae

Ve

{
Ai

Vi

� �
z
X
‘

fAe,‘

dR

dt
~kR{cRR{kC1AiRzkC2Cz

X
‘

fR,‘zjR

dC

dt
~{cCCzkC1AiR{kC2Cz

X
‘

fC,‘zjC

ð1Þ

where Ai, Ae, R, and C are numbers of the intracellular signal, the

extracellular signal, the R protein, and the complex, respectively;

cAi
,cAe

,cR, and cC are their decay rate constants; kA and kR are

production rate constants of Ai and R; P is diffusion rate constant

of the signal across the cell membrane; Ve is the average

extracellular volume per cell; and Vi is an intracellular volume.

Parameters for the base case are either obtained or estimated from

literature (Table S2). fAi ,‘, fAe,‘, fR,‘ and fC,, denote intrinsic noise

sources affecting respective species with the index , specifying the

reaction from which noise originates (Table S1). jA, jB, and jC

denote extrinsic noise sources. Each intrinsic noise source is

implemented as a multiplicative noise term whose magnitude

depends on the instantaneous rate of the corresponding reaction.

Each extrinsic noise source is additive and its magnitude is fixed

(see Text S1 for details). Because we consider the extrinsic noise

sources as fluctuations in intracellular machinery that influence the

QS system, the equation for Ae does not contain a j term.

We assume that extrinsic noise sources are fully correlated with

the same magnitude jAi
~jR~jC~j

� �
and their spectra are

white. In reality, these extrinsic noise terms may be less correlated

despite the fact that fluctuations in protein degradation machinery,

intracellular pH or stochasticity in growth and cell division rates

likely have global effects on all intracellular molecules. For

instance, Ai is produced by an enzymatic reaction mediated by

LuxI, so extrinsic noise sources for Ai may encompass fluctuations

in LuxI or its substrate whereas those for R are possibly

fluctuations in mRNA, RNA polymerase or ribosome (note that

while extrinsic noise sources may be complex in reality, we use a

lumped parameter, jm, to represent such possibly complex effect).

Also, extrinsic noise sources may be rather band limited than white

[25,51]. We shall discuss the consequence of relaxing these

simplifying assumptions in Discussion.

The system is monostable in the deterministic domain and does

not exhibit noise-induced bistability (Text S1 and Figure S8) as

observed in some other systems [52]. We are interested in the

fluctuation of C around its steady state. To obtain the steady-state

fluctuation, we first linearize the equations (Equation 1) and calculate

the power spectral density (PSD) of noise in each species by solving

them in the Fourier domain. The PSD of the noise in C (S(f)) is:

S fð Þ~
X
‘

Hf
‘ fð Þ

��� ���2Sf
‘ fð Þz Hj fð Þ

�� ��2Sj fð Þ,

where f is frequency; Sf
‘ and Sj are PSD of intrinsic and extrinsic

noise sources contributing to noise in C; Hf
‘ and Hj are transfer

functions of corresponding noise sources and they are inherent

properties of the reaction network. Each noise source is individually

processed by its corresponding transfer function, and transmitted to

C (Figure 1B). In other words, each transfer function shows how the

corresponding noise source is modulated in the frequency domain.

According to Plancherel’s theorem, integration of the PSD (S(f)) over

the entire frequencies allows us to calculate variance of each species

in the temporal domain [53]. The Langevin approach enables us to

relate intrinsic and extrinsic noise in species of interest as following

[27]:

g2
T~g2

I zg2
E,

where g2
T, g2

I , and g2
E are total noise, intrinsic noise, and extrinsic

noise, respectively.

Our analytical approach is based on the linearization of the

system. The underlying assumption of linearization is that the

noise is small enough so that the distribution of each molecule is

sufficiently tight around the point of the linearization (correspond-

ing to its steady state in a deterministic model). To test this

assumption, we perform numerical simulations with the base

parameter set and different diffusion rate constants and R decay

rate constants (Figure S7 and Figure S8). We find that the

linearization is valid for all cases except for P = 0 L min21 (no

diffusion). In this case, the distribution of C becomes wide and

skewed, resulting in deviation from the small-noise regime and a

discrepancy between its average and the corresponding determin-

istic steady state level (Figure S8). However, our analytical

approach overall captures the qualitative trend of g2
T (including

the synergistic effect of diffusion and R decay; not shown).

When only considering the intrinsic noise, we also note that the

Langevin approach can recover the same PSD and related

statistics as the chemical master equation approach for linear or

linearized systems even when numbers of interacting molecules are

small, as long as linearization can be justified [54]. Extrinsic noise

sources cannot be implemented in master equations unless they

are represented by additional explicit reactions. This is a part of

the reason why we have employed the Langevin approach.

However, when the number of molecules becomes too small, the

assumptions required for accurate linearization may be violated

(Text S1). Also, linearization might overlook possible resonance/

band-pass filtering effects resulting from nonlinearity of the

dimerization reaction [55]. However, our simulation results

obtained from the nonlinear equations (Equation 1) indicate such

nonlinear effects do not seem to be occurring in our system, at

least for the base parameter set with varying P and cR

(0#P#2610211 L min21, 0.02#cR#0.2 min21; not shown).

