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Abstract

In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that
different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is
that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the
idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end,
we study transcription rate–independent replication-independent coding region histone H3 exchange. We term such
events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent
feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange
that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding
regions might be a way to add or remove certain histone modifications that are important for transcription elongation.
Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint
at a new epigenetic mechanism of transcription regulation.
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Introduction

The nucleosome is the basic repeating unit of the chromatin and

comprises 147 bp of DNA wrapped around an octamer of histone

proteins (two copies of H2A, H2B, H3 and H4). Nucleosome

disassembly and reassembly is tightly coupled with replication,

transcription, DNA repair and heterochromatin silencing (e.g.,

[1,2]). Under normal circumstances, histones are associated with

specific histone chaperones that assist their assembly and

disassembly [3]. During disassembly and reassembly of nucleo-

somes, the original histones might be exchanged (replaced) by

newly synthesized histones [4–8]. Outside of replication, histone

H3 exchange occurs predominantly at promoters, whereas H3

exchange in coding regions is significantly lower [7,8].

Coding region replication-independent H3 exchange varies

from gene to gene. Recent studies have shown that this variation

among coding region is linked to differences in transcription rate

[6–9]. For example, genome-wide studies demonstrate a strong

association between transcription rate and replication-independent

histone H3 exchange in yeast coding regions [7,8]. This

association is expected: During transcription elongation, nucleo-

somes are disassembled in front of the elongating RNA polymerase

II (RNAPII) complex to enable its passage, and reassemble almost

immediately behind it (reviewed by [10–12]). Behind RNAPII, the

original H3/H4 histones might be either exchanged (replaced) or

retained (not replaced; [13]). Therefore, the amount of coding

region H3 exchange is expected to reflect the number of

transcripts produced by RNAPII.

Although it is widely accepted that coding region replication-

independent H3 exchange differences are a consequence of

transcription rate, it is still unknown whether this variability is

also controlled independently of transcription rate. In other words,

it is not clear whether different coding regions can have

substantially different replication-independent H3 exchange even

if they have the same transcription rate. This leads us to investigate

genome-wide coding region H3 exchange independently of both

replication and transcription rate. We address two key questions:

First, is there evidence that transcription rate–independent and

replication-independent H3 exchange in coding regions is a

consistent feature of genes? Second, is there evidence for an active

regulation of this feature?

In this study, we analyzed published data sets of replication-

independent histone H3 exchange in yeast [7,8]. The measured

amount of replication-independent histone H3 exchange is simply

called total exchange, whereas the calculated transcription rate–

independent total exchange is referred to as relative exchange.

Positive (negative) relative exchange implies that the total

exchange is higher (lower) than what is expected based on

transcription rate alone. Importantly, although relative exchange

is independent of transcription rate, it is still likely to be influenced

by the transcription process. We found that relative exchange

varies from gene to gene and is a reproducible feature of genes.

Elevated or reduced relative exchange occurs along the entire

coding region and not only in a specific part of it. Moreover,

relative exchange is a gene-specific property rather than a regional

effect. Finally, we revealed that H3K79 trimethylation is depleted
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in coding regions with hyper relative exchange and enriched in

coding regions with hypo relative exchange. Taken together, our

data provides evidence that coding regions have a characteristic

relative exchange, a new feature of genes. Genes might have either

hyper or hypo relative exchange, irrespective of their total

exchange or transcription rate. Histone exchange in coding

regions might be a way to add or remove certain histone

modifications that are important for transcription elongation.

Therefore, decoupling replication-independent histone exchange

from transcription rate is a process with potential for epigenetic

gene regulation.

Asf1 is a histone H3/H4 chaperone that has been implicated in

histone H3/H4 exchange during elongation [4,14]. Recently it

was shown that outside of replication, Asf1-mediated H3 exchange

globally correlates with the amount of total exchange and with

transcription rate [8]. In addition to Asf1’s role in histone

exchange, Asf1 is also known as a global regulator of gene

expression [15]. Interestingly, many genes are down-regulated by

Asf1, whereas other genes are up-regulated by its influence. This

dual function of Asf1 as specific negative and positive regulator of

gene expression is well documented [2,14,15], but is still largely

unexplained. Here we show a global association between Asf1-

mediated gene expression and relative exchange (but no direct

association with total exchange). Genes with hyper relative

exchange tend to be down regulated by Asf1, whereas genes with

hypo relative exchange are up-regulated by Asf1. Therefore, the

relative exchange property provides insights into the longstanding

question as to the selective positive and negative transcriptional

influence of Asf1.

