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Abstract

A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at
which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This
correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued
that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in
vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We
analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between
onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of
synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley
model is able to accurately describe the behavior of this system.
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Introduction

In 1952, Hodgkin and Huxley explained how action potentials

are generated through the electrical excitability of neuronal

membranes [1]. Action potentials arise from the synergistic action

of sodium channels and potassium channels, each of which opens

and closes in a voltage dependent fashion. A key feature of their

model is that the channels open independently of each other; the

probability that a channel is open depends only on the membrane

voltage history.

A recent paper [2] challenged this picture. Therein the

dynamics of action potential initiation in cortical neurons in vivo

and in vitro are analyzed. The authors focus on two variables, the

onset potential, i.e. the membrane potential at which an action

potential fires, and the onset rapidity, or rate with which the action

potential initially fires. Naundorf et al. argue that the variability or

span of onset potentials observed in experiments, in conjunction

with their swift onset rapidity, cannot be explained by the

Hodgkin-Huxley model. In particular, within the Hodgkin-Huxley

model they demonstrate through numerical simulations an

antagonistic relationship between these two variables. If param-

eters are adjusted to fit the onset rapidity of the data, the observed

onset span disagrees with the model, and vice versa. To fix this

discrepancy [2] argues for a radical rethinking of the basic

underpinnings of the Hodgkin and Huxley model, in which the

probability of an ion channel being open depends not only on the

membrane potential but also on the local density of channels.

The result reported in [2] was critically analyzed in a recent

letter of D. A. McCormick et al. [3]. In [3] it was proposed that the

observed combination of large onset span and swift onset rapidity

could be captured using a Hodgkin-Huxley model if action

potentials were initiated at one place within the cell, (the axon

initial segment), and then propagated around 30 microns to the

site at which they were recorded, (the soma). Whole-cell recordings

from the soma of cortical pyramidal cells in vitro demonstrated

faster onset rapidity and larger onset span then those obtained

from the axon initial segment. This seemingly compelling

reappraisal of the original data was in turn dissected by Naundorf

et al. in [4] where it is suggested that the physiological setting of [3]

is unrealistic, and the model inadequate.

Here we use a standard technique from theoretical physics (the

path integral) to derive an analytical formula relating the onset

rapidity and onset span. Our analysis applies to the classical

Hodgkin-Huxley model, in addition to generalizations thereof,

including those in which the channel opening probability depends

on channel density [2]. To derive an analytical characterization of

this relationship, we directly compute the probability distribution

of the onset potential and demonstrate how it depends on model

parameters. The formula that we arrive at can be used to compare

experimental observations with the parameter values incorporated

into such models. As anticipated by [2], a broad class of ion

channel models displays an inverse relationship between onset

rapidity and onset span. We find that the parameter relating onset

rapidity to onset span depends on the amount of synaptic

background activity included in the model. Indeed, a range of

background activity exists where the classical Hodgkin-Huxley

model agrees with the experimental data reported in [2].

Model

We first review the essential framework of Hodgkin-Huxley type

models for action potential generation. The dynamics of the

membrane potential V of a section of neuron, assumed to be

spatially homogeneous, are given by [1]:

Cm
dV

dt
~{INa{IK{IM{gL(V{EL)z

1

A
Isyn, ð1Þ
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where

INa~gNaPNa V ,tð Þ V{ENað Þ,

IK~gKdPKd V ,tð Þ V{EKð Þ,

IM~gMPM V ,tð Þ V{EKð Þ

Here Cm is the membrane capacitance, gX is the maximal

conductance of channels of type X , PX is the probability that a

channel of type X is open, EX is the reversal potential for channel

type X and the subscripts Na, K and M refer to sodium,

potassium and M-type potassium channels respectively. A leak

current is included with conductance gL and reversal potential EL,

A is the membrane area, while Isyn is the current resulting from

synaptic background activity [5]. Background activity is typically

modeled by assuming synaptic conductances are stochastic and

consists of an excitatory conductance geð Þ with reversal potential

Ee and an inhibitory conductance gIð Þ with reversal potential EI ,

as found in [6] so that

Isyn~ge tð Þ V{Eeð ÞzgI tð Þ V{EIð Þ: ð2Þ

In [2] the conductances ge tð Þ and gI tð Þ are modeled by Ornstein-

Uhlenbeck processes with correlation times te and tI , and noise

diffusion coefficients De and DI respectively [7].

