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Abstract

Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from
infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which
immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to
regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore,
as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set
of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be
completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting
optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that
allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of
epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with
the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible
formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common
immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a
set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective
function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a
previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.
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Introduction

The development of vaccines and their subsequent large-scale

prophylactic use was undoubtedly one of the most important

developments in medicine. Vaccines make use of the adaptive part

of the human immune system to protect from future infections

(e.g., prophylactic vaccines used against viruses) as well as to fight

chronic diseases and cancer.

Cellular adaptive immunity is, at its core, triggered by the

recognition of immunogenic peptides bound to MHC class I

(MHC I) and II molecules by T-cell receptors located on the

surface of T cells. These peptides are derived from antigens, i.e.,

proteins that can cause an immune response, as a result of rather

complex antigen processing pathways in vivo. Peptides capable of

causing such an immune response are called epitopes and

represent the smallest subunits that may be used therapeutically.

There are numerous options for constructing a vaccine once a

set of potential antigens is known. The antigens or parts thereof

can be used as intact proteins [1,2], they can be administered as

RNA or DNA coding for the antigen [3,4], or the epitopes

contained in the antigens may be used for vaccines. As discussed in

detail in [5] the use of epitope-based vaccines (EVs) brings about

manifold advantages, e.g., safety, ease of production, analytical

control, and distribution. Skilled selection of epitopes can precisely

direct the evoked immune response at conserved and highly

immunogenic regions of several antigens. Due to these advantages

and the applicability in personalized vaccination, EVs have

recently been getting more and more attention. The recent review

of EVs by Purcell et al. [5] gives a good overview of the state of the

art as well as its achievements. We will thus only point out some

recent studies.

EVs have proven successful in preclinical trials in mice [6], on

which many of the preliminary studies have been conducted. A

large number of clinical studies, both from academia and industry,

have also been successful and have entered and/or completed

clinical phase I and II trials [7–11]. Several commercial products

have now entered clinical phase III trials. The indications for the

vaccines in trial are mostly various cancers (e.g., leukemia,

colorectal cancer, gastric cancer, lung cancer) and infectious

diseases (predominantly HIV and hepatitis C virus).

The design of an EV entails one critical step, the selection of the

epitopes. From the set of antigens, one can experimentally

determine or computationally predict epitopes for a variety of

MHC alleles. The crucial task is to select the set of epitopes which

yields the best immune response in a given population while at the

same time keeping the number of epitopes low. This step is of

course critical to the success of the vaccine. The selection is usually

made on a case-by-case basis considering key properties for each
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epitope: overall immunogenicity, mutation tolerance, population

coverage, antigen coverage, and antigen processing.

The selection methods used by the pharmaceutical industry are

manifold. In 2004, Singh-Jasuja et al. presented the Tübingen

approach [12] to acquire an experimentally validated initial list of

epitopes from tumor associated antigens. In this work, the

incorporation of computational methods for prediction of MHC-

peptide binding in the process is proposed. Since they help to

reduce the number of experiments to be performed, such

prediction methods have become standard tools in immunology.

Commonly used methods are SYFPEITHI [13], HLA_BIND/

Bimas [14], SVMHC [15], NetMHC [16–18], EpiMatrix [19],

and the methods [20–23] provided by the Immune Epitope

Database [24].

Given the set of candidate peptides, computational methods can be

used to determine the relevant attributes of each candidate. However,

the final choice of the set of epitopes to be used in the vaccine is

typically performed manually. Several groups have addressed this

problem computationally. In 2005, DeGroot et al. [25] published an

approach to creating highly immunogenic and conserved epitopes to

be used in EVs. The authors use EpiMatrix [19] to estimate the

MHC class II binding affinity of highly conserved 9mers from HIV-1

proteins. Peptides with high binding affinities are then used to

construct extended peptides containing multiple overlapping 9mers.

In vitro evaluation of the immunogenicity of a selected set of these

extended peptides yielded positive results.

Recently, Vider-Shalit et al. [26] proposed using a genetic

algorithm to design an ordered sequence of epitopes to be used in

an EV. Information on peptide conservation and similarity to self-

peptides is used to pre-filter the set of candidates, while

information on MHC allele frequencies is used to select alleles

of interest. The scoring function used for the heuristic takes into

account the number of covered MHC alleles, the number of

covered antigens, the number of covered MHC/antigen combi-

nations, and the probability of each epitope to be properly cleaved

in the sequence.

