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Abstract

The cell’s cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the
allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the
limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a
computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent
capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate
of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic
rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited
solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic
model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and
enzyme activities in vivo.
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Introduction

Understanding an organism’s metabolism at a system level and

obtaining quantitative predictions for the different metabolic

variables requires the identification and modeling of the

physicochemical and regulatory constraints that are relevant at

physiological growth conditions. Recently, there has been a surge

of interest on how macromolecular crowding, i.e., the crowding of

the cytoplasm by various molecular components, affects cellular

function, including cell metabolism [1,2].

At the local scale it is well known that molecular crowding

affects the rate of biochemical reactions, diffusion, protein folding

and protein-protein association/dissociation [2,3]. More recently,

we have shown that macromolecular crowding acts also at a global

scale by imposing a limited solvent capacity. Specifically, we have

shown that a flux balance modeling framework that incorporates

the limited solvent capacity is successful in predicting the

maximum growth rate, the sequence of substrate uptake from a

complex medium and, to an extent, the changes in intracellular

flux rates upon varying growth rate of the bacterium, Escherichia coli

[4,5]. Yet, these studies were limited by the absence of a full kinetic

model of E. coli cell metabolism, hindering our ability to investigate

the impact of the solvent capacity constraint on in vivo metabolite

concentrations and enzyme activities.

During cellular metabolism the concentration of enzymes and

metabolites are continuously adjusted in order to achieve specific

metabolic demands. It is highly likely that during evolution global

metabolic regulation has evolved such as to achieve a given

metabolic demand with an optimal use of intracellular resources.

However, the size of enzymes and intermediate metabolites are

dramatically different. Enzymes are macromolecules that occupy a

relatively large amount of space within a cell’s crowded cytoplasm,

while metabolites are much smaller. This implies that metabolite

concentrations are likely to be adjusted to minimize the overall

‘‘enzymatic cost’’ (in terms of space cost).

Here we study the validity of this hypothesis by focusing on the

glycolysis pathway of the yeast, Saccharomyces cerevisiae, for which a

kinetic model is available. We show that the maximum glycolysis

rate determined by the limited solvent capacity is close to the values

measured in vivo. Furthermore, the measured concentration of

intermediate metabolites and enzyme activities of glycolysis are in

agreement with the predicted values necessary to achieve this

maximum glycolysis rate. Taken together these results indicate that

the limited solvent capacity constraint is relevant for S. cerevisiae at

physiological conditions. From the modeling point of view, this work

demonstrates that a full kinetic model together with the limited

solvent capacity constraint can be used to predict not only the

metabolite concentrations, but in vivo enzyme activities as well.

Results
Limited Solvent Capacity Constraint

The cell’s cytoplasm is characterized by a high concentration of

macromolecules [1,2] resulting in a limited solvent capacity for the
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allocation of metabolic enzymes. More precisely, given that

enzyme molecules have a finite molar volume vi only a finite

number of them fit in a given cell volume V. Indeed, if ni is the

number of moles of the ith enzyme, then

XN

i~1
vinizV0~V , ð1Þ

where V0 accounts for the volume of other cell components and

the free volume necessary for cellular transport as well. Equation 1

can be also rewritten as

vspec

XN

i~1
ri~1{Q, ð2Þ

where ri = nimi/V is the enzyme density (enzyme mass/volume), mi

is the molar mass vspec is the specific volume, and w = V0/V is the

fraction of cell volume occupied by cell components other than the

enzymes catalyzing the reactions of the pathway under consider-

ation, including the free volume necessary for diffusion. The

specific volume has been assumed to be constant for all enzymes,

an approximation that has been shown to be realistic at least for

globular proteins [6]. In this new form we can clearly identify the

enzyme density (or mass, given that the volume is constant) as the

enzyme associated variable contributing to the solvent capacity

constraint. This choice is more appropriate than the enzyme

concentration Ci = ni/V (moles/volume) because the specific

volume is approximately constant across enzymes, while the

molar volume can exhibit significant variations. For example,

according to experimental data for several globular proteins [6],

the molar volume exhibits a 70% variation while the specific

volume is almost constant, with a small 2% variation.