Supporting Information

Text S1

Found at: doi:10.1371/journal.pcbi.1000167.s001 (0.23 MB PDF)

Figure S1 Impact of the dimerization reaction. Noise and PSD

in D are calculated using the analytical approach with the base

parameter set (Table S2). (A) Extrinsic noise in D for varying P and

cR. Total noise in D shows the same dependence as the extrinsic

noise is dominant (not shown). (B) The gain of extrinsic noise

sources decreases as cR increases (from the black line

(cR = 0.02 min21) to the red line (cR = 2 min21)).

Found at: doi:10.1371/journal.pcbi.1000167.s002 (0.06 MB PDF)

Figure S2 Simulation results of noise in Ai, Ae, R, and C under

different coupling conditions: (1) each cell has its own microen-

vironment (e.g. no coupling). (2) 100 cells are divided into 10

populations each of which contains 10 cells coupled to one

another via their environment, and (3) 100 cells form 1 population

of 100 coupled cells. The conditions are indicated on the x-axis. The

Noise Reduction by Diffusional Dissipation
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simulation is carried out as in Figure 2. Noise is calculated for

individual cell from time course simulations for a span of 1,000 min

(10,000 data points). Noise values shown are the average of 100 cells.

For these calculations, P = 2610213 L min21.

Found at: doi:10.1371/journal.pcbi.1000167.s003 (0.02 MB PDF)

Figure S3 PSD of each intrinsic noise arising from the

corresponding intrinsic noise source (f1, f2, …, f9). P is changed

from 0 (black line) to 2610213 L min21 (blue line). Accordingly, the

PSDs of f1, f3, f4, f7, and f8 increase, while those of the other noise

sources decrease. Note that the PSDs of f5 and f6 are 0 for P = 0.

Found at: doi:10.1371/journal.pcbi.1000167.s004 (0.06 MB PDF)

Figure S4 Qualitative behavior of the system is insensitive to the

parameter values. The base values of kA, kR, cAi, cAe, cR, cC, kC1,

and kC2 are individually decreased or increased by 10-fold (kA is

only increased) and the dependence of noise in C (gT
2: (A), gE

2: (B)

and gI
2: (C)) on P and cR is examined.

Found at: doi:10.1371/journal.pcbi.1000167.s005 (0.21 MB PDF)

Figure S5 The dependence of (A) XA+XR+XC, (B) YAR, (C) YAC,

and (D) YRC on P and cR. As defined in Equation 10 (Text S1),

XA+XR+XC represents the contribution of extrinsic noise sources as

independent entities and determines the basal dependence of gE
2

on the parameters. Ymm9 represents the contribution of correlation

between two extrinsic noise sources, jm and jm9. The base

parameter set (Table S2) is used for calculation.

Found at: doi:10.1371/journal.pcbi.1000167.s006 (0.09 MB PDF)

Figure S6 Cell-cell variability affects population fitness. Popu-

lation fitness is calculated by Monte Carlo simulation with

different levels of cell-cell variability (s). Parameter values are

and n = 10,000, m = 1, l = 0.2, e= 0.02, M = 1.8, and F0 = 1. Note

that when Xi$M or Fi,0, we set Fi = 0.

Found at: doi:10.1371/journal.pcbi.1000167.s007 (0.02 MB PDF)

Figure S7 Representative results of noise and PSDs of C

calculated from numerical simulations (Equation 1). Time series

of C is obtained over a time span of 400,000 min with sampling

frequency of 10 min21. Numerical simulation is implemented as in

Figure 2. (A) The square of the total noise in C (gT
2) is calculated

from the time series (red dots). The blue line indicates gT
2

calculated by the analytical approach. For these calculations,

cR = 0.2 min21. (B) The PSDs are calculated by taking absolute

values of fast Fourier transformation of the time series. For these

calculations, P = 2610213 L min21, cR = 0.02 (blue), 0.2 (green),

or 2 min21 (red). The black lines indicate PSD calculated by the

analytical approach.

Found at: doi:10.1371/journal.pcbi.1000167.s008 (0.06 MB PDF)

Figure S8 Simulated histograms of C using Equation 1 for

varying P and cR. A red line indicates the steady-state value of C

calculated by the deterministic version of Equation 1, whereas a

yellow line indicates the mean value of the corresponding

distribution. Numerical simulation is implemented as in Figure 2.

Found at: doi:10.1371/journal.pcbi.1000167.s009 (0.52 MB PDF)

Table S1 Noise sources and corresponding reactions.

Found at: doi:10.1371/journal.pcbi.1000167.s010 (0.03 MB PDF)

Table S2 Base parameter values.

Found at: doi:10.1371/journal.pcbi.1000167.s011 (0.05 MB PDF)
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