We are interested in understanding from this model the

relationship between onset span and onset rapidity, as defined

by [2]. As described above, the onset rapidity is the rate at which

the voltage increases; near onset the increase in voltage is

exponential and so is given by the slope of a plot of dV=dt versus

V . The onset span measures the variability of the voltage threshold

for action potential initiation, [2] defines this threshold as the

voltage at which dV=dt~s, and takes s~10 mV ms{1. Due to

the stochastic synaptic background, there is a distribution of

voltages at which the voltage threshold is attained; the onset span is

given by the width of this distribution. We calculate the probability

distribution of voltage thresholds, and derive the onset span from

the moments of this distribution.

Results/Discussion

To proceed we use the fact that, at action potential initiation, we

need only consider the sodium channels. This is because the

potassium channels respond too slowly for their dynamics to

influence the voltage V [8]. Moreover, near threshold, the

probability that a sodium channel is open depends only on the

membrane voltage V . This probability is traditionally measured

by the so-called activation curve [9], where PNa V ,tð Þ~PNa Vð Þ.
Under these assumptions, Eq. (1) reduces to

Cm
dV

dt
~{gNaPNa Vð Þ V{ENað Þ

{ gKdzgMð Þ V{EKð Þ{gL V{ELð Þ{ 1

A
Isyn:

ð3Þ

Action potential onset occurs when V reaches V�, where V� is an

unstable equilibrium of Eq.(3) in the absence of noise. Below V�

the membrane potential relaxes to its resting potential, whereas

above V� an action potential fires. To study the dynamics near

onset, we therefore write V~V�zx, and expand equation (3) to

leading order in x, obtaining

dx

dt
~axzg tð Þ, ð4Þ

where

a~

{
1

Cm

gNa

dPNa V �ð Þ
dV

V �{ENað ÞzgNaP V �ð Þz gKdzgMzgLð Þ
� �

,

and

g tð Þ~{
1

ACm

Isyn V�zxð Þ

~
1

ACm

ge tð Þ V�zx{Eeð ÞzgI tð Þ V�zx{EIð Þð Þ:

We use the parameter values Ee~0 mV and EI~{75 mV as

found in [6] and used in [2]. Thus g tð Þ~
1

ACm
ge tð ÞzgI tð Þð Þ V�ð Þz75gI tð Þ½ �. Near threshold the synaptic

background itself is a single gaussian noise source with diffusion

constant characterized by

D~
1

A2C2
m

752DIz V�ð Þ2 DIzDeð Þ
� �

:

Note that in equation (4), a is the onset rapidity. According to

[2],the voltage threshold is defined as the voltage at which _xx~s,

where _xx denotes the time derivative of x. Owing to the noise

source g there is a range of x values at which this condition is

attained. The onset span describes the range observed, and is

related to the standard deviation of the probability distribution for

these voltage thresholds.

Consider trajectories x tð Þ subject to the boundary conditions

x 0ð Þ~0 and _xx Tð Þ~s, where T is the time at which the voltage

threshold is attained. There is a distribution of times T at which

the threshold condition can be met. Moreover, for a given T , there

is a distribution of voltages x Tð Þ that the trajectory might attain at

time T . This distribution is characterized by a mean x� Tð Þ, as well

as a variance dx Tð Þ2. The total variance of the voltage threshold is

Author Summary

In 1952, Hodgkin and Huxley described the underlying
mechanism for the firing of action potentials through
which information is propagated in the nervous system.
Hodgkin and Huxley’s model relies on the opening and
closing of channels, selectively allowing ions to move
across the membrane. In the original picture, the channels
open independently of one another. A recent paper argues
that this model is incapable of modeling a set of action
potential data recorded in the cortical neurons of cats.
Instead the authors suggest that to model their data it is
necessary to conclude that ion channels open coopera-
tively, so that opening one channel increases the chance
that another channel opens. We analyze the initiation of
action potentials using a method from theoretical physics,
the path integral. We demonstrate that deviations of the
data from the predictions of the Hodgkin-Huxley model
hinge on measurement of the noise strength.
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therefore given by

