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Abstract

Gene duplication provides much of the raw material from which functional diversity evolves. Two evolutionary mechanisms
have been proposed that generate functional diversity: neofunctionalization, the de novo acquisition of function by one
duplicate, and subfunctionalization, the partitioning of ancestral functions between gene duplicates. With protein
interactions as a surrogate for protein functions, evidence of prodigious neofunctionalization and subfunctionalization has
been identified in analyses of empirical protein interactions and evolutionary models of protein interactions. However, we
have identified three phenomena that have contributed to neofunctionalization being erroneously identified as a significant
factor in protein interaction network evolution. First, self-interacting proteins are underreported in interaction data due to
biological artifacts and design limitations in the two most common high-throughput protein interaction assays. Second,
evolutionary inferences have been drawn from paralog analysis without consideration for concurrent and subsequent
duplication events. Third, the theoretical model of prodigious neofunctionalization is unable to reproduce empirical
network clustering and relies on untenable parameter requirements. In light of these findings, we believe that protein
interaction evolution is more persuasively characterized by subfunctionalization and self-interactions.
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Introduction

Gene duplication is readily accepted as a primary mechanism for

generating organismal complexity. Phenomena proposed for the fate of

gene duplicates include neofunctionalization and subfunctionalization.

Neofunctionalization posits that the functional redundancy intrinsic to

initially identical gene duplicates releases one duplicate from selective

pressure. While under neutral selection one of the duplicates can

accumulate random mutations and potentially acquire novel and

beneficial functions [1]. Subfunctionalization states that both gene

duplicates acquire mutations resulting in each duplicate assuming a

complementary subset of the ancestral gene’s original functions [2].

Gene duplication and subsequent neofunctionalization and

subfunctionalization have straightforward analogs in models of

protein interaction network (PIN) evolution. With proteins as nodes,

edges between proteins represent physical interactions and serve as

an indication of protein function. Proteins with identical sets of

interacting partners are presumed to have identical functions. Gene

duplication is modeled by copying a protein node in the network

along with its interactions. Neofunctionalization and subfunctiona-

lization are modeled by the gain and loss of interactions respectively.

This straightforward representation has made PINs an attractive

target for the study of evolution.

Both neofunctionalization and subfunctionalization have been

shown to occur in protein interaction analyses of extant species.

Since paralogs are by definition related by gene duplication, the

similarities and differences between the interactions of paralogous

pairs have been used to elucidate the role of neofunctionalization

and subfunctionalization in the fate of gene duplicates.

Wagner [3,4] noted that an interaction between a paralogous

pair forms by one of two methods: either the duplication of a

self-interacting protein (Figure 1), or a de novo interaction forming

between the pair sometime after duplication.

Wagner’s analysis of three Saccharomyces cerevisiae interaction

datasets revealed that the vast number of interacting duplicate

pairs were not themselves self-interacting. Therefore, the absence

of homomeric interactions in interacting paralogous pairs

suggested that these interactions formed de novo (i.e., neofunctio-

nalization). Extrapolating the probability of an interacting

paralogous pair to the entire network, Wagner estimated that

Saccharomyces cerevisiae adds between 108 and 294.5 interac-

tions de novo every million years.

Wagner also compared the age of paralogs to the number of

shared interaction partners. Wagner found that, except for the

most-recently duplicated genes, duplicate pairs have lost on

average from 85 to more than 90 percent of their shared

interactions depending on their age and the dataset examined [4].

The rapid loss of common interacting partners between duplicates

strongly suggests that subfunctionalization occurs quickly after

duplication. A more recent study using similar methods measured

93% shared interaction loss in yeast [5].

He and Zhang also found evidence of rapid subfunctionalization

followed by a prolonged period of neofunctionalization in

Saccharomyces cerevisiae protein interactions [6]. They reasoned

that the set of nonredundant interacting partners shared between

paralogous pairs should remain constant over time if subfunctio-

nalization occurs without neofunctionalization. They ascertained

that the set of nonredundant partners increased with the age of the

paralogous pair, indicating the presence of neofunctionalization

(Figure 2).

Neofunctionalization and subfunctionalization also appear in

theoretical models of protein interaction evolution. The first model
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combining both neofunctionalization and subfunctionalization

came from Solé and colleagues in 2002 [7]. Their duplication

and diversification model iteratively duplicates a random gene and

its interactions, followed by probabilistically deleting copied

interactions (subfunctionalization) and adding new interactions

(neofunctionalization). A number of topological measures were

found to be consistent between both the network produced by

their model and observed Saccharomyces cerevisiae protein

interactions, including connectivity, clustering coefficient, power-

law degree exponent, and path length.

Results

Despite prevailing theory which identifies neofunctionalization

as a prominent force in the evolution of protein interactions, here

we demonstrate that subfunctionalization and self-interactions

sufficiently and more simply explain results previously attributed to

neofunctionalization. While others have promoted the viability of

subfunctionalization and the role of self-interactions in gene

duplication, they have not challenged the putative ubiquity of

neofunctionalization with a contrarian argument [8,9]. We now

describe in detail the effect underreported data in proteomic

assays, misinterpreted interaction data, and model topology have

had on the analyses and models which promote ubiquitous

neofunctionalization.

Underreported Yeast Self-Interactions
The two most common high-throughput assays used to

determine yeast protein interactions, yeast two-hybrid (Y2H)

assays and affinity purification with mass spectrometry (AP-MS),

have limited ability to discern self-interactions. In Y2H assays, self-

interacting baits interact together and self-interacting prey interact

together reducing the concentration of bait/prey interactions with

respect to their heterointeracting counterparts. Additionally, the

GAL4 binding domain binds DNA as a dimer [10,11], allowing

homomeric bait pairs to dimerize with each other instead of prey

(Figure 3) [12,13].