The solvent capacity constraint (Equations 1 and 2) thus

imposes a limit to the amount of catalytic units (i.e., enzymes)

that can be allocated in the cell cytoplasm. In the following we

show that this in turn leads to a constraint for the maximum

metabolic rate. The rate of the ith reaction per unit of cell dry

weight (mol/time/mass) is given by

Ri~xiAi~
xikiCi

r
~

xikiri

mir
, ð3Þ

where Ai is the specific enzyme activity, Ci is the enzyme

concentration in molar units, ki is the catalytic constant and M is

the cell mass. The coefficient xi is determined by the specific

kinetic model: it takes values in the range of 0#xi#1, and it is a

function of metabolite concentrations. For example, if the ith

reaction is described by Michaelis-Menten kinetics with one

substrate then xi = Si/(Ki+Si), where Si is the substrate concentra-

tion and Ki is the equilibrium constant. More generally, xi is a

function of the concentration of substrates, products and other

metabolites regulating the enzyme activity. The fact that the

reaction rates are proportional to the enzyme densities (Equa-

tion 3) suggests that the limited solvent capacity constraint

(Equation 2) has an impact on the reaction rates as well. Indeed,

from Equations 2 and 3 we obtain

R~
1{w

PN
i~1 airi

, ð4Þ

where R is the cell metabolic rate (or pathway rate), ri = Ri/R is the

rate of reaction i relative to the metabolic rate, and

ai~
vspecmir

xiki

, ð5Þ

where r = M/V is the cell density. We refer to ai as the crowding

coefficients [4,5], because they quantify the contribution of each

reaction rate to molecular crowding. The crowding coefficient of a

reaction i increases with increasing the enzyme’s molar mass mi

and decreases with increasing catalytic activity ki. It is also a

function of the metabolite concentrations through xi.

Hypothetical Three Metabolites Pathway
To illustrate the impact of the limited solvent capacity

constraint, we first analyze a hypothetical example, in which we

use the relative reaction rates as input parameters, and the

metabolite concentrations are the variables to be optimized. Given

the reaction rates and the ‘‘optimal’’ metabolite concentrations,

the enzyme activities are determined by Equation 3. Finally, the

maximum metabolic rate is computed using Equation 4.