S2~

ð
P Tð Þx Tð Þ2 dT{

ð
P Tð Þx Tð Þ dT

� �2

z

ð
P Tð Þ dx Tð Þ2

h i
dT ,

ð5Þ

where P Tð Þ is the probability that the voltage threshold occurs at

time T , and {ð Þ denotes the expectation. The first two terms of

equation (5) make up the variance of mean values x� Tð Þ that

occur owing to the range of times T at which the threshold

condition is met. For each such time T , the final term sums the

variance of voltages x Tð Þ likely to be reached about the mean

value x� Tð Þ.
Equation (5) is the fundamental equation for the onset span: it

requires us to compute x� Tð Þ, P Tð Þ and dx Tð Þ. To proceed, we

use the fact that the noise source g tð Þ is Gaussian with variance D,

and therefore the probability density Q g½ � of a given realization g
of the noise between 0ƒtƒT is

Q g½ �!exp {
1

2D

ðT

0

g sð Þ2 ds

� �
:

This leads to a path integral formulation of the probability of

realizing a particular trajectory x tð Þ with 0ƒtƒT , as developed

in [10]. As equation (4) implies g~
dx

dt
{ax, we find

Q x½ �!
ð

exp {
1

2D

ðT

0

dx

dt
{ax

� �2

dt

" #
Dx tð Þ: ð6Þ

Here the integral is taken over all the possible paths that x tð Þ
might take between time t~0 and t~T . Some paths are of course

more likely then others; application of the Euler-Lagrange

equation finds that the most probable trajectory x� of Eq. (6) is

the saddle point. It minimizes

ðT

0

dx

dt
{ax

� �2

dt,

subject to the boundary conditions x 0ð Þ~0 and _xx Tð Þ~s and

therefore satisfies

€xx{a2x~0:

The most probable trajectory is the minimum of this quantity by

definition. Since the probability density is of the form e{M , where

M*
ð

_xx{axð Þ2 is positive definite, the trajectory that minimizes

M maximizes the probability. Imposing the boundary conditions

we have

x� tð Þ~ s sinh at

a cosh aT
: ð7Þ

We can use insert this solution into Eq. (6), in order to compute the

probability density of this trajectory occurring. We obtain

Q x�½ �~
C0ffiffiffiffiffiffiffiffiffi
2pD
p exp

s2

4aD cosh2 aT
e{2aT{1
� 	� �

ð8Þ

It is convenient to rewrite this formula by defining the

dimensionless parameters l~
sffiffiffiffiffiffiffi
Da
p and t~aT . Since x� Tð Þ is

a monotonic function of T and thus also of t we can transform this

to the probability density that the voltage threshold is achieved at

time T , namely

P tð Þ~ C1

a cosh2 t
exp

l2

4 cosh2 t
e{2t{1
� 	" #

: ð9Þ

In Eqs. (8) and (9) the constants C0 and C1 are set by the

normalization condition.

We have now computed two of the three quantities needed to

evaluate Eq. (5) for the onset span S. Thus we are able to evaluate

the first two terms of this equations. Our theory has captured the

probability distribution of the mean, but we also need to compute

the variance about this mean in order to fully evaluate Eq. (5) for

S. We can calculate this variance by noting that a general solution

that satisfies x 0ð Þ~0 and _xx Tð Þ~s can be written as x~x�zdx,

where dx can be expanded in the Fourier series

dx~
X

n

bn sin
nz1=2ð Þpt

T

� �
:

Substituting this into Eq. (6), we obtain

P x�zdx½ �~

C2P x�½ �
ð
P

n§0
exp {

T

2D
b2

n

p2

T2
nz

1

2

� �2

za2

 !" #
Dx,

ð10Þ

where C2 is a normalization constant. This demonstrates that the

total probability distribution is a product of the probability for the

mean trajectory x�, with Gaussian probability distributions for

each of the bns. Now, Eq. (10) shows that each bn has mean zero

and variance

Var bnð Þ~
D

T p2

T2 nz 1
2

� 	2
za2

� � :Figure 1. Evaluation of F lð Þ. Numerical evaluation of the function
F lð Þ as defined in (13) above.
doi:10.1371/journal.pcbi.1000265.g001
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Hence the variance of dx is given by

dx Tð Þ2
� �

~
D

a

X
n

1

t p2

t2 nz 1
2

� 	2
z1

� �:D

a
G tð Þ, ð11Þ

where we have again used the dimensionless parameters t~aT

and l as defined above.