Large-scale TAP-MS studies [14–16] report no homomeric

interactions due to a lack of endogenous (untagged) homomeric

mates to discern from the affinity tagged protein [17]. Other large-

scale AP-MS studies [18] use small epitope tags. The epitope

tagged homomer very nearly overlaps with its endogenous mate in

the MS spectra making the flagged homomer difficult to discern

from its unflagged mate. For example, only a single homomeric

interaction among 3,617 reported interactions was identified by

Ho and colleagues in 2002 [18] using the FLAG epitope tag.

Examination of the physical data supports a higher proportion

of homomers than yeast two-hybrid and AP-MS studies indicate.

First we compiled a set of non-redundant structures containing

Saccharomyces cerevisiae protein complexes from The Protein

Data Bank (PDB) [19]. We then cross-referenced these structures

to the iPfam database of PDB protein interactions [20] (see

Methods). A tally of identical proteins self-interacting across

different polypeptide chains confirms the ubiquity of self-

interacting proteins. There are 207 non-redundant yeast structures

containing 210 Saccharomyces cerevisiae proteins, 149 of which

(71%) are self-interacting. Similarly, the BRENDA enzyme

database [21] contains 102 Saccharomyces cerevisiae enzymes

with specific hetero- and homomeric k-mer counts (monomer,

dimer, trimer, etc.). Self-interacting enzymes (k-mers with k$2)

accounted for 60% of the Saccharomyces cerevisiae enzymes. At

the protein complex level, Pereira-Leal et al. [22] found that 90%

of the structures in the Protein Quaternary Structure database

[23] include homomeric interactions, and other studies also

identify a high proportion of homomeric interactions [8,9]. By

contrast, in high-throughput yeast two-hybrid studies by Uetz et

al. and Ito et al. detected homomeric proteins in only 4.6% and

6.6% respectively of the proteins included in their core interaction

sets.

Additional evidence supports widespread duplication of self-

interacting proteins. Zhang et al. found that, of nine tested

attributes, homology was one of four attributes showing substantial

predictive value for predicting co-complexed pairs of proteins [24].

Figure 2. He and Zhang [6] illustrate the presence of
neofunctionalization through interaction data analysis. (A)
Paralogous proteins 1 and 2 initially share all 3 interacting partners.
(B) In the absence of neofunctionalization, the number of interacting
partners should remain at 3 as redundant interactions are lost over
time. He and Zhang show that the number of interacting partners
increases as the age of paralogs increases. (C) The increase in
interacting partners is attributed to neofunctionalization (i.e., the de
novo gain of interactions).
doi:10.1371/journal.pcbi.1000252.g002

Author Summary

Molecular evolution studies have shown that the redun-
dancy intrinsic to gene duplication may allow one gene
duplicate to acquire a new function (neofunctionalization)
or for both duplicates to each assume a subset of the
ancestral gene’s functions (subfunctionalization). Studies
of networks of interacting proteins and models of evolving
protein interaction networks have shown that both
subfunctionalization and neofunctionalization are wide-
spread in protein evolution. Here, we present evidence
that shows that the methods and models that have
established neofunctionalization as a ubiquitous force in
protein interaction network evolution are flawed and
under reexamination support subfunctionalization, not
neofunctionalization. We start by reviewing the methods
and models that engender prolific subfunctionalization
and neofunctionalization in evolution. We then critically
approach neofunctionalization. We show that biases in
protein interaction assays, failure to consider concurrent
and subsequent gene duplications in evolutionary infer-
ences, and an inability of theoretical models to reproduce
empirical clustering have all led to neofunctionalization
being erroneously identified as a pervasive force in
evolution.

Figure 1. Duplication of self-interacting proteins. (A) An
interaction between a protein and a self-interacting protein. (B) When
the self-interacting protein duplicates, the duplicates interact.
doi:10.1371/journal.pcbi.1000252.g001

Questioning the Ubiquity of Neofunctionalization
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Additionally, interactions within paralogous families are much

more likely than within randomly-formed families (P,1026, see

Methods). The wide disparity between the frequency of paralogous

versus random interactions indicate that some process other than

the random, de novo addition of interactions which characterize

neofunctionalization is at work. Duplication of homomers is a

more parsimonious explanation than neofunctionalization for the

interaction evolution between paralogous proteins.

Underrepresented self-interactions in interaction data have not

been previously realized, leading to erroneous assertions. Wagner

[4] identified 31 interacting paralogous pairs from Y2H assays

(gathered from Uetz et al., and Ito et al. [25,26]), and 13 interacting

paralogous pairs from non-Y2H assays (gathered from MIPS [27]).

In 34 of these 44 interacting paralogous pairs, neither protein of the

pair had a self-interaction. Looking for an evolutionary explanation

for the presence of the 34 paralogous interactions, Wagner reasoned

that either the 34 paralogous pairs (i.e., 68 proteins) lost their ability

to self-interact, or that the 34 interactions appeared de novo

sometime after duplication. Wagner concluded that the most

parsimonious explanation was 34 interactions gained de novo,

rather than 68 lost self-interactions. This reasoning led Wagner to

postulate that of the other combinations of self- and paralogous-

interacting pairs, de novo interaction gain accounted for all but two

pairs in which both protein members self-interacted and interacted

with each other (as in Figure 1B).

Using the number of putative de novo gains as a metric,

Wagner extrapolated to arrive at the ubiquitous 108–294.5 de

novo interactions gained per million years of evolution. Once

assay biases are considered as an alternative to evolutionary loss in

explaining the absence of self-interactions among Wagner’s

paralogous pairs, the opposite conclusion is reached: paralogous

interactions are more parsimoniously explained by duplicating

homomers, not de novo interaction gain.