Two related approaches were published by Fischer et al. [27]

and Nickle et al. [28]. Both groups focus on designing vaccine

antigens capable of protecting against diverse HIV-1 strains. In

order to do so, they use computational methods to compress the

variation found in naturally occurring antigens into a small

number of composite antigens.

Common to the computational approaches above (and of course

manual selection) is the fact that the solutions are not necessarily

optimal. None of the approaches can guarantee that there is not a

better vaccine possible from the given set of epitopes. In this work

we propose an integer linear programming approach to finding a

provably optimal set of epitopes for an EV. Given a set of

candidate peptides, a set of MHC alleles of interest, information

on the peptides’ respective immunogenicities along with other

information to be incorporated into the selection process, our

framework is capable of finding the set of epitopes yielding the

highest possible overall immunogenicity (Figure 1). The resulting

integer linear program can be solved very efficiently for all

practical problem sizes (runtimes of a few seconds) and can thus be

readily applied. With respect to various quality criteria (population

coverage, antigen coverage, overall immunogenicity), the ap-

proach outperforms a simple greedy heuristic (‘pick the k best

epitopes’) and also a genetic algorithm. The elegant mathematical

formulation turns out to be flexible enough to also account for

variants of the problem, e.g., the application to personalized

vaccines. To our knowledge, this is the first epitope selection

framework that finds the optimal solution.

Materials and Methods

Approach
In order to find an optimal set of epitopes, we first have to

define what characterizes a good vaccine or, correspondingly, a good

set of epitopes. This issue is highly controversial in the literature

and only large-scale data from vaccination trials will provide

sufficient data to validate the different approaches retrospectively.

With this in mind, we do not suggest one optimal epitope selection

strategy, but instead suggest a mathematical framework that allows

working with various definitions of the term ‘good vaccine’. For a

chosen definition, however, the algorithms will yield a combina-

tion of epitopes that is provably optimal.

In the following, we will introduce a ‘reasonable’ definition of a

good vaccine. This will allow us to present the mathematical

formulation and to illustrate how immunological requirements can

be translated into mathematical constraints. For specific applica-

tions, the requirements and constraints may of course deviate from

those given. For example, sequence variation in an antigen would be

much more important for an HIV vaccine than for a cancer

vaccine. The framework is flexible enough to allow for such different

requirements, as we will illustrate towards the end of the work.

A good vaccine displays a high overall immunogenicity, which

means it is capable of inducing potent immunity in a large fraction of

the target population. This basic definition forms the basis of our

mathematical formulation which aims at maximizing overall

immunogenicity of the selected epitopes. We extend this definition

by additionally requiring high mutation tolerance as well as a certain

degree of allele and antigen coverage. Furthermore, the selected

epitopes should display a high probability of passing through the

antigen processing pathway. We thus obtain a brief list of basic

requirements:

Mutation tolerance. Mutations within the targeted antigen

regions can lead to an escape from immune response. High genetic

variability as observed in, e.g., HIV, the hepatitis C virus, and

influenza can thus affect protection by a vaccine. Selection of highly

Author Summary

Over the last decade the design of tailor-made vaccines for
prophylactic applications (e.g., prevention of infection) and
therapeutic applications (e.g., cancer therapy) has attract-
ed significant interest. Epitope-based vaccines are good
candidates for such tailor-made approaches. They trigger
an immune response by confronting the immune system
with immunogenic peptides derived from, e.g., viral- or
cancer-specific proteins. These peptides bind to major
histocompatibility complex (MHC) molecules in a specific
manner. The resulting complex is crucial for immune
system activation. However, there are many allelic variants
of MHC molecules, meaning that different patients
typically bind different repertoires of peptides. Neverthe-
less, due to economical and regulatory issues one cannot
simply add all immunogenic peptides to such a peptide
mix. Hence, it is crucial to identify the optimal set of
peptides for a vaccine, given constraints such as MHC
allele frequencies in the target population, peptide
mutation rates, and maximum number of selected
peptides. In this work we formalize this problem, and
variants thereof, in a mathematical framework. The
resulting optimization problem can be solved efficiently
and yields a provably optimal peptide combination. We
can show that the method performs better than existing
solutions. Furthermore, the framework is highly flexible
and can easily handle additional criteria.