Consider a metabolic pathway consisting of two reversible

reactions converting metabolite M1 into M2 (reaction 1) and M2

into M3 (reaction 2), catalyzed by enzymes e1 and e2, respectively

(Figure 1, inset). The reaction rates per unit of cell mass, R1 and

R2, are modeled by reversible Michaelis-Menten rate equations,

using Equation 3 with

x1~
M1½ �{ M2½ �

�
K1eq

K11z M1½ �zK11 M2½ �=K12
ð6Þ

x2~
M2½ �{ M3½ �

�
K2eq

K22z M2½ �zK22 M3½ �=K23
ð7Þ

where K1eq and K2eq are the equilibrium constants of reaction 1

and 2, respectively, Kim is the Michaelis-Menten constant of

metabolite m in reaction i. From Equations 4 to 7 we finally

obtain

R~

1{w
vspecm1r

k1

K11z M1½ �zK11 M2½ �=K12

M1½ �{ M2½ �=K1eq
r1z

vspecm2r

k2

K22z M2½ �zK22 M3½ �=K23

M2½ �{ M3½ �=K2eq
r2

ð8Þ

Author Summary

The concentration of enzymes and metabolites is contin-
uously adjusted in order to achieve specific metabolic
demands. It is highly likely that during evolution global
metabolic regulation has evolved such as to achieve a
given metabolic demand with an optimal use of intracel-
lular resources. However, the size of enzymes and
intermediate metabolites is dramatically different. En-
zymes are macromolecules that occupy a relatively large
amount of space within a cell’s crowded cytoplasm, while
metabolites are much smaller. This implies that metabolite
concentrations are likely to be adjusted to minimize the
overall ‘‘enzymatic cost’’ (in terms of space cost). In this
work, we explore this hypothesis using Saccharomyces
cerevisiae glycolysis as a case study. Our results indicate
that metabolite concentrations attain optimal values,
minimizing the intracellular space occupied by metabolic
enzymes. And, at these optimal concentrations, glycolysis
achieves the maximum rate given the intracellular volume
fraction occupied by glycolysis enzymes. Taken together
with previous studies for Escherichia coli, our results
indicate that macromolecular crowding is a general
constraint on cell metabolism.

Impact of Limited Solvent Capacity on Metabolism
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For the purpose of illustration, we assume 12Q = 0.01,

vspecm1rk{1
1 ~vspecm2rk{1

2 ~0:5 (mmol/h/min)21 (as suggested

by typical values reported in [5]), all Michaelis constants equal to

1 mM, and fixed pathway ends metabolite concentrations

[M1] = 3 mM and [M2] = 1 mM. Furthermore, mass conservation

for M2 implies that R1 = R2 = R (r1 = r2 = 1) in the steady state,

where R is the pathway rate. When reaction 1 is close to

equilibrium [M2]<[M1]K1eq = 3 mM, the first term in the right

hand side becomes very large, resulting in a small pathway rate

(Figure 1). When reaction 2 is close to equilibrium [M2]<[M3]/

K2eq = 1 mM, the second term in the right hand side becomes very

large, again resulting in a small pathway rate (Figure 1). At an

intermediate [M2]* between these two extremes the pathway rate

achieves its maximum. Therefore, given the solvent capacity

constraint, there is an optimal metabolite concentration resulting

in a maximum pathway rate.

S. cerevisiae Glycolysis
Next, we investigate whether the observation of an optimal

metabolite concentration for maximum pathway rate extrapolates

to a more realistic scenario. For this purpose we use the glycolysis

pathway of the yeast S. cerevisiae (Figure 2A) as a case study.

Glycolysis represents a universal pathway for energy production in

all domains of life. In S. cerevisiae it has been studied extensively

resulting in the description of a rate equation model for each of its

reactions [7,8]. In particular, we consider the kinetic model

developed in [7] (see Methods). To compare our predictions with

experimentally determined values we consider the glycolysis

reaction rates and metabolite concentrations reported in [7] and

the enzyme activities reported in [8].

In analogy with the three metabolites case study (Figure 1), first

we investigate the dependency of the glycolysis rate R, represented

by the glucose uptake, on the concentration of a given metabolite.

In this case we fix all other metabolite concentrations and all

relative reaction rates (reaction rate/glycolysis rate) to their

experimentally determined values. By doing so the predicted

glycolysis rate is an implicit function of the free metabolite

concentration alone, through Equation 4. For example, Figure 2B

displays the maximum metabolic rate R as a function of the

concentration of fructose-6-phosphate (F6P). R is predicted to

achieve a maximum around a F6P concentration of 0.4 mM, close

to its experimentally determined value of 0.5 mM [7] (red triangle

in Figure 2B). Similar conclusions are obtained for D-glyceralde-

hyde-3-phosphate (GAP) (Figure 2C) and glycerone-phosphate

(DHAP) (Figure 2D). This analysis corroborates that there is an

optimal metabolite concentration maximizing R and, more

importantly, that this concentration is very close to the

experimentally determined metabolite concentrations. In all cases

the measured metabolite concentrations are within the range of

50% or more of the maximum glycolysis rate.

To further test the optimal metabolite concentration hypothesis,

we perform a global optimization and simultaneously compute the

optimal concentrations of the glycolysis intermediate metabolites.

In this case we fix the concentrations of external glucose and co-

factors and all relative reaction rates to their experimentally

determined values. By doing so the predicted glycolysis rate is an

implicit function of the glycolysis intermediate metabolite

concentrations, through Equation 4. The optimal intermediate

metabolite concentrations are those maximizing Equation 4.