Concurrent Gene Duplication and Subfunctionalization
Complementary degenerative mutations intrinsic to subfunctio-

nalization take the form of complementary interaction loss in its

network analog. One interaction from each pair of redundant

interactions may be lost, but He and Zhang [6] reasoned that in

the absence of neofunctionalization, the union of the duplicates’

interacting partner sets will remain unchanged over time.

Figure 2A features a portion of the methodology used by He

and Zhang to test this. They compared the ages of gene duplicate

pairs to the union of their interacting partner sets. Contrary to

what they believed subfunctionalization alone would show, they

found that the union size increased with the age of the duplicate

pair. Neofunctionalization was credited with the increase in the

number of interacting partners.

This argument fails to recognize that the interacting partners

evolve as well. Gene duplication and subfunctionalization occur

among all genes concurrently with the paralogous protein pair

under study. Figure 4A shows a typical gene duplication scenario

followed by neofunctionalization as proposed by He and Zhang.

Figure 4B shows that the increase in interaction partners over time

attributed to neofunctionalization is readily explained by gene

duplication occurring elsewhere in the network. After gene

duplication, each additional interacting partner acquired by the

duplicate pair over time may simply result from an interacting

partner undergoing gene duplication.

We validated the role subsequent duplications play in increasing

the number of interacting partners by counting interacting

partners of gene duplicates both before and after accounting for

subsequent duplications. Saccharomyces cerevisiae gene duplicates

were binned into four different age groups based on genome-wide

gene trees developed from 19 fungal genomes (drawn from revised

data provided on Web site associated with Ref. [28], see Methods).

Figure 5 shows the phylogenetic nodes which correspond to the

age bins gene duplicates were placed into.

Interacting partners of gene duplicates were then tallied and

plotted according to their age bin (Figure 6). Before considering

subsequent duplications, the number of interacting partners of gene

duplicates increases with the age of the duplicate, consistent with the

findings of He and Zhang [6]. Once interactions associated with

subsequent gene duplications are removed, interacting partner

counts show little change over time (see Methods).

Another observation is that under concurrent gene duplication,

the interacting partners of a duplicate pair should be enriched in

paralogs born of subsequent duplications. This is illustrated in

Figure 4B. The four interacting partners in frame B4 are two pairs

of paralogs which arose via gene duplications subsequent to the

original duplication in frame B1. We sought this evidence in the

interacting partners of each duplicate pair present in the both

combined datasets [29,30] used by He and Zhang [6] and the

physical interactions from BioGrid [31] (see Methods). As we

expected, the interacting partners of duplicate pairs are signifi-

cantly enriched with paralogs born of subsequent duplications.

The mean proportion of interacting partners which are paralogous

in the He and Zhang dataset is 0.029 (P,1026, random

expectation 0.0014) and 0.042 (P,1026, random expectation

0.0025) in the BioGrid data.

Evolutionary Models
Theoretical models of PIN evolution reproduce characteristics

of observed interaction networks while honoring aspects of

biological evolution. In 2002, Solé et al. introduced a ‘‘duplication

and diversification’’ model which established the relevance of gene

Figure 3. Shortcomings of the yeast two-hybrid assay. (A) The traditional view of the yeast two-hybrid assay. A bait protein is hybridized with
the GAL4 binding domain which binds to the upstream activation sequence for galactose (UASG). A prey protein hybridized with the GAL4 activation
domain interacts with the bait protein. The complex forms a functional transcriptional activator and the downstream reporter gene is expressed. (B) A
more accurate view of yeast two-hybrid assay. The GAL4 binding domain actually binds to UASG as a dimer. (C) If the GAL4 binding domain is
hybridized to a self-interacting protein, self-interacting protein bait dimerizations would reduce the probability of bait-prey interactions.
doi:10.1371/journal.pcbi.1000252.g003

Questioning the Ubiquity of Neofunctionalization
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duplication and interaction gain and loss to PIN evolution [7]. The

following year Vázquez and colleagues published an alternative

model of PIN evolution which includes interaction loss due to

subfunctionalization, but does not include neofunctionalization

[32]. The common feature of both models is subfunctionalization.

That is, both models include a parameter specifying the

probability of losing (or retaining) interactions to protein partners

shared by both the progenitor and progeny genes. The models

differ in the method through which new interactions are formed in

the network. A second parameter of the Solé et al. model controls

the probability of forming new interactions from the newly

duplicated gene to each extant gene in the network. A second

parameter of the Vázquez et al. model controls the probability of

forming a new interaction from the newly duplicated gene to the

progenitor gene. Essentially, the difference between these two

models can be characerized as neofunctionalization versus

homomeric duplication (i.e., duplicating a self-interacting gene).

This difference reflects the dichotomy we’ve established and

therefore deserve additional attention.

We have quantified this dichotomy using the topological

measure C, the clustering coefficient [33]:

C~
3T

C

T is the number triangles (three fully-connected nodes), and C is

the number of connected triples (a node connected to an

unordered pair of other nodes).

The clustering coefficient is a relavant measure for two reasons.

First, gene duplications, subfunctionalization, neofunctionaliza-

tion, and homomeric duplication each produce a measurable

change in the number of triangles and connected triples which

comprise the clustering coefficient. Second, protein interaction

networks have been found to have high clustering coefficients

relative to random networks [3,7,34–36]. Table 1 shows that the

clustering coefficients for several Saccharomyces cerevisiae

datasets are a factor of 5, 10, and more above that of equivalent

random networks. We seek to identify those evolutionary events

which contribute to a high clustering coefficient.