Selection of Optimal Peptide Sets for Vaccines
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conserved non-overlapping epitopes reduces the chance of immune

escape.

Allele coverage. Because the MHC is polygenic, every

individual possesses a set of MHC loci. Due to the high

polymorphicity of these loci, the pool of MHC molecules varies

from individual to individual. The allelic form of an MHC

molecule determines the spectrum of peptides the molecule can

bind. Within a population alleles occur with different frequencies.

Hence, requiring a certain number of alleles to be covered is

equivalent to requiring a certain degree of population coverage.

An MHC allele is said to be covered by a set of epitopes if at least

one of the epitopes is capable of inducing an immune response

when bound to the corresponding MHC molecule.

Antigen coverage. The expression frequencies of viral

proteins differ. Selecting epitopes from a wide variety of antigens

increases the chance of detecting a virus at any developmental

stage.

Antigen processing. Before a peptide is presented by an

MHC molecule on the cell surface it passes through an antigen

processing pathway, which includes proteasomal cleavage and

TAP transport. Knowledge of these steps’ specificities allows

exclusion of peptides which are unlikely to ever be presented to a

T cell.

From all possible epitope combinations, the ones with a

maximum overall immunogenicity will be called ‘optimal’ (there

may be more than one optimal epitope combination). Hence, the

search for an optimal epitope set for an EV can be interpreted as

an optimization problem: out of a given set of epitopes, choose a

subset which, out of all subsets meeting the above-named

requirements, displays maximum overall immunogenicity. Since

health agencies such as the FDA require proof of the effectiveness

and safety of every individual component of a vaccine, the size of

such a subset is usually kept rather small (up to a dozen peptides).

Mathematical Abstraction
Given a set of epitopes and a set of MHC alleles we assume a

linear relationship to exist between (a) the immune response

induced by all epitopes with respect to all alleles and (b) the

immune responses induced by every single one of the epitopes

with respect to each of the alleles. Thus, the overall immunoge-

nicity of a set of epitopes depends on the immunogenicity of its

components with respect to the different MHC alleles. Further-

more, the contribution of an allele directly depends on its

probability of occurring within the target population. (In this

context probability is commonly referred to as frequency. We use

probability since it is the mathematically correct term.) More

common alleles are weighted more than uncommon ones. Thus,

overall immunogenicity I can be derived mathematically as a

weighted sum over immunogenicities of epitopes E with respect to

the given MHC alleles A:

I~
X
e[E

X
a[A

pa
:ie,a

where pa corresponds to the probability of allele a in the target

population and ie,a to a measure of the immunogenicity of epitope

e when bound to allele a (either experimentally determined or

predicted).

Integer Linear Programming
Our goal is to maximize overall immunogenicity while

constraining the possible solutions to sets of peptides which satisfy

the above mentioned requirements for a good vaccine. This

problem can be conveniently formulated as an integer linear

program (ILP). Linear programming deals with the optimization of

linear objective functions subject to linear constraints [29]. An ILP

is a linear program with integral unknowns. While linear programs

Figure 1. Basic idea behind this work. Starting from target antigens, a list of properties of interest, and a target population the information
necessary to determine an optimal set of epitopes is derived (gray boxes). Given this information, a mathematical framework can conveniently be
used to find the set of epitopes that is optimal with respect to the target population and the properties of interest.
doi:10.1371/journal.pcbi.1000246.g001

Selection of Optimal Peptide Sets for Vaccines
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without integral unknowns can be solved efficiently, ILPs are NP-

complete. Nevertheless, there are tools available that find optimal

solutions quite efficiently.

We restate the problem of choosing the optimal set of epitopes

as an ILP. Solving the ILP will render an optimal solution

according to our definition of an optimal epitope set. (Adapting the

ILP to a different definition is straightforward.) For the sake of

clarity, we start out with the very basic definition of an optimal

epitope set. In the next step the resulting ILP will be extended to

represent the more refined definition.

The set of candidate epitopes is E. Each epitope eME is

associated with a binary decision variable xe, where xe = 1 if the

respective epitope belongs to the optimal set and xe = 0 otherwise.

The ILP corresponding to the basic definition of an optimal

epitope set is shown in Table 1. This ILP maximizes overall

immunogenicity: epitope immunogenicity with respect to a specific

MHC allele is weighted by the allele’s probability. The only

constraint is the number of epitopes to select.