Results

Replication-Independent and Transcription Rate–
Independent Histone H3 Exchange in Coding Regions

The present work is focused on the understanding of

replication-independent histone H3 exchange in coding regions.

For our study, we used published genome-wide measurements of

histone H3 exchange and RNAPII densities [7,8]. The data was

taken from G1-arrested cells, hence eliminating the contribution of

histone exchange during replication. In the following, transcription

rate is defined as RNAPII density averaged over the coding region.

Total exchange is the measured replication-independent histone H3

exchange averaged over the coding region.

Recent reports show that outside of replication, there is a clear

correlation between coding region replication-independent histone

H3 exchange and RNAPII density (Figure 1A, and Figure S1 in

Text S1; [6–8]). Beyond this global relationship, there is a wide

distribution around the diagonal. Hence, even at the same

transcription rate, different genes differ in their amount of

replication-independent histone H3 exchange. To determine

whether this variation has a biological basis, we extracted and

interpreted this information in a systematic manner as follows:

Relative exchange is the distance of total exchange to a running

average of the total exchange along the transcription rate axis

(Figure 1B). In case that we analyze relative exchange of each

single tiling-array probe (denoted probe’s relative exchange), we used

measurements of total exchange and RNAPII density in a single

probe without averaging over the entire coding region (see

Methods). The calculated relative exchange values eliminate the

contribution of transcription rate from the total exchange in

coding regions. Relative exchange is substantially different and is

not monotonic with the amount of total exchange (see an

illustrative example in Figure 1). Total exchange is replication-

independent, whereas relative exchange is replication-independent

and transcription rate–independent.

The observed relative exchange variation among genes might

be a consequence of biological or experimental noise. To exclude

the latter, we grouped genes into pairs with minimal difference in

transcription rate. Such a gene pair is termed similar-transcription

genes. The relative exchange difference between two similar-

transcription genes was calculated by subtracting the relative

exchange of the gene whose transcription rate is lower from the

paired (higher transcription rate) gene. For comparison, we have

computed the difference between relative exchange replicates

(calculated based on replicates from [8]). Figure 2A demonstrates

that the distribution of relative exchange differences between

similar-transcription genes is broader than the distribution of

differences between replicates, indicating that experimental noise

can only partially account for relative exchange variation [F-test

P,102200 (F-test for significance of difference between variances)].

This observation is particularly significant because of the bias

toward both negative and positive differences between similar-

transcription genes. Whereas the bias toward positive values can

be attributed to the global relationships with transcription rate, this

effect cannot explain the bias toward negative values.