We now can evaluate Eq. 5 for S. Taking Eqs. (7),(9) and (11)

and letting H tð Þ~tanht we have

S2~
D

a
l2

ð
H2 tð ÞPx tð Þdt{ l

ð
H tð ÞPx tð Þdt

� �2
"

z

ð
G tð ÞPx tð Þdt

� ð12Þ

:
D

a
F lð Þ: ð13Þ

The first two terms of Eq. (12) are the variance of the voltages

reached by the mean path x� Tð Þ, for each time T at which the

threshold might be reached. The last term adds in the variance

about the mean path for each value of T , that is the variability

from dx. Equation (12) is the central result of this paper, directly

relating the onset span S to the noise strength D, the voltage

threshold s and the onset rapidity a. Figure 1 shows a numerical

evaluation of F lð Þ.
Asymptotic analysis of the integral in Eq. (12) shows that at

small l, F lð Þ?0:0629, and at large l, F lð Þ*l2



4 (Figure 1).

Hence we obtain

S?0:2508

ffiffiffiffi
D

a

r
as l?0, ð14Þ

S?
s

2a
as l??: ð15Þ

We note that the low l limit describes the behavior of a simple

random walk; here a small value of l corresponds to a low

Figure 2. Simulation and differentiation of trajectories with different noise strengths. Pairs of trajectories simulated using (4) with (A)
onset rapidity a~20 ms{1 and noise D~1 mV ms{1 and (B) a~20 ms{1 and D~400 mV ms{1 . (C,D) As described in the text, an exponential curve
was fit to each of the trajectories simulated. (E,F) The calculated derivative of the trajectories in A) and B) plotted as function of the voltage.
doi:10.1371/journal.pcbi.1000265.g002
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threshold for the derivative. Thus the variance of onset voltages is

simply the variance of all possible trajectories the random walk

might take. In the high l limit the size of the noise term ceases to

much affect the variance of onset voltages. As the derivative

threshold is high in this case, the deterministic exponential growth

behavior will dominate those trajectories that reach the threshold.

Thus we have calculated the variance of voltages at which

action potential onset occurs as a function of the onset rapidity a,

the onset threshold s and the level D of synaptic background

activity present. In Figure 2A we have simulated a pair of

trajectories with parameter values a~20 ms{1 and

D~1 mV2 ms{1, and in Figure 2B a pair with parameter values

a~20 ms{1 and D~400 mV2 ms{1. To ascertain the onset

potential of each simulated trajectory we need to find the voltage

at which the derivative of the trajectory first exceeds the threshold.

As the model in (4) is not differentiable, it is necessary to fit a

‘smoothed’ curve to each trajectory, and find the derivative of this

curve. In Figure 2C and 2D we have fitted an exponential curve

with equation Becx to each simulated trajectory. Figure 2E and 2F

show the derivative extracted as a function of the voltage.

To demonstrate the validity of our analysis, we use the reduced

Hodgkin Huxley model described by (4) to simulate trajectories

and compare the onset span we observe for particular sets of

parameter values with that predicted by our analysis. In order to

simulate the gaussian noise source g tð Þ in Eq. (4) we use a Wiener

process with the appropriate diffusion constant. In Figure 3 we

choose two sets of parameter values and compare the range of

onset potentials found by simulation with that predicted by our

analysis. The black stars are the points at which each trajectory

crossed the derivative threshold. On each plot the endpoints were

grouped into bins of width 20dt. The average voltage in each bin is

plotted in magenta, while the mean onset voltage at the center of

each bin as predicted by our analysis is plotted in red. Similarly the

standard deviation about the mean in each bin is plotted in cyan,

and can be compared with the standard deviation predicted by our

analysis which has been plotted in green. We observe that both the

mean onset potential and the standard deviation about the mean

at each time point found in the simulations is well matched by that

predicted by our analysis.