The change in clustering coefficient resulting from simple gene

duplication, DCsimple (i.e., duplicating a node and its interactions

without regard to subsequent interaction loss), occurs locally. The

change can be defined in terms of the progenitor’s (p) triangles (tp)

and degree (kp), and the degree of the progenitor’s neighbors

(kg,g = 1..kp, see Figure 7). Because DCsimple is restricted to the

neighborhood around the duplication progenitor, the majority of

Figure 4. Neofunctionalization vs. concurrent gene duplication and subfunctionalization. (A1) Gene duplication. Shown also are two
additional proteins elsewhere in the network. (A2) According to He and Zhang (2005), additional interactions gained by paralogous pairs over time
are explained by the formation of de novo interactions. (A3) The resulting network. (B1) Gene duplication. (B2) An interacting partner duplicates,
including the loss of a redundant interaction. (B3) Another partner duplicates and loses a redundant interaction. (B4) The resulting network is
indistinguishable from that postulated for neofunctionalization.
doi:10.1371/journal.pcbi.1000252.g004

Figure 5. A fungal phylogenetic tree showing ancestral species
nodes into which Saccharomyces cerevisiae duplicates are
grouped (T0–T3). Groupings were generated from gene trees reported
in reference [28]. Ancient duplications occurred in ancestral node T3 and
the most recent duplications occurred in T0.
doi:10.1371/journal.pcbi.1000252.g005

Questioning the Ubiquity of Neofunctionalization
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duplication scenarios can be modeled by considering only small

subnetworks. We enumerated all connected networks (i.e, all non-

isomorphic networks with a single component) having three to

nine nodes. This produces 273,191 networks containing a total of

2,445,434 nodes. Each node in every network was duplicated and

the clustering coefficient before and after was measured. In

1,864,851 (over 76%) of the possible duplications DCsimple,0

(Figure 8A). In other words, most simple gene duplications

decrease the clustering coefficient. Table 2 shows the change in

clustering coefficient for enumerated networks as the number of

nodes considered increases.

We then incorporated a complementary loss probability into

our simple gene duplications in the enumerated networks to

quantify the impact subfunctionalization has on the clustering

coefficient. Subfunctionalization generates an even greater pro-

portion of duplications reducing the clustering coefficient.

Figure 8B and 8C show the effect subfunctionalization has on

the clustering coefficient in the enumerated networks.

The preponderance of enumerated network duplications which

reduce the clustering coefficient suggest that additional evolution-

ary mechanisms beyond that produced by simple gene duplication

and subfunctionalization are required to achieve a high clustering

coefficient. Indeed, the black lines in Figure 9 show that networks

evolved via simple duplication and different degrees of subfunc-

tionalization produce clustering coefficients lower than their

random equivalents. The high clustering coefficients relative to

equivalent random networks observed in empirical data are

unattainable using a simple duplication and subfunctionalization

network model.

Solé et al. extend simple duplication and subfunctionalization

by adding a probability a of adding a de novo interaction from a

gene duplicate to each of the existing genes in the network. This

probability is defined as: a~ b
N

where N is the number of nodes

currently in the network and b is a constant reflecting the expected

number of de novo interactions added to each gene duplicate [7]

(see Discussion). The value of b (that is, the frequency of

Figure 6. Change in the number of interacting partners (protein connectivity) over time. Proteins are aligned with the phylogenetic
period from Figure 5 in which they were born (see Methods). Red circles identify the connectivity of gene duplicates born at the indicated
phylogenetic timepoint: T1, T2, and T3. The red trend line indicates that the connectivities of gene duplicates increase over time. Black triangles
identify the same proteins after removing interactions with more recent duplicates. The black trend line indicates that once subsequent duplications
are accounted for, the connectivities of paralogous genes remain largely unchanged. This is consistent with the alternate explanation proposed in
Figure 4B. (A) The combined interaction datasets [29,30] used by He and Zhang [6]. (B) Physical interactions from BioGrid [31].
doi:10.1371/journal.pcbi.1000252.g006

Table 1. Network measures, including C, the clustering coefficient of Saccharomyces cerevisiae protein interaction networks.

Nodes Edges Triangles Connected Triples C Crandom C/Crandom Citation

4674 14294 16821 431696 0.117 0.029 4.0 [6]

1040 1040 3017 34006 0.266 0.040 6.7 [37]

5055 41338 122215 2074478 0.177 0.029 6.1 [31]

4008 9857 8851 180732 0.147 0.015 9.8 [38]

2406 5244 5441 39288 0.415 0.005 83.0 [39]

1642 9100 63084 306505 0.617 0.060 10.3 [40]

Saccharomyces cerevisiae exhibits clustering dramatically greater than equivalent random networks. Protein interaction networks were constructed from various
experimental, curated, and high-confidence Saccharomyces cerevisiae protein interaction datasets as cited. The mean clustering coefficient of equivalent random
networks, Crandom, was calculated as described in Methods.
doi:10.1371/journal.pcbi.1000252.t001

Questioning the Ubiquity of Neofunctionalization
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neofunctionalization) can be selected to achieve any desired

clustering coefficient. In the extreme, new interactions could be

added exhaustively driving the clustering coefficient towards one,

that is, the clustering coefficient of a completely-connected

network. However, the neofunctionalization model adds random

interactions, which drives the clustering coefficient towards

random expectation. We updated our simple duplication and

subfunctionalization model to include neofunctionalization as

implemented in the Solé et al. model. Figure 9A shows the model

for various values of b. Biologically plausible b generate too few

new interactions and are unable to appreciably affect the topology

of the simple duplication model. The value of b derived in Solé et

al. [7] is 0.16. The resulting clustering coefficient (blue line) is

indistinguishable from the simple duplication model. At b = 1.6

(red line), the networks and their random equivalents are nearly

the same. Increasing b to 16 and 50 (brown and green lines

respectively) increases the clustering coefficient but also increases

the clustering coefficient of its random equivalent. These extreme

values for b highlight the close relationship between the

neofunctionalization model and its random equivalent. The

random edges inherent to neofunctionalization drive the clustering

coefficent toward random expectation. At b = 16 and b = 50, each

gene duplicate adds an average of 16 and 50 additional

interactions respectively which is biologically untenable.