Figure 3A displays the predicted optimal metabolite concentra-

tions as a function of their experimentally determined values (black

symbols), the line representing a perfect match. The agreement is

remarkably good given the wide range of metabolite concentra-

tions. For phospho-enol-pyruvate (PEP), the predicted value is very

sensitive to the model parameters, as indicated by the wide error

bars. For fructose 1,6-biphosphate (FBP) the predicted value is

smaller by a factor of five than the experimental value, but it is still

within range. Taken together, these results indicate that the

measured concentrations of intermediate metabolites in the S.

cerevisiae glycolysis are close to the predicted optimal values

maximizing the glycolysis rate given the limited solvent capacity

constraint.

Using the optimal intermediate metabolite concentrations we

can make predictions for the enzyme activities as well. Indeed,

from the first equality in Equation 3 it follows that

Ai

R
~

ri

xi

: ð9Þ

The reaction rates relative to the glycolysis rate ri are obtained

from experimental data, while xi are obtained after substituting the

predicted optimal metabolite concentrations on the reaction’s

kinetic models. Figure 3B displays the predicted enzyme activities

(in units of the glycolysis rate) as a function of the experimentally

determined values (black symbols), the line representing a perfect

match. In most cases we obtain a relatively good agreement

between experimentally measured and predicted values, with the

exception of phosphofructokinase (pfk), for which the measured

enzyme activities are significantly overestimated. Of note, for

pyruvate kinase (pk) the predictions are significantly affected by the

model parameters, as indicated by the wide error bars.

The preceding analysis does not exclude the possibility that

other constraints could result in a good agreement as well. To

address this point we consider the more general optimization

objective R = (12Q)/SN
i = 1 (airi)

H, parametrized by the exponent H.

Although this objective is not inspired by a biological intuition, it

allows us to explore other possibilities beyond the original case

H = 1. Figure 3 show our predictions for the case H = 0.1 (red

symbols) and H = 10 (blue symbols), representing a milder and a

stronger dependency with the crowding coefficients ai, respective-
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Figure 1. Hypothetical three metabolite pathway. The inset
shows a hypothetical three metabolite-containing pathway with two
reactions. The main panel displays the pathway rate as a function of the
concentration of the intermediate metabolite. Of note, at an
intermediate metabolite concentration [M2]*, the pathway rate achieves
a maximum. The plot was obtained using the kinetic parameters
indicated in the text.
doi:10.1371/journal.pcbi.1000195.g001
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ly. For H = 0.1, 1.0 and 10 the predicted metabolite concentra-

tions are in good agreement with the experimental values.

Furthermore, when we allow sub-optimal metabolite concentra-

tions resulting in a glycolysis rate below it s maximum our

predictions are also in the range of the experimental values (see

Protocol S1, Table IV). These results indicate that it is sufficient

that the optimization objective is a monotonic decreasing

function of the crowding coefficients. When the latter is satisfied

the metabolite concentrations are up to a great extent constrained

by the kinetic model.

This is not, however, the case for the enzyme activities. For H = 0.1

and the enzymes pfk, tpi and pk, there is a large deviation from the

perfect match line. For H = 10 and the enzymes tpi and pk, there is a

large deviation from the perfect match line as well. Overall, H = 1

gives the better agreement between enzyme activity predictions and

their measured values. In addition, it provides a clear biophysical

interpretation of the solvent capacity constraint (H = 1).

Finally, we use Equation 4 to compute the maximum glycolysis

rate as determined by the limited solvent capacity constraint.