We will now extend this basic ILP to represent a more refined

definition of a good epitope set. In order to implement the

additional requirements we introduce another set of binary

decision variables: each MHC allele a is associated with a variable

ya. If allele a is covered, meaning that an epitope which is

sufficiently immunogenic with respect to allele a belongs to the

optimal set, ya = 1, otherwise ya = 0. The extended ILP is shown in

Table 2. It accounts for mutation tolerance by selecting only non-

overlapping conserved epitopes, and for allele and antigen

coverage. Additional constraints prevent the selection of peptides

which are unlikely to result from antigen processing.

It might be desirable to obtain several optimal or nearly optimal

epitope sets. As proposed in [30], this can be achieved by adding

the constraints given in eq. (1), where Sj represents the optimal set

of epitopes found in iteration j and s represents the number of

solutions to be obtained. The ILP has to be solved iteratively s

times. After each iteration, the ILP for the next iteration j+1 is

created by adding the corresponding constraint to the ILP of

iteration j.

X
u[Sj

xuƒk{q for j~1 . . . s{1 ð1Þ

Every resulting epitope set differs from all other solutions in at

least q peptides, 1#q#k.

Nonlinear Requirements
In order to incorporate a requirement into the ILP framework it

must be formulated as a linear constraint. There are, however,

reasonable requirements which are non-linear. These cannot be

incorporated directly. It is possible though to search a sufficiently

large set of optimal and suboptimal solutions for the best set of

epitopes that yields the required properties—provided that the

requirements are feasible. Two examples of reasonable non-linear

requirements will be discussed below.

Example 1: Population coverage. A major interest in

vaccine design is population coverage: For what fraction of a

target population will the resulting EV be effective? In theory this

corresponds to the probability of an individual in the population

carrying at least one MHC allele covered by the epitopes in the

EV. Given a set of MHC alleles A as before and their distribution

within a population, the population coverage of a particular set of

epitopes can be computed. For this computation the polygenicity

of the MHC has to be taken into account. It is A = A1 <…< Am

with Ai being the alleles at locus i. Let pL
a be the probability of an

allele a occurring at the corresponding MHC locus. Then the

probability of an individual in the population carrying an allele

from the set Ai at locus i corresponds to

pL
Ai

~1{ 1{
X
a[Ai

pL
a

 !2

:

Let ya be as described above. It follows that the probability of an

individual carrying at least one MHC allele covered by the

epitopes in E, and thus the population coverage of E, is

pcE~1{ P
m

i~1
1{

X
a[Ai

yapL
a

 !2

:

Example 2: Average number of epitopes per

individual. Population coverage of an epitope set states what

fraction of a population carries an MHC allele associated with one

of the epitopes. It does not give any information on the number of

active epitopes per individual. The number of epitopes within a set

which are active for a specific individual depends on the

individual’s MHC genotype. Given the haploidic probabilities of

MHC alleles within a population the probability of MHC

genotypes can be calculated. Alleles not included in the set A are

accounted for by adding a representative allele X to each locus.

The frequency of the representative at locus i results from

pL
Xi

~1{
P

a[Ai
pL

a .

Let G be the set of genotypes within the population of interest

and pg the probability of genotype g. Furthermore, let bg be the

number of epitopes in an epitope set E which are immunogenic

with respect to an MHC allele in g. The average number of active

Table 1. ILP corresponding to the basic definition of an
optimal epitope set.

Definitions

A Set of observed MHC alleles

E Set of candidate epitopes

Parameters

ie,a Immunogenicity of epitope e with respect to allele a

k Number of epitopes to select

pa Probability of MHC allele a occurring in the target
population

Variables

xe = 1 If epitope e belongs to the optimal set, otherwise
xe = 0

Integer Linear Program

Maximize Maximize …

geMExegaMApa ie,a … Overall immunogenicity

subject to

geMExe = k … And select exactly k peptides.

doi:10.1371/journal.pcbi.1000246.t001

Selection of Optimal Peptide Sets for Vaccines

PLoS Computational Biology | www.ploscompbiol.org 4 December 2008 | Volume 4 | Issue 12 | e1000246



epitopes per individual results from

y Eð Þ~
X
g[G

pg bg:

Evaluation
Vider-Shalit et al. [26] applied their evolutionary-algorithm-

based vaccine design method to hepatitis C virus (HCV). We used

our framework on similar data and compared the results of both

approaches.
Data. HCV protein sequences (amino acid frame 1) for ten

different proteins (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A,

NS5B) and four different subtypes (1a, 1b, 2a, 3a) were retrieved

from the Los Alamos hepatitis C sequence database [31]. For each

protein of each subtype a multiple sequence alignment (MSA) was

created using MUSCLE [32], resulting in 40 MSAs. From each

MSA a consensus sequence was created. All 9mers from these

consensus sequences were regarded as potential epitopes. In silico

predicted MHC binding affinities using BIMAS matrices [14] are

utilized as a measure of immunogenicity. MHC alleles, their

probability of occurring in the human population, and binding

affinity score thresholds were directly taken from Vider-Shalit et al.