In order to achieve higher clustering coefficients, additional

triangles must be added to the network while minimizing the

number of triples added to the network. Gene duplication alone

can increase the number of triangles if the duplicate is a self-

interacting protein. Figure 8A shows that a self-interacting protein

increases the clustering coefficient (DChomomer.0) of the enumer-

ated networks in 2,246,876 (almost 92%) of possible duplications.

In fact, DChomomer is always greater than DCsimple for an equivalent

duplication (a proof of this can be found in the Supporting

Information, Text S1).

To contextualize the ability of homomeric duplication to

increase the clustering coefficient, we updated our simple

duplication model to include homomeric duplication as defined

in Vázquez et al. [32]. Note that Vázquez et al. use the term

heteromerization. Figure 9B shows that the model produces clustering

coefficients markedly higher than those of their random

Figure 8. The effect of gene duplication on the clustering coefficient. Every connected network containing three to nine nodes was
enumerated producing 273,191 networks containing 2,445,434 nodes. (A) Changes to the clustering coefficient resulting from simple duplication and
homomeric duplication. Each of the 2,445,434 nodes was duplicated twice, once as self-interacting (homomeric) and once as non-self-interacting
(simple). Shown is the change in clustering coefficient for each duplication, ordered by magnitude. The enumerated networks serve as possible
subnetworks of larger protein interaction networks. The magnitude of the vertical axis is determined by the size of the network, but the shape of the
curves around zero remains unchanged. (B) The severe effect subfunctionalization has on the clustering coefficient. The vertical axis represents the
portion of the 2,445,434 gene duplications in the enumerated networks which result in a decrease in the clustering coefficient. Probability of Loss is the
probability the gene duplicate (progeny) loses each of its interactions due to subfunctionalization. Even without losses suffered due to
subfunctionalization, simple duplications reduce the clustering coefficient in over 76% of examined duplications. By contrast, clustering coefficients
produced via homomeric duplication are far more likely to increase even in the face of interaction losses caused by subfunctionalization. (C) The effect of
subfunctionalization on aggregate DC. The change in clustering coefficient aggregated for all 2,445,434 duplications at each loss probability. While
aggregate DC of simple duplication is below zero for all loss probabilities, homomeric duplications remain above zero until the Probability of Loss<0.62.
doi:10.1371/journal.pcbi.1000252.g008

Figure 7. Triangles and connected triples in gene duplication.
(A) The network has T = 1 triangle and C= 5 connected triples. (B)
Simple duplication adds a duplicate of the progenitor’s single triangle
to the network. There are cp = kp(kp21)/2 = 3 connected triples centered
around the progeny, and an additional Skg = 5 connected triples
centered on the neighbors. (C) If the progenitor is self-interacting, an
additional edge between the progenitor and progeny is formed, thus
increasing the simple duplication counts by kp = 3 additional triangles
(extruded for clarity) and 2kp additional connected triples (the
progenitor and progeny are both centered on kp additional connected
triples due to the dimerizing interaction).
doi:10.1371/journal.pcbi.1000252.g007

Questioning the Ubiquity of Neofunctionalization
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equivalents. It is notable that the probabilities sampled for

Figure 9B produce substantially high clustering coefficients despite

being much lower than the proportion of homomeric proteins we

reported on earlier in structure and enzyme datasets (71% and

60% respectively) The structure and enzyme probabilities are

omitted from Figure 8B simply because the higher clusterings they

produce result in uninformative lines which are nearly vertical on

the plot. Despite the increase in clustering coefficient due to

homomeric duplication, the random equivalent networks remain

virtually identical to the simple duplication random equivalent,

reflecting the modest effect a single edge added by homomeric

duplication has on the number of edges and hence on the expected

(i.e., random) number of triangles.

Gene duplication, neofunctionalization, subfunctionalization,

and homomeric duplication each uniquely affect the clustering

coefficient. Only homomeric duplication achieves clustering

coefficients appreciably higher than clusterings in equivalent

random networks.

Discussion

A variety of methods have been used to establish the ubiquity of

neofunctionalization in protein interaction networks. For each of

these we have identified very different factors which question of

the ubiquity of neofunctionalizaiton. We now elaborate on our

findings and identify broader implications of our results.

Assay Biases
Biological network research is particularly sensitive to dataset biases

[41]. Identified correlations between topology and essentiality have

been challenged for relying on small-scale assay data which are more

frequently the focus of interesting (i.e., essential) genes [42], and

topological inferences of underlying networks have been questioned

due to the incomplete sampling of biological assays provide [36,43].

The dearth of homomeric interactions in data produced from Y2H

and AP-MS assays is another bias which was not previously recognized

and needs to be accounted for. The line of reasoning establishing the

ubiquity of neofunctionalization was based on such biased data.

Wagner based his conclusions on an assumption that the lack of

homomeric interactions was a true characteristic of the data. Failure

to account for homomeric biases continues to affect evolutionary

inferences. Recently, Presser et al. [44] determined that many more

self-interacting proteins existed prior to the whole-genome duplication

Figure 9. The clustering coefficient of networks featuring simple duplication, neofunctionalization, subfunctionalization, and
homomeric duplication. Each plot shows the clustering coefficient for different probabilities of a gene duplicate losing a redundant interaction
(i.e., different levels of subfunctionalization). Lines are grouped into pairs by color. A solid line is a model with a specific parameter, and a dashed line
of the same color is the model’s random equivalent (see Methods). The black line pairs represent simple duplication and subfunctionalization (i.e., no
neofunctionalization or homomeric duplication) and are therefore identical in both plots. (A) The Solé et al. model which includes
neofunctionalization [7]. (B) Homomeric duplication as found in the Vázquez et al. model [32].
doi:10.1371/journal.pcbi.1000252.g009

Table 2. DC as the number of nodes in the enumerated
networks increases.