The global optimization predicts the glycolysis rate R = (12Q)
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Figure 2. S. cerevisiae glycolysis. (A) Schematic representation of glycolysis in S. cerevisiae. Metabolites: GLCx, external glucose; GLC, glucose; G6P,
glucose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; DHAP, glycerone phosphate; GAP, D-glyceraldehyde 3-phosphate;
BPG, 1,3-bisphosphoglycerate; and PEP, phospho-enol-pyruvate. Reactions: hxt, glucose transport; hk, hexokinase; pgi, phosphogluco isomerase; pfk,
phospho-fructokinase; ald, fructose 1,6-bisphosphate aldolase; tpi, triosephosphate isomerase; gapdh, D-glyceraldehyde 3-phosphate dehydroge-
nase; lpPEP, reactions from BGP to PEP; pk, pyruvate kinase; and g3pdh, glycerol 3-phosphate dehydrogenase. (B,C,D) Predicted glycolysis rate as a
function of the concentrations of intermediary metabolites in the S. cerevisiae glycolysis pathway (in mM). The experimentally determined metabolite
levels (from [7]) are indicated by the red triangles. The dashed lines indicate the concentration intervals resulting in 50% or more of the maximum
rate.
doi:10.1371/journal.pcbi.1000195.g002

Impact of Limited Solvent Capacity on Metabolism

PLoS Computational Biology | www.ploscompbiol.org 4 October 2008 | Volume 4 | Issue 10 | e1000195



612.5 mmol/min/g dry weight. Taking into account that about

30% [9] of the cell is occupied by cell components excluding

water, that proteins account for ,45% of the dry weight [10],

and that of these glycolytic enzymes account for ,22% [11] of

the protein mass we obtain 12Q,0.03. Therefore, given that

glycolysis enzymes occupy only 3% of the cell volume, we

obtain R,0.38 mmol/min/g dry weight. This prediction is in

very good agreement with the experimentally determined

glycolysis rate of S. cerevisiae, ranging between 0.1 to

0.4 mmol/min/g dry weight [8,12].

Discussion

The successful modeling of cell metabolism requires the

understanding of the physicochemical constraints that are relevant

at physiological growth conditions. In our previous work focusing

on E. coli we have reported results indicating that the limited

solvent capacity is an important constraint on cell metabolism,

especially under nutrient-rich growth conditions [4,5]. Using a flux

balance approach that incorporates this constraint we predicted

the maximum growth rate in different carbon sources [4], the

sequence and mode of substrate uptake and utilization from a

complex medium [4], and the changes in intracellular flux rates

upon varying E. coli cells’ growth rate [5]. More importantly, these

predictions were in good agreement with experimentally deter-

mined values.

Here we have extended the study of the impact of the limited

solvent capacity by (i) considering a different organism (S. cerevisiae),

and (ii) a full kinetic model of glycolysis. Using the full kinetic

model of S. cerevisiae glycolysis, we have demonstrated that the

predicted optimal intermediate metabolite concentrations and

enzyme activites are in good agreement with the corresponding

experimental values. Discrepancies were only observed in

association with two different steps in the glycolysis pathway,

namely the reaction catalyzed by pfk and the reactions between

BPG and PEP. The experimental values measurements from cell

extracts [8] and, except for potential experimental caveats, they

represent phyiological conditions. We thus we believe that the

larger deviations for these enzymes are determined by inconsis-

tencies in the kinetic model equations and/or kinetic model

parameters. Finally, the glycolysis rate achieved at the optimal

metabolite concentrations is in the range of the experimentally

measured values.

From the quantitative modeling point of view our results indicate

that a full kinetic model together with the solvent capacity constraint

can be used to make predictions for the metabolite concentrations

and enzyme activities. Thus, we propose the simultaneous

optimization of intermediate metabolite concentrations, maximizing

the metabolic rate given the solvent capacity, as a method to

computationally predict the concentrations of a metabolic pathway’s

intermediate metabolites and enzyme activities. We have demon-

strated the applicability of this method by computing the

concentration of S. cerevisiae glycolysis intermediate metabolites,

resulting in a good agreement with published data.