In both the low l limit and the high l limit we found in Eq. (14)

that there is indeed an antagonistic relationship between S and a,

as argued by Naundorf et al. [2]. They observed that changing the

parameters of the activation curve and the peak sodium

conductance led to antagonistic changes in the onset rapidity

and the onset span; hence they were not able to fit the Hodgkin-

Huxley model to their data. Equations (14) and (15) show that the

antagonistic relationship between S and a is controlled by D in the

limit of low l, and s in the limit of high l. Neither D (the variance

of the synaptic noise strength) nor s (the criterion for the voltage

threshold) were varied in the simulations of Naundorf et al. [2]. We

observe that our analysis can also be applied to the cooperative

model proposed in [2], in which the probability of channel

opening depends on both the membrane voltage, and the local

channel density. In the vicinity of the unstable fixed point,

incorporating the local channel density alters the value of a, but

does not change the form of equation (4).

We now compare the theory to the results of Naundorf. In their

experiments, they measure the onset span as the difference

between the maximum and minimum voltage threshold that is

measured. Since 99.7% of observations fall within three standard

deviations of the mean, we can approximate the onset span of

between 50 and 500 trials as six times the standard deviation S.

We assume that the calculation of the onset span from the

simulations in Naundorf was done in the same fashion.

In Figure 4 we have calculated the onset span as a function of a
using different values of D. Changing the noise strength allows the

Figure 3. Comparison of simulations and theory for different parameter values. Trajectories (10000) were simulated as in Figure 2 with the
following sets of parameter values: (A) s~25 mV ms{1 , D~1 mV2 ms{1 and a~10 ms{1 , (B) s~50 mV ms{1 , D~25 mV2 ms{1 and a~10 ms{1. On
each plot the endpoints were grouped into bins of width 20dt. The average voltage in each bin is plotted in magenta, this should be compared with
the most likely onset voltage at each time point according to our analysis, plotted in red. Similarly the standard deviation in each bin is plotted in
cyan, and can be compared with the standard deviation predicted by our analysis at each time point, plotted in green.
doi:10.1371/journal.pcbi.1000265.g003
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theoretical curves to move between the various regimes observed

experimentally. For most of the curves through the experimental

data, a noise diffusion constant of around D~25 to 100 mV2 ms{1

fits the data well. Although this is a larger diffusion constant than

that apparently used in the simulations of Naundorf et al., this value

does a good job of emulating the experimental trajectories shown in

Figure 2C and 2D of [2]. Figure 2B shows a simulated trajectory

with noise strength D~400 mV2 ms{1 while Figure 2A shows a

simulation with a smaller diffusion coefficient of D~1 mV2 ms{1.

The voltage trace at D~400 is visually similar to the behavior in

Figure 2B of Naundorf in the vicinity of the unstable fixed point,

whereas Figure 2A does not compare well, the noise level is much

too low. Note that because we have linearized around the unstable

fixed point, we can only expect to capture the behavior around the

voltage threshold; this is presumably the reason that our simulations

in Figure 2 do not reproduce the vertical spiking behavior occurring

after action potential onset in Figure 2B of [2].

It is worth noting that additional sources of variance exist when

comparing the experiments to the theory. In particular, (i) the

theory assumes that the voltage threshold occurs precisely when

dV=dt~s ~10 mV=msð Þ; in contrast the experimental data show

substantial variability in s. Additionally (ii) experiments report an

averaged onset rapidity, whereas our analysis indicates a direct

relationship between the onset potential and a. Both factors (i) and

(ii) artificially increase the onset span.

The calculations described here clarify that to understand

whether the experimental data is consistent with the Hodgkin

Huxley picture, it is necessary to understand the corresponding

level of D; ideally, independent measurements of the synaptic

background statistics are required. Intense levels of background

activity characterized by high amplitude membrane potential

fluctuations are known to occur during active states in neocortical

neurons [11]. Combining the theoretical formalism described

herein with measurements of the variance of synaptic conduc-

tances [12], while carefully controlling for other sources of

variability in the measurement, is an excellent direction for future

research.
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