DCsimple/DChomomer

Nodes
Possible
Duplications Fraction,0 Fraction.0 Fraction = 0

= 3 6 0.500/0.000 0.000/0.500 0.500/0.500

#4 30 0.500/0.000 0.000/0.733 0.500/0.267

#5 135 0.593/0.037 0.037/0.859 0.370/0.104

#6 807 0.685/0.055 0.082/0.911 0.233/0.035

#7 6778 0.749/0.065 0.146/0.922 0.106/0.013

#8 95714 0.765/0.072 0.190/0.922 0.044/0.006

#9 2445434 0.763/0.078 0.221/0.919 0.017/0.004

As the number of nodes increases in the enumerated networks the probability
that a duplication reduces (increases) DC converges. Shown are probabilities for
both simple duplication and homomeric duplication (duplication of a self-
iteracting node).
doi:10.1371/journal.pcbi.1000252.t002
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event (WGD) in Saccharomyces cerevisiae evolutionary history than

are observed today. This determination was accompanied by a

discussion about evolutionary causes underlying the loss of self-

interactions from the WGD to today. Once the lack of self-interactions

is recognized as a result of assay artifacts and not a true characteristic

of the data, a simpler conclusion can be drawn: Saccharomyces

cerevisiae had many self-interacting proteins prior to the WGD, and

continues to have many self-interacting proteins today.

Concurrent and Subsequent Duplication
Another line of reasoning establishing the ubiquity of neofunc-

tionalization was based on the neighbor sets of duplicated proteins.

When inference relies on the neighbors of protein duplicates,

accurate estimates require recognizing that those neighbors are

also subject to duplication. This omission resulted in He and

Zhang’s erroneous conclusions. He and Zhang are not alone in

failing to recognize this. Concurrent and subsequent duplication

has been universally ignored in estimating the rate of subfunctio-

nalization, that is, the proportion of conserved interactions among

gene duplicates [4,5,45–47] (Figure 10). The probability of

interaction conservation is estimated by dividing the number of

interacting neighbors of both members of a paralogous pair by the

total number of neighbors between the pair. If the duplication

event which produced the paralogous pair predates the duplication

of any of its interacting neighbors, estimates of conservation of

interactions are underestimated. Equivalently, estimates of inter-

action loss are overestimated (Figure 10).

Theoretical Models
We found that simple duplication and subfunctionalization are

unable to produce clustering coefficients observed in empirical

protein interaction networks. Neofunctionalization is also ineffec-

tive at increasing the clustering coefficient unless untenably high

values of b are used. The clustering coefficients resulting from

these high values of b are bound closely to the clustering

coefficients of random equivalent networks, contrary to observed

networks. We found that producing high clustering coefficients

with low clusterings in random equivalents as observed in

empirical protein interaction networks requires the duplication

of self-interacting proteins.

A discrepancy remains between our observations and those of

Solé et al. [7]. They reported that at b = 0.16 their duplication and

diversification model generated clustering coefficients consistent

with Saccharomyces cerevisiae protein interaction networks. As

illustrated in Figure 9A, we found that the same parameter value

produces clustering coefficients much lower than observed protein

networks and lower than equivalent random networks.

This discrepancy is resolved upon further examination. First,

the clustering coefficient Solé et al. report for Saccharomyces

cerevisiae is taken from a 2001 study [3] which in turn calculated

the value based on high-throughput yeast two-hybrid data

generated in 2000 [25]. In the intervening years the available

protein interaction data has increased tremendously and has

resulted in combined datasets with better coverage of the yeast

interactome [30,40]. It is known that an incomplete sample of a

highly-clustered network produces a clustering coefficient lower

than the actual network [48]. Therefore as the coverage of the

sample increases, the clustering coefficient of the sample should

increase as well, eventually reaching that of the actual network

when the sample reaches total coverage. The observed clustering

coefficients we report in Table 1 are significantly larger than

2.261022, the observed clustering coefficient cited by Solé et al.

So although the Solé et al. model produces clustering coefficients

consistent with a 2000 dataset, it is low when compared to the

more complete datasets available today.

A second discrepancy lies in the choice of random equivalent

networks. Solé et al. note that their model produces a clustering

coefficient roughly 10 times higher than random networks. The

random networks they compare against are Erdős-Rényi random

graphs which produce a Poisson degree distribution. This degree

distribution is quite different than the power law degree

distribution of protein interaction networks [49]. A more

appropriate network comparison is against a network having an

identical degree distribution, but with the edges randomized

[50,51]. Once equivalent random networks are employed, the

reported 10-fold increase in clustering coefficient over random

disappears. In fact, at b = 0.16 as published by Solé et al., the

model produces clustering coefficients lower than equivalent

random networks.

It is also useful to look beyond the topologies produced by

theoretical models of homomeric duplication and neofunctiona-

lization to the parameters of the models themselves. The Solé et al.

model simulates neofunctionalization by forming de novo

interactions between the newly-created duplicate and each of the

other proteins in the network with probability a. If a is assigned a

constant, gene duplicates will acquire an ever-increasing number

of interacting partners as the network grows. For example, for

a = 0.10, a duplicated gene in a 10-gene network will acquire one

interacting partner on average. By the time the network grows to

100 genes, a gene duplicate will acquire 10 interacting partners on

average. In order to maintain an average connectivity consistent

with observed biological networks, a is adjusted downward as the

network grows. Solé et al.’s duplication and diversification model

calculates a as proportional to the inverse of the number of nodes

currently in the network a~ b
N

� �
[7]. This parameterization is

difficult to justify biologically. It requires a locally occurring

phenomena to be cognizant of a global property of the system, in

this case the total number of proteins.

By contrast, homomeric duplication models have no such

restriction. The model introduced by Vázquez et al. [32] utilizes a

simple constant for the probability of adding an interaction

between the progenitor and progeny genes (i.e., the probability

that a self-interacting protein was duplicated). In other words, gene

duplicates are oblivious to the global state of the system.

Solé et al.’s neofunctionalization model and Vázquez et al.’s

homomeric duplication model have also been compared in other

venues. A study which used machine learning classification to

compare seven network evolution models (including Vázquez et al.

and Solé et al.) to the Drosophila melanogaster PIN found that the

Vázquez et al. model produced networks closest to the Drosophila

PIN [52]. Model validation of homomeric duplication was also

Figure 10. Underestimating the interaction conservation rate
(equivalently, overestimating the interaction loss rate). The
conservation rate is the number of shared interacting partners divided
by the total number of partners. (A) Gene 1 is duplicated to create
paralogous pair 1 & 2. The true conservation rate is 1

2
. (B) A neighbor of

the paralogous pair duplicates and loses a redundant interaction. (C)
The network as observed. The paralogous conservation rate of 1 & 2 is
erroneously underestimated to be 1

3
. Equivalently, the true loss rate of 1

2
is overestimated to be 2

3
.

doi:10.1371/journal.pcbi.1000252.g010
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performed by Ispolatov et al. [53] who found that the Vázquez et

al. model generated clique distributions consistent with those

observed in the Drosophila PIN.

The inability of models featuring neofunctionalization to

produce a clustering coefficient greater than that of random

equivalents, and the absence of a biologically rational method to

produce de novo interactions during the evolution of the network

argues against the prevalence of neofunctionalization. However,

the neofunctionalization model need not be entirely abandoned.

Though the neofunctionalization model has little evolutionary

inferential efficacy, networks produced from the model have some

topological value. The clustering coefficient is just one of several

network measures used regularly in network analysis. Producing

networks with characteristics consistent with observed PIN

topologies is useful in biological network research, and models of

both homomeric duplication and neofunctionalization continue to

have utility in this regard [48,54].

Neofunctionalization Sensu Stricto
Although we have argued against the ubiquity of de novo

interaction gain in protein interaction networks, this does not

correspond to a denial of neofunctionalization. There are

alternative evolutionary phenomena which may result in new

functions, are relevant to protein interactions, and don’t

necessitate de novo interaction gain between extant proteins.

New gene functions may arise through changes in interaction

stochiometry or through the formation of new genes formed by

exon shuffling, domain insertion, domain loss, domain shuffling,

mobile elements, gene fusion, or gene fission [55,56].

Conclusion
Gene duplication is generally accepted as a key component of

evolution, and protein interactions provide an attractive construct

for studying the role of neofunctionalization, subfunctionalization,

and homomeric duplication in evolution. Studies of protein

interactions derived from empirical data and theoretical models of

PIN evolution have regarded ubiquitous neofunctionalization as a

requisite feature of post-duplication evolution. We have demon-

strated assay limitations and the failure to recognize concurrent

gene duplication and subfunctionalization underlie much of the

literature which engender neofunctionalization as a prominent

factor in protein interaction evolution. Furthermore, biologically

implausible parameter requirements and distinctly non-biological

clustering characteristics reduce the support theoretical models

provide to a ubiquitous neofunctionalization argument.

It would be malapropos for us to assert that protein interaction

evolution is absent of neofunctionalization. However, we believe

de novo interaction gain is not as prevalent as previously thought.

We have identified important factors which should be considered

in any vetting of evolutionary interaction phenomenon before

invoking neofunctionalization as a dominant mechanism.

Methods

Self Interactions in PDB
To get structural interactions, we first generated a non-

redundant set of Saccharomyces cerevisiae proteins from the

Protein Data Bank (PDB) [19]. The non-redundant set of protein

complexes was identified in a manner similar to Levy et al. [57].

Specifically, for each structure in the PDB containing a yeast

protein amino acid chain, create a simple undirected graph where

each amino acid chain is an unlabeled node and interactions

between different protein chains are edges. Group structures

according to shared (isomorphic) graph topology. From these build

subgroups according to shared sets of Pfam protein domains found

in the complex. Further subdivide into subgroups containing the

same set of proteins. One member from each of these subgroups is

selected to be a non-redundant structure. The selected member is

that with the X-ray crystallography structure having the greatest

resolution.

We then cross-referenced this non-redundant structure set with

interacting residue data gathered from version 21.0 of iPfam [20].

A protein was identified as self-interacting if there were two

molecules (amino acid chains) of the protein within a complex that

had interacting residues according to iPfam.

Homomeric Interactions in the BRENDA Enzyme
Database

Enzyme subunit composition was derived from the December,

2007 update of the BRENDA database [21]. BRENDA enzymes

with subunit designations of homodimer, dimer, trimer, tetramer,

hexamer, octamer, and nonamer were categorized as self-

interacting. Monomers and heterodimers were categorized as

non-self-interacting.

Correcting for Subsequent Duplications
Gene dating (i.e., assigning genes to one of T3,T2,T1,T0 as

shown in Figure 5) was derived from ‘‘orthogroup’’ gene trees from

reference [28]. Gene duplications in the gene trees were associated

with the phylogenetic nodes in which they occurred.

In Figure 6, black triangles are protein degrees after adjusting

for more recent duplications. A black triangle aligned with T3 is

the connectivity of a gene duplicate born in T3 after interactions

with duplicates born during T2, T1, and T0 are removed. Black

triangles in T2 have had interactions with duplicates born in T1

and T0 removed. Similarly, T1 black triangles have had

interactions with T0 duplicates removed.

Duplications within each time period Ti (i = 1,2,3), occurred

sequentially over a period of evolutionary time and not concur-

rently. For a given duplication occuring in Ti, on average one-half of

the other duplications within Ti occurred subsequent to the given

duplication. Therefore, in addition to removing interactions in

subsequent time periods as specified above, duplications occurring

in the same time period multiplied by 0.5 are also removed.

Singleton genes, that is genes not associated with any

duplication event, are considered to have birthdays preceding T3

in Figure 5. Singletons interacting with plotted proteins are

included in the degree tally, but are not themselves plotted

because, by definition, they did not arise during T3,T2, or T1.

Each duplication has a progenitor, the ancestral gene, and a

progeny, the gene born of the duplication. An issue to be

addressed is which gene is the progenitor and which is the

progeny. In some cases this is unambiguous. For example, an

orthogroup may have three paralogous members: PA, PB, and PC.

A common ancestor would have a single gene: PABC. During

evolution a duplication event would produce an extant progeny

gene (PA) and an ancestral progenitor gene (PBC). However, the

vast majority of orthogroups contain only two genes. In these cases

the duplication event produces two extant genes, making the

assignment of progenitor and progeny ambiguous.

To address this ambiguity, extant genes pairs produced from

duplication events were randomly assigned ‘‘progenitor’’ and

‘‘progeny’’ labels. This random assignment was repeated 100 times

and the protein connectivity of the 100 progeny assignments both

before and after accounting for subsequent duplications was

averaged and plotted as shown in Figure 6.

Duplicate pairs in which both members had degree zero were

omitted from the analysis.
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Duplicates Enriched in Paralogs
All duplication events resulting in two extant genes were paired

and dated as described above. For each paralogous protein pair

born in T3, the non-redundant set of their neighbors was

identified. Paralogous pairs born in T2,T1, and T0 were counted

as neighbors of the T3 pair if both paralogs of the younger pair

were part of the non-redundant set. Paralogous pairs born in T3

were counted at half for the reasons specified above. The

equivalent process was used to identify paralogous neighbors of

pairs born in T2 and T1. The P-value represents the number of

times a random network with identical topology is at least as

enriched in paralogs. To compute the P-value, the gene lables on

the network were randomized 106 and the same computation

done. As the P-value indicates, none of the randomized networks

were as enriched as the empirical networks.

Equivalent Random Networks
Equivalent random networks were generated in order to derive

clustering coefficients. Because self-interactions are not included in

calculating the clustering coefficient, they were ignored for

purposes of creating the random networks. The equivalent

random networks used in Table 1 and Figure 9 were generated

by rewiring links while preserving the degree distribution [51]. At

each iteration a pair of edges were selected at random and one end

from each edge was swapped. If the swap created a duplicate edge

or a self-interaction the swap was aborted and the next iteration

begun. The number of iterations performed was 100E where E is

the number of edges in the network.

Network Enumeration
First note that any connected network with N nodes must have a

minimum of N21 edges (i.e., a tree). All non-isomorphic

connected networks with N nodes were determined in two stages.

In stage one, a set of N-node trees was built from N21-node trees

established in the previous iteration by adding a node and testing

for isomorphism each network generated by adding an edge

between the new node and each existing node.

Stage 2 follows similarly by iteratively testing networks for

isomorphism by adding a single edge to existing N2node networks

until N(N21)/2 edges is reached (i.e., the number of edges in a

completely connected N-node network).

The algorithm begins with the two possible 3-node networks, C3

and P3. Isomorphism is a computationally expensive process.

Therefore, isomorphism comparisons were first pre-screened by

only evaluating networks with an identical number of edges,

nodes, degree distribution, and 2-hop distribution. The algorithm

as described in reference [58] was used to determine network

isomorphism. Table 2 shows cumulative DC of simple duplication

and homomeric duplication of the enumerated networks as the

number of nodes increases.

Neofunctionalization and Homomeric Duplication
Networks

For the plots in Figure 9, each network began with a 100-node

Erdős-Renyı́ seed graph. The seed graph was generated by

randomly adding edges between the N(N21)/2, N = 100 node pair

combinations with a probability p = 0.04. We ensured homogene-

ity by using the same seed graph for each network. Each

simulation included simple duplication and subfunctionalization.

Figure 9A added neofunctionalization, while Figure 9B added

homomeric duplication to simple duplication and subfunctionali-

zation.

Simple duplication is defined as randomly selecting an existing

node in the network, identifying the set of neighbors the selected

node interacts with, and adding a new node to the network which

interacts with an identical set of neighbors. Subfunctionalization is

defined as removing each interaction from the newly-added node

with a given probability. Neofunctionalization is defined as adding

an interaction from the newly-added node to each existing node in

the network with a given probability b. Homomeric duplication is

defined as adding an interaction between the randomly-selected

node (i.e., the progenitor) and the newly-added node (i.e., the

progeny) with a given probability. Newly-added nodes having no

interacting partners after going through the relevant evolutionary

processes were discarded.

Simulated networks were evolved until they reached 5794

nodes, the putative number of yeast genes. Each line plotted in the

figure was based on the mean clustering coefficient of 100

networks for each of 80 loss probabilities: [0.20,0.21,…,0.99].

That is, each line is the result of 806100 = 8000 generated

networks. In the neofunctionalization plot probabilities 0.20 thru

0.39 were not calculated for b = 50 nor were probabilities 0.20

thru 0.22 for beta = 16 due to prohibitive runtime and/or overflow

errors in the 32-bit numbers used to store the number of triangles

and triples in the growing networks.

Supporting Information

Text S1 A proof that the change in clustering coefficient is

always greater for a homomeric duplication than for an equivalent

simple (non-homomeric) duplication.

Found at: doi:10.1371/journal.pcbi.1000252.s001 (0.07 MB PDF)
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