Next, we have investigated the reproducibility of relative

exchange in different laboratories. Total exchange (together with

transcription rate) was measured in two different laboratories

[7,8]. Therefore, we asked whether relative exchange calculated

based on measurement from Rufiange et al. correlates with

relative exchange based on Dion et al. Our rationale is that if the

relative values are only noise, there will be a poor correlation

between relative exchange values taken from two different

laboratories. On the other hand, if relative exchange is

informative, measurements from the two laboratories should show

good correlation. Remarkably, we found that relative exchange

measured by Rufiange et al. exhibit good correlation with relative

exchange measured by Dion et al. (Spearman correlation = 0.84,

P-value,102200, Figure 2B). The correlation among relative

exchange from the two laboratories is almost as good as the

correlation among the measured total exchange replicates

(Spearman correlation = 0.85). We validated that this reproduc-

Author Summary

During nucleosome disassembly and reassembly, evicted
histones are exchanged with newly synthesized histones.
Histone exchange occurs in several DNA metabolism
processes, including replication, transcription, and repair.
Recent reports from several labs show that replication-
independent histone H3 exchange in yeast coding regions
is tightly correlated with transcription rate. We have
computationally shown that histone exchange variability
among genes is not only a consequence of transcription
rate. Instead, each coding region has a characteristic
amount of replication-independent histone exchange,
even when excluding the confounding effect of transcrip-
tion rate. We show that this transcription rate–indepen-
dent exchange, referred to as relative exchange, is a
reproducible and consistent feature of the entire coding
region and cannot be explained by regional effects. Next,
we characterize the relations between relative exchange
and a variety of histone H3 modifications, as well as the
histone chaperone Asf1. Taken together, our analysis
shows that gene-specific replication-independent histone
H3 exchange in coding regions is mediated independently
of transcription rate, thus constituting a new mechanism in
epigenetic transcription regulation.

Gene-Specific Histone Exchange
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ibility is not a byproduct of (i) a bias in total exchange or RNAPII

density measurements, (ii) using average RNAPII density as an

approximation of transcription rate, (iii) GC-content and sequence

properties, (iv) averaging genes of different lengths (see Text S1 for

details). Taken together, Figure 2A and 2B suggest that total

exchange is informative even after eliminating the contribution of

transcription rate (for a quantitative evaluation, see Text S2).

Relative Exchange Is a Gene-Specific Property of Coding
Regions

To examine whether relative exchange is a general property of

genes, we wished to analyze the reproducibility of relative exchange

along the entire coding region. To that end, we divided the genes

into five subsets according to their relative exchange based on Dion

et al. For each subset, we plotted a profile of probe’s relative

exchange throughout the coding region based on Rufiange et al.

(Figure 2C). Note that the probe’s relative exchange values were

calculated based on measurements in single probes and were not

averaged over the coding region (see above and Methods). We

observe that the reproducibility of probe’s relative exchange is found

in each small segment of the coding region.

We next considered the consistency of relative exchange along

the coding region. To that end, we have split each coding region

into six segments of equal length. The relative exchange of a segment

(denoted segmental relative exchange) was calculated using only probes

located within this segment (see Methods). Figure 2D shows that

relative exchange differences between segments of the same coding

region (denoted within genes) tend to be smaller than relative exchange

differences between segments from neighboring genes (denoted

between genes). In agreement, relative exchange variation between

genes is significantly larger than the variation within genes

[P,102200 (F-test for significance of difference between variances)],

indicating the consistency of relative exchange along the coding

region. Notably, the distribution of relative exchange differences

between neighboring genes is similar to the distribution of relative

exchange differences between random genes (Figure 2D). The same

comparison on total exchange (rather than relative exchange) gives

similar results (Figure S2 in Text S2). Taken together, it appears that

each gene has a characteristic relative exchange along the coding

region, and relative exchange is a gene-specific property rather than

a regional effect. Some coding regions have hyper relative exchange (or

hypo relative exchange), based on their total exchange that is relatively

higher (or lower) from what can be expected from their transcription

rate alone. A genome-wide mapping shows that hyper relative

exchange coding regions are scattered throughout the genome

(Figure 3).

Figure 1. An illustration of relative exchange vs. total exchange. (A) A heat map illustrating the functional relationship between transcription
rate (x-axis) and total exchange (y-axis; [8]). Transcription rate is the average RNAPII density over the coding region, whereas total exchange is the
replication-independent histone H3 exchange averaged over the coding region. Each cell represents a 2D bin including all genes with total exchange
and transcription rate in a defined range. The color of the bin represents the number of genes contained within it. Empty and near-empty 2D bins
(below five genes) are colored white, whereas bins with more then five genes are colored blue. The heat map clearly shows that total exchange
correlates with transcription rate (as previously observed by [7,8], see Figure S1 in Text S1). To analyze total exchange without the confounding effect
of transcription rate, we introduced relative exchange. A coding region’s relative exchange is the difference between its total exchange and a running
average of total exchange (the running average is marked as a black curve). For example, the heat map illustrates three coding regions marked in
black, white, and gray circles, whose total exchange values are 21.1, +0.2, and +1.2 (C), but their amount of relative exchange is 21.2, +0.6, and 20.3,
respectively (B). Bottom panels: Red/green represents bins with positive/negative value of total exchange (C) or relative exchange (B).
doi:10.1371/journal.pcbi.1000282.g001
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Relation between Chromatin Modifications and Relative
Exchange