To allow a comparison of our results with those of Vider-Shalit et

al., we adopt their simplistic definition of peptide conservation (A

peptide is considered to be at least x% conserved if all of its amino

acids display a conservation of at least x%.) and disregard all

insufficiently conserved (,90%) peptides. To score the probability

of a peptide being a result of antigen processing, we used the

proteasomal cleavage matrix from the supplementary material of

[26]. As noted in several places, the influence of TAP transport is

often rather limited [26,33]. Consideration of TAP transport is

thus omitted for this example.

It has to be noted that the accuracies of the prediction methods

cause some limitations. MHC-peptide binding can be predicted

with relatively high accuracy for many alleles, whereas proteaso-

mal cleavage prediction leaves more room for improvement.

Incorporating the scoring function. The scoring function S

of Vider-Shalit et al. takes into account the number of covered

Table 2. ILP corresponding to the extended definition of an optimal epitope set.

Definitions

A Set of observed MHC alleles

Ei Set of epitopes from the i-th antigen

E Set of all candidate epitopes (E = E1 <…< En)

Ia Set of epitopes which, when bound to an MHC allele a, display an immunogenicity greater than or equal to a given threshold tI

I Set of all sufficiently immunogenic epitopes (I = <aMAIa)

O Set of overlapping pairs of epitopes

Parameters

ce Conservation of epitope e

ie,a Immunogenicity of epitope e with respect to allele a

k Number of epitopes to select

pa Probability of MHC allele a occurring in the target population

pAP
e

Probability that epitope e will be produced during antigen processing

tA Minimum number of epitopes from each antigen to be included

tAP Antigen processing threshold

tC Conservation threshold

tMHC Minimum number of MHC alleles to be covered

Variables

xe = 1 If epitope e belongs to the optimal set, otherwise xe = 0

ya = 1 If allele a is covered by the optimal set, otherwise ya = 0

Integer Linear Program

Maximize Maximize …

geMExegaMApa ie,a … Overall immunogenicity.

subject to

geMExe = k Selects exactly k epitopes.

;eME: (12ce)xe#(12tC) Ensures certain degree of epitope conservation.

;(p, r)MO: xp+xr#1 Guarantees that selected epitopes do not overlap.

;aMA:
P

e[Ia
xe§ya Guarantees that ya = 1 only if allele a is covered.

gaMAya$tMHC Enforces required allele coverage.

;iM{1,…,n}:
P

e[Ei\I xe§tA Enforces required antigen coverage.

;eME: 1{pAP
e

� �
xeƒ 1{tAP

� �
Selects only epitopes which have a chance of at least tAP to result from
antigen processing.

doi:10.1371/journal.pcbi.1000246.t002

Selection of Optimal Peptide Sets for Vaccines
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MHC alleles, the number of covered antigens, the number of

covered MHC/antigen combinations, and a score for the

probability of each epitope in the ordered sequence being

properly cleaved:

S sð Þ~ 2:6:#covered antigensz0:77:#covered alleleszð

#covered combinationsÞ:p cleaveð Þ:

Here, s represents the ordered sequence of epitopes to be scored.

In order to show the flexibility of our approach we incorporate

aspects of this function in our ILP. Since the aim of our framework

is to select a set of epitopes and not to create an epitope sequence,

we omit the factor p(cleave).

Binary variables have to be introduced in order to count the

number of covered antigens and the number of covered MHC/

antigen combinations: zi = 1 if an epitope from the i-th antigen

belongs to the optimal set and zi = 0 otherwise. wa,i = 1 if an

epitope from the i-th antigen, which is sufficiently immunogenic

with respect to MHC allele a, belongs to the optimal set and

wa,i = 0 otherwise. Since immunogenicity scores tend to be higher

than the weighted sums of the coverage scores and would therefore

outweigh them, we scale the immunogenicity by a (purely

empirical) factor of 0.1. The resulting ILP still aims at high

overall immunogenicity while at the same time extending the

coverage of antigens, MHC alleles, and MHC/antigen combina-

tions. The ILP is shown in Table 3.

Implementation
We used ILOG CPLEX 9.1 [34] with its C++ interface ILOG

Concert Technology 2.1 to formulate and solve the ILP. It is,

however, possible to solve the ILPs with most other ILP solvers,

e.g., MOSEK [35] or freely available packages like SCIP [36,37].

A formulation of the extended ILP (Table 2) as ILOG CPLEX

input, the required data for the comparison with Vider-Shalit et al.

[26] as well as the corresponding ILOG CPLEX output can be

found in the supplementary material (Texts S1, S2, S3).

Results

Immunogenicity
In order to show the effectiveness of the above-mentioned

approach, we compare our strategy with other published

approaches and determine the theoretical gain in immunogenicity

or the number of epitopes required to achieve a similar

immunogenicity. While an experimental validation of this

approach would be valuable, it is beyond the scope of this paper,

which focuses on the theoretical foundations of the epitope

selection. We compare our optimal strategy (best overall

immunogenicity, BOI) with two simple approaches:

N randomly select k peptides out of a pool of good epitopes

(random set of epitopes, RSE) and

N a simple greedy approach: pick the k best epitopes from the set

(best epitope-wise immunogenicity, BEI).

Table 3. ILP corresponding to the combined optimization problem.

Definitions

A Set of observed MHC alleles

Ei Set of epitopes from the i-th antigen

E Set of all candidate epitopes (E = E1 <…< En)

Ia Set of epitopes which, when bound to an MHC allele a, display an immunogenicity greater than or equal to a given threshold tI

I Set of all sufficiently immunogenic epitopes (I = <aMAIa)

Parameters

ie,a Immunogenicity of epitope e with respect to allele a

pa Probability of MHC allele a occurring in the target population

Variables

wa,i = 1 If allele a is covered by an epitope from the i-th antigen, otherwise wa,i = 0

xe = 1 If epitope e belongs to the optimal set, otherwise xe = 0

ya = 1 If allele a is covered by the optimal set, otherwise ya = 0

zi = 1 If an epitope from the i-th antigen belongs to the optimal set, otherwise zi = 0

Integer Linear Program

Maximize Maximize …

0.1?geMExegaMApa ie,a + … Overall immunogenicity and …

2:6:
Pn

j~1 zjz0:77:
P

a[Ayaz … Extend coverage of antigens,
MHC alleles, …P

a[A

Pn
j~1 wa,j … And MHC/antigen combinations.

Subject to

All constraints from the extended ILP (Table 2)

;iM{1,…,n}
P

e[Ei\I xe§zi Ensures that zi = 1 only if the i-th
antigen is covered.

;iM{1,…,n} aMA
P

e[Ei\Ia
xe§wa,i Ensures that wa,i = 1 only if allele a is

covered by an epitope from the i-th
antigen.

doi:10.1371/journal.pcbi.1000246.t003

Selection of Optimal Peptide Sets for Vaccines
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These three epitope selection strategies were used to select

different-sized sets of epitopes from a set of 4461 conserved

($90%) HCV 9mers. For BOI the basic ILP (Table 1) was used to

maximize overall immunogenicity. BEI selects the epitopes with

the highest sum of immunogenicities irrespective of the probabil-

ities of the corresponding MHC alleles. The overall immunoge-

nicity of each epitope set was determined and is displayed in

Figure 2. For RSE, mean and standard deviation of 100 random

selections of different-sized epitope sets from the 100 most

immunogenic peptides are shown. The BEI curve shows sudden

increases in overall immunogenicity from 0 to 1, 10 to 13, and

from 20 to 21 epitopes. This is caused by the selection of epitopes

which are highly immunogenic with respect to HLA-A*0201,

which is the most common (pL = 0.145) among the considered

alleles. All other selected epitopes are highly immunogenic with

respect to less common alleles like HLA-B*2705 (pL = 0.015) or

HLA-B*5102 (pL = 0.003). Thus the former contribute more

extensively to the overall immunogenicity than the latter.