The hypothesis that high concentration of macromolecules in

the cell’s cytoplasm imposes a global constraint on the metabolic

capacity of an organism has been studied in the past [13,14,15]. In

most cases [14,15] it has been postulated that there is a bound to

the total enzyme concentration (moles/volume). Yet, -to our

knowledge-, no clear explanation has been provided to support

that choice. In contrast, our starting postulate is an undeniable

physical constraint, the total cell volume (Equation 1). Under this

constraint, the enzyme molar volumes are the primary magnitude

quantifying the enzymatic cost. In turn, since the enzyme-specific

volumes are approximately constant, we can use the enzyme

density (mass/volume) as an alternative measure of enzymatic cost.

This modeling framework has advantages and disadvantages

with respect to more traditional approaches based on dynamical

systems modeling. As an advantage, our method does not require

as input parameters the enzyme activities but rather make

quantitative predictions for them. On the other hand, our method

is based on a steady-state approximation. Therefore, in its present

form, it cannot be used to understand dynamical processes, such as

the observed metabolite concentration oscillations in S. cerevisiae

cells when growing at high glucose concentrations [7].

Methods

Kinetic Model of Glycolysis
We use the S. cerevisiae glycolysis model reported in [7] (see

Protocol S1 for details). The only modification is the extension of
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Figure 3. Correlation between predictions vs. experimental
data. (A) The predicted metabolite concentrations are plotted as a
function of the experimentally determined values (black symbols). The
error bars represent the standard deviations, upon generating 100
random sets of kinetic parameters. The solid line corresponds with the
coincidence of measured and predicted values, indicating a strong
correlation between them. (B) The predicted enzyme activities are
plotted as a function of the experimentally determined values,
measured in units of the glycolysis rate (black symbols). The error bars
represent the standard deviations, upon generating 100 random sets of
kinetic parameters. The solid line corresponds with the coincidence of
measured and predicted values, indicating a strong correlation between
them. In both cases, the red and blue symbols were obtained using the
more general optimization objective R = (12Q)/SN

i = 1 (airi)
H, with H = 0.1

and 10, respectively.
doi:10.1371/journal.pcbi.1000195.g003
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the phsophofructokinase (pfk) kinetic model from an irreversible to

a reversible model.

Catalytic Constants, Cell Density, Specific Volume
The catalytic constants were obtained from experimental

estimates for Saccharomyces carlsbergensis [16], except for glycerol 3-

phosphate dehydrogenase that was obtained from an estimate for

Eidolon helvum [17]. For the cell density we use an estimate reported

for E. coli, r = 0.34 g/ml [18]. The specific volume was estimated

for several proteins using the molar volumes and masses reported

in [6], resulting in average of 0.73 ml/g and standard deviation of

0.02 ml/g. See Protocol S1 for details.

Optimal Metabolite Concentrations
The optimal metabolite concentrations are obtained maximiz-

ing Equation 4 with respect to the free metabolite concentrations.

In the case of Figure 2B–2D, all metabolite concentrations are

fixed to their experimental values, except for the metabolite

indicated by the X-axis. In the case of Figure 3A and 3B, all

intermediate metabolite concentrations are optimized, keeping

fixed the concentration of external glucose and cofactors (ATP,

ADP, AMP, NADH, NAD). In both cases the reaction rates

relative to the glycolysis rate (ri) were taken as input parameters,

using the values reported in [7]. The maximization was performed

using simulated annealing [19].

Parameter Sensitivity
To analyze the sensitivity of our predictions to the model

parameters we have generated random sets of kinetic parameters,

assuming a 10% variation of the fixed metabolite concentrations

and all kinetic constants except for the catalytic activities. For the

latter we assumed a larger variation of 50%, because they were

estimated from a different organism. For each set of parameters we

make predictions for the metabolite concentrations and enzyme

activities. Figure 3 reports the mean values and standard

deviations.

Supporting Information

Protocol S1 Details on the rate equation model used, the

utilized model parameters, and the glycolysis rate and optimal

metabolite concentrations.

Found at: doi:10.1371/journal.pcbi.1000195.s001 (0.10 MB PDF)
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