To systematically characterize relative exchange, we compared

it with published genome-wide profiles of histone H3 modifications

(data sources are [8,16–19]; see Text S3 for details). The analysis

was limited to coding regions. Figure 4A demonstrates the

correlation between each modification and relative exchange vis-

à-vis the correlation with total exchange. For each modification,

we calculated its average enrichment in each coding region, and

compared it with the (average) relative or total exchange of the

coding regions. To avoid complications arising from averaging on

coding regions with different lengths, we used Spearman

correlation calculated independently of transcript length. Further,

the total exchange was factored out from the correlation with

relative exchange and vise versa (see Methods). In agreement with

previous observations [8], total exchange is mainly associated with

H3K56 acetylation (H3K56Ac; see the table Figure S3 in Text

S3).

Unexpectedly, we found that relative exchange is tightly related

to H3K79 trimethylation (H3K79me3 [17]). H3K79me3 anti-

correlates with relative exchange (Spearman correlation = 20.42,

P-value = 10288, Figure 4A and 4B) but not with total exchange

(Spearman correlation = 0.01, P-value = 1021), indicating that

H3K79me3 is specifically associated with relative exchange. In

agreement, Figure 4C clearly demonstrates that H3K79me3 is

linked to relative exchange rather than to total exchange (compare

with the bottom panel of Figure 1B). The association holds

throughout the entire coding region (Figure 4D). We obtained the

same results when the association is computed independently of

GC content (data not shown). We conclude that the pattern of

H3K79me3 is related to relative exchange.

Previous studies show that in coding regions, there is a

correlation between H3K79me3 and transcription rate (e.g.,

[17]). We asked whether this correlation holds even when

eliminating the effect of histone exchange. Interestingly, the

general correlation between H3K79me3 and transcription rate

(Spearman correlation = 0.19) becomes much higher when

eliminating the effect of histone exchange (total exchange-

independent Spearman correlation = 0.46). This demonstrates

that any genome-wide analysis of H3K79me3 must take into

consideration the effect of histone H3 exchange.

Histone H3K36 can be a target of acetylation, mono-, di- and

trimethylation (Ac, me, me2, me3, respectively). Recent report

shows that H3K36Ac pattern is inversely related to H3K36me2

and H3K36me3 patterns in coding regions, suggesting that

H3K36 is an ‘acetyl/methyl switch’ [19]. Here we found that

relative exchange is significantly associated with H3K36me3

(Spearman correlation = 20.28, P-value = 10235, Figure S4 in

Text S4), but the association with H3K36Ac is significantly lower

(Spearman correlation P-value = 1023). Therefore, our analysis

Figure 2. Relative exchange is a gene-specific property. (A) Distribution of relative exchange difference between genes with similar
transcription rate (similar-transcription genes, green; [8]) and between replicate measurements (blue; [8]). The plot demonstrates that relative
exchange differences are only partially explained by experimental noise. (B) A scatter plot showing the relationship between relative exchange
calculated based on data from Dion et al. (x-axis, [7]) and Rufiange et al. (y-axis, [8]). The strong correlation indicates that total exchange is still
informative even when eliminating the contribution of transcription rate. (C) The graphs represent composite profiles of probe’s relative exchange
from Rufiange et al., which were divided into five groups according to their relative exchange based on Dion et al. (shown in shades of blue, [7]). The
length of the coding region was divided into six segment bins of equal length and the probes were assigned according to their nearest
corresponding relative position. Outside of the coding region, aligned probes were assigned to 50 bp segment bins. Presented are the probe’s
relative exchange, averaged over all probes at the same group and the same segment bin. The plot demonstrates that relative exchange is
reproducible in each small segment of the coding region. (D) The distribution of relative exchange differences between segments of the same coding
region (red, denoted within genes; see Methods), between neighboring and between random genes (green and blue, respectively; presented are
distances between the first segments). The variance within genes is smaller than the variance between neighboring or random genes, indicating that
relative exchange is consistent along the coding region. Moreover, random and neighboring genes have similar distribution, indicating that relative
exchange is a gene-specific property rather than a regional effect.
doi:10.1371/journal.pcbi.1000282.g002
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indicates that although both H3K36me3 and H3K36Ac are

inversely related, they are associated differentially with relative

exchange.