The average overall immunogenicity of the randomly chosen

epitope sets is rather low: scores range from about 308 for five

epitopes, to 1,763 for 25 epitopes, to 2,699 for 40 epitopes. The

other two approaches start from a minimum overall immunoge-

nicity of more than 900 and reach immunogenicities of 4,502 (BEI)

and 6,142 (BOI), respectively. To achieve an immunogenicity of at

least 2,699, BOI requires five and BEI 12 epitopes (Figure 2).

For sets with more than one epitope, the scores yielded by the

BOI strategy are between about 20% (13 epitopes) and 120% (6

epitopes) higher than those of the BEI strategy.

Comparison with Vider-Shalit et al. on HCV
In order to compare our approach to the work of Vider-Shalit et

al. [26] we applied the ILP given in Table 2 to the HCV data and 27

of the 29 alleles from [26]. The alleles HLA-B*0702 and HLA-

B*3501 were omitted, since none of the candidate peptides binds to

them. Probably due to an error in sequence processing (personal

communication with Yoram Louzoun), a peptide (AALENLVTL)

which does not belong to any of the proteins under consideration

was included in the 25 epitopes selected by Vider-Shalit et al. We

exclude this peptide and base our comparison on sets of 24 epitopes.

For the 24 epitopes to be selected, we require a minimum

conservation of 90%, an allele coverage of 27, and an antigen

coverage of at least one epitope per antigen. Furthermore, only

epitopes with antigen processing scores within the top 30% of all

sufficiently conserved candidate peptides were allowed to be

selected. The following 24 epitopes (hereafter EILP) were selected:

Four epitopes (marked with *) are known HCV epitopes and

can be found in the Immune Epitope Database (IEDB, release

2008_4_1_3_28) [24]. Another 11 epitopes (marked with +) are

contained in known longer epitopes. The overall immunogenicity

of the selected set is 2,549. It includes binders for all 27 alleles with

all 40 antigens being represented and covers 22.7% of all MHC/

antigen combinations. The average number of epitopes per

individual of the population is 13.3. The corresponding values of

the epitope set selected by Vider-Shalit et al. (hereafter EVS) are

listed in Table 4.

To improve the MHC/antigen coverage while still aiming at

high overall immunogenicity we included the central part of the

scoring function of Vider-Shalit et al. in the objective function of

our ILP. The optimal epitope set with respect to the modified

objective function (hereafter EComb) is only 15% less immunogenic

than the original epitope set EILP and more than 17 times more

immunogenic than EVS. As for MHC/antigen coverage, it

outperforms both (Table 4). EComb includes one epitope which is

already known and 14 epitopes which are contained in longer

epitopes listed in the IEDB. Figure 3 shows that when using the

Figure 2. Comparison of different epitope selection strategies with respect to overall immunogenicity. (A) Overall immunogenicity of
different-sized epitope sets. (B) Overall immunogenicity of a set of 10 epitopes. (C) Number of epitopes required to achieve an overall
immunogenicity of at least 2,699.
doi:10.1371/journal.pcbi.1000246.g002

SFSIFLLAL* GHRMAWDMM+ VYEADDVIL

YLYDHLAPM GLRDLAVAV+ GPTPLLYRL+

QYLAGLSTL+ NFVSGIQYL VLSDFKTWL*

GLYLFNWAV ALYDVVSTL* RRCRASGVL+

CFTPSPVVV+ FLLLADARV* GPADGMVSK+

TWVLVGGVL+ IELGGKPAL+ LAGGVLAAV

ARPDYNPPL+ KLLPRLPGV RHTPVNSWL+

WPLLLLLLA VTYSLTGLW YFVIFFVAA
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combined objective function, 18 epitopes suffice to cover all alleles

and antigens and furthermore to outperform EVS in terms of

immunogenicity (371) and MHC/antigen coverage (22.8%).

Discussion

The selection of an epitope set with very high overall

immunogenicity is crucial for the efficacy of an EV. Depending

on the number of candidate epitopes to choose from, the number

of alleles to be considered, as well as on the additional

requirements, this problem can become very complex. In this

work we propose a mathematical framework that can be used to

solve this problem quickly for practical problem sizes. For several

characteristic examples, we show that immunological require-

ments can be conveniently formulated as an ILP. The solution of

this ILP yields an optimal set of epitopes: the set of epitopes that

displays the highest overall immunogenicity of all sets which meet

the pre-defined requirements. To our knowledge, this is the only

approach that yields provably optimal solutions to the vaccine

design problem for EVs. In contrast to previous heuristics, the

optimal solution yields either significantly better overall immuno-

genicity for the same number of epitopes or a smaller number of

required epitopes to reach the same level of immunogenicity. The

flexibility of the framework allows selecting other objective

functions, too, for example, maximizing antigen or allele coverage.

The optimal selection of epitopes yields—in theory—signifi-

cantly higher overall immunogenicities than other strategies (e.g.,

selection of the best epitopes or evolutionary algorithms).

However, one should keep in mind that the selection of the

epitopes is still a difficult and controversial issue since the

underlying processes are not yet fully understood. In particular,

the interplay of different epitopes poses a difficult problem.

Competition between epitopes will probably result in reduced

immunogenicity of peptide cocktails, an effect that has been

observed in various studies.

On the one hand, this represents a problem, because the

assumption of independence between epitopes is one of the key

assumptions made in this work (and in all related approaches).

Lacking an accurate model of these competition effects, however,

it seems like the best assumption one can make. On the other

hand, the effects of competition are a compelling reason to employ

this type of selection approach. Competition effects will be less

severe for fewer peptides, therefore a selection procedure that

yields the same overall immunogenicity with fewer peptides can in

fact mitigate this problem. Assuming that competition primarily

arises between epitopes binding to the same MHC allele, one can

also introduce additional constraints to reduce competition (e.g.,

find the best combination that contains at most two epitopes per

allele). In the long run, a thorough quantitative analysis of larger

vaccination studies might shed some light on these effects and their

importance.

Also, the notion of immunogenicity alone, or the ability to evoke

an immune response in a certain fraction of patients, is not

necessarily a true measure of quality for a vaccine. In their recent

review on the quality of the T-cell response [38], Seder et al. argue

Table 4. Overview over properties of HCV epitope sets
selected using different strategies.

EILP EVS EComb

Overall immunogenicity 2,549 125 2,177

Allele coverage 100% 96.3% 100%

Antigen coverage 100% 87.5% 100%

MHC/antigen coverage 22.7% 19.2% 30.5%

Population coverage 96.0% 95.6% 96.0%

Avg. number of epitopes per individual 13.3 11.4 17.3

Number of epitopes in IEDB 4 1 1

Number of epitopes per set: 24. EILP: set selected by our ILP, EVS: set selected by
Vider-Shalit et al. without peptide AALENLVTL, EComb: set selected by our ILP
extended by aspects of the scoring function of Vider-Shalit et al.
doi:10.1371/journal.pcbi.1000246.t004

Figure 3. Comparison of properties of HCV epitope sets selected using different strategies. (A) Overall immunogenicity. (B) Coverage of
MHC/antigen pairs.
doi:10.1371/journal.pcbi.1000246.g003
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that protective T-cell responses are too complex to be sufficiently

described by a measure of magnitude alone. An adequate metric

would thus not only account for the magnitude but also for the

multifunctional quality of the response. The flexibility of our

framework allows for the incorporation of a different quality

measure for immunogenicity and a careful comparison of the

peptide cocktails suggested by different objective functions would

be very interesting.

In their review of EVs, Purcell et al. [5] point out that, to date,

there are no human EVs on the market. This is mainly attributed

to the difficulties associated with peptide stability and delivery.

Various delivery strategies [39] are being explored in clinical

studies. In an extension of this work, one might therefore also

include considerations related to the peptide delivery. For beads-on-

a-string type vaccines, the selected epitopes are combined into one

larger polypeptide. As the specificities of the antigen processing

pathway have to be taken into account when constructing the

polypeptide, the order of the epitopes as well as possible spacer

sequences need to be optimized (e.g. through incorporation of a

proteasomal cleavage matrix).

Supporting Information

Text S1 ILOG CPLEX input. AMPL formulation of the

extended ILP given in Table 2 adapted for the comparison with

Vider-Shalit et al.

Found at: doi:10.1371/journal.pcbi.1000246.s001 (3.00 KB TXT)

Text S2 HCV data (in AMPL format) used for the comparison

with Vider-Shalit et al. Only highly conserved peptides (. = 90%)

were considered when generating this file.

Found at: doi:10.1371/journal.pcbi.1000246.s002 (1.70 MB

TXT)

Text S3 ILOG CPLEX output.

Found at: doi:10.1371/journal.pcbi.1000246.s003 (2.00 KB TXT)
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