Asf1-Mediated Exchange Is Linked to Total Exchange
The histone chaperone Asf1 is important for disassembly and

reassembly of H3/H4 histones during DNA replication, repair,

and heterochromatin silencing. Asf1 is the only yeast histone

chaperone that was implicated in histone H3/H4 exchange during

elongation [4,14]. Outside of replication, the contribution of Asf1

to histone H3 exchange strongly correlates with both total

exchange and transcription rate [8]. The fact that Asf1 has a

role in histone exchange prompted us to examine its relations with

relative exchange. To that end, we used log change total exchange

in wild type vs. asf1D, denoted Asf1-mediated exchange (data taken

from [8]). The higher Asf1-mediated exchange, the higher the

contribution of Asf1 to total exchange. Using this data, we have

confirmed the correlation between Asf1-mediated exchange and

total exchange (Figure 5A; Spearman correlation = 0.54, P-

value,102154, [8]).

Figure 3. Chromosomal distribution of the 500 coding regions with the highest relative exchange (relative exchange.0.7).
doi:10.1371/journal.pcbi.1000282.g003

Figure 4. H3K79 trimethylation in coding regions is tightly linked to relative exchange. (A) A histogram showing the correlation between
each histone H3 modification (x-axis; Text S3) and two histone exchange measures: relative exchange (black) or total exchange (gray) in coding
regions. y-Axis: 2log P-value of Spearman correlation (see Methods). Positive/negative correlations appear above/below the x-axis. Among all histone
marks, H3K79me3 has the strongest association with relative exchange. (B) Plot of the relationship among H3K79me3 enrichment against relative
exchange in coding regions. The plot was generated using a moving average (window = 100, step = 1). H3K79me3 enrichment is the log2 ratio of
H3K79me3 ChIP vs. anti-H3 ChIP [17]. (C) A heat map illustrating the functional relationship between transcription rate (x-axis, [8]), total exchange in
coding regions (y-axis, [8]), and H3K79me3 enrichment in coding regions (color-coded). The heat map is depicted as in Figure 1A, except that the
color-coding is different (see Methods). High/low H3k79me3 enrichment is indicated in red/green. The heat map demonstrates that H3K79me3 is
linked to relative exchange but not to total exchange. (D) Composite profiles of probe’s relative exchange along the coding region. Coding regions
were divided into five groups according to their average H3K79me3 enrichment (shown in shades of blue). The plot is depicted as in Figure 2C,
except that the partition into groups is different. We observe that the link between H3K79me3 enrichment and relative exchange holds along the
entire coding region.
doi:10.1371/journal.pcbi.1000282.g004
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We next sought to investigate the relations between Asf1-

mediated exchange and transcription rate. In agreement with

previous reports, we found that Asf1-mediated exchange indeed

correlates with transcription rate (Spearman correlation = 0.25, P-

value,10253). However, given total exchange, the conditional

correlation is insignificant (total exchange-independent Spearman

P-value.0.1). This can be clearly seen in Figure 5A: in each small

range of total exchange (a row in the 2D heat map), the level of

Asf1-mediated exchange (color-coded) is similar along the entire

row. Therefore, Asf1-mediated exchange is associated with

transcription rate only indirectly, through its association with

total exchange.

Asf1-Mediated Gene Expression Is Linked to Relative
Exchange

Next, we analyzed the influence of Asf1 on gene expression (i.e.,

transcription rate). The presence of Asf1 at promoters is important

for disassembly of H3/H4 upon activation and for reassembly of

H3/H4 upon loss of activation (reviewed in [2,3,20]). In coding

regions, Asf1 travels with elongating RNAPII and influences

RNAPII density [14]. Asf1 is a global transcription factor that

influences transcription of hundreds of genes distributed over the

entire yeast genome [15]. Asf1 has both positive and negative

effect on gene expression. For example, Asf1 up-regulates

transcription of SRL3 and HYR1 (confirmed by RT-PCR, [15]).

On the other hand, Asf1 down-regulates PYK1, PMA1, and

RPS9B (confirmed by RNAPII occupancy in promoter and coding

region, [14]). This dual activity of Asf1 as transcription activator

and transcription repressor is still largely unexplained.

To analyze the transcriptional influence of Asf1, we used

genome-wide gene expression change in asf1D mutant vs. wild type,

referred to as Asf1-mediated gene expression (data taken from [15], see

Text S3 for details). We observe that Asf1-mediated gene expression

is related to relative exchange (Spearman correlation = 0.175, P-

values,10217) but is not associated with total exchange (Spearman

P-values.0.1; Figure 5B and 5C). The association with relative

exchange appears in at least seven out of ten transcription rate bins

(heat map columns in Figure 5B, Spearman correlation.0.15 in

seven independent columns). Moreover, this significant association is

independent of histone exchange in the corresponding promoters

(see details in Text S4). We obtained the same results when the

association is computed independently of GC content or transcript

length (data not shown). Consistent with our observation, SRL3 and

HYR1 are indeed hypo relative exchange genes, whereas PYK1,

PMA1, and RPS9B are hyper relative exchange genes (data not

shown). Next, we considered the possibility that the association

between Asf1-mediated gene expression and relative exchange is not

a consistent feature of the entire coding region. Therefore, we

divided the genes into three subsets according to their Asf1-mediated

gene expression. For each subset, we have plotted a profile of probe’s

relative exchange throughout the coding region (Figure 5D). We

observe that in each segment of the coding region, the Asf1-mediated

gene expression is associated with relative exchange. Therefore,

Asf1-mediated gene expression corresponds to relative exchange

throughout the entire coding region. While the reason for this result

is yet unclear, it appears that hyper relative exchange genes are

down-regulated by Asf1, whereas hypo relative exchange genes are

up-regulated by Asf1.

Figure 5. Relative exchange is linked to Asf1’s transcriptional influence. (A,B) A heat map illustrating the functional relationship between
transcription rate (x-axis, [8]), total exchange in coding regions (y-axis, [8]), and a color-coded Asf1 influence. The heat maps are depicted as in
Figure 1A (see Methods), except that the color coding is different. Plot A is color-coded by Asf1-mediated exchange [8]. Higher/lower dependency of
total exchange on Asf1 is in red/green. Plot B is color-coded by Asf1-mediated gene expression [15]. Down/up-regulation of Asf1 on its transcriptional
targets is indicated in red/green. Asf1-mediated exchange is linked to total exchange (A) (previously reported by [8], but surprisingly Asf1-mediated
gene expression is linked to relative exchange (B). (C) Plot of the relationship among Asf1-mediated gene expression against relative exchange in
coding regions. The graph shows a moving average (window = 100, step = 1) of the Asf1-mediated gene expression over relative exchange. (D)
Composite profiles of probe’s relative exchange along the coding region. Coding regions were divided into three groups according to their Asf1-
mediated gene expression (shown in shades of blue). The plot is depicted as in Figure 2C, except that the partition into groups is different. The plot
shows that the link between Asf1-mediated gene expression and relative exchange holds in each independent segment of the coding region and not
only in specific parts of it.
doi:10.1371/journal.pcbi.1000282.g005
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Discussion

In this study we investigated transcription rate–independent

replication-independent histone H3 exchange in coding regions,

called relative exchange (based on data from [7,8], see Figure 1).

By calculating relative exchange values, we eliminated the

contribution of RNAPII transcription rate from replication-

independent histone H3 exchange. Many studies investigate

transcription-independent exchange, where the histone exchange

is measured in the absence of transcription processes (e.g., [5]).

Unlike those studies, our calculated relative exchange is not

independent of transcription, but only independent of transcrip-

tion rate. Therefore, relative exchange may still represent histone

exchange during transcription, as long as the histone exchange is

not determined solely by transcription rate.

Our analysis provides evidence that total exchange does not

reflect only transcription rate. First, we show that relative

exchange variability, which is independent of transcription rate,

cannot be explained solely by experimental noise (Figure 2A and

2B; see corroborations in Text S2). Next, several analyses suggest

that relative exchange is a feature of an entire coding region rather

than a regional effect: (i) Relative exchange characterizes the entire

coding region and not only a specific part of it (Figure 2C), (ii)

Neighboring genes in the genome do not have a similar relative

exchange (Figure 2D), (iii) relative exchange variation between

neighboring genes is larger than the relative exchange variation

within coding regions (Figure 2D), (iv) hyper relative exchange

genes are scattered throughout the genome (Figure 3), and (v)

functional enrichment tests show that hypo relative exchange

genes are up-regulated by Asf1 and enriched with H3K79me3

(Figures 4 and 5, respectively). Taken together, this collection of

evidence indicates that total exchange variability at the same

transcription rate is a biological property of genes.

Among the numerous modified histone H3 residues, methylated

H3K79 is the only one in the globular core domain, rather than in

the exposed N-terminal tail. H3K79me3 occurs predominantly in

the coding regions of genes and is associated with transcription

activity [17]. Dot1 directly methylates H3K79 and is the main

source of H3K79 methylation [21]. On the other hand, none of

the identified demethylation enzyme families can remove H3K79

methylation, suggesting that H3K79 methylation might be

enzymatically irreversible (e.g., [22]). This study demonstrates

that relative exchange is mainly associated with H3K79me3

(Figure 4). Many possible mechanisms might explain this

association. For example, H3K79me3 might be a signal for the

required level of relative exchange in coding regions. Another

attractive hypothesis is that histone exchange is a functional

alternative to active enzymatic removal of H3K79me3. For

instance, the enrichment of H3K79me3 might reflect the balance

between transcription-coupled H3K79 methylation and exchange-

coupled removal in each round of RNAPII transcription. If this

hypothesis is correct, the slight influence of H3 exchange on the

overall enrichment of H3K79me3 could be easily detected due to

the simple methylation/demethylation system of H3K79 (i.e., only

one methylase and probably no demethylase).

Nucleosomes are dynamically exchanged during many DNA

metabolism processes, including replication, transcription initia-

tion and elongation, DNA repair, heterochromatin silencing and

basal histone exchange. Therefore, it is hard to determine the

process that generates relative exchange. We assume that relative

exchange is not related to replication, since the data was measured

in G1-arrested cells. Several lines of evidence show that relative

exchange is not established during repair or heterochromatin

silencing: First, relative exchange is reproducible in different

datasets (Figure 2B), and thus it is not likely to reflect a temporary

cellular repair status. Second, hyper relative exchange genes are

scattered in the entire genome and not localized to heterochro-

matin regions (Figure 2D and Figure 3). Finally, we validate that

the association between Asf1 and relative exchange is independent

from molecular features that are related to repair or heterochro-

matin silencing (Figure S5 in Text S5).

The hypothesis that relative exchange variation is generated

during transcription elongation is highly attractive. Asf1 travels

with RNAPII along the coding region and is the only known

histone chaperone that mediates histone exchange during

transcription elongation [3,4,14]. Since Asf1 activity is related to

relative exchange (Figure 5), we hypothesize that Asf1 has a gene-

specific level of activity during elongation, thereby increasing or

decreasing the proportion of histone H3 exchange per RNAPII

passage. This generates the observed total exchange variability

across genes that have similar transcription rate. Recent reports

provide evidence for specific targeting of Asf1 to promoters as part

of transcription initiation [23], but to the best of our knowledge, it

is still not clear whether Asf1 has a gene-specific targeting also in

coding regions during elongation.

Several studies show that Asf1 has a selective positive and

negative effect on gene expression, but this dual function is still

largely unexplained [2,14,15]. In this study, we show that Asf1 has

a positive transcriptional influence on hypo relative exchange

genes, but negative transcriptional influence on hyper relative

exchange genes (Figure 5B–5D). This provides an important

insight as to the selective positive and negative transcriptional

influence of Asf1. The connection might be direct, e.g., Asf1

activity might be related to RNAPII poising or a slow elongation.

Alternatively, Asf1 can influence transcription rate indirectly by

promoting relative exchange that removes or adds important

chromatin modifications that are important for transcription. The

latter alternative is supported by recent reports in several

eukaryotes, demonstrating that histone exchange in promoters

regulates gene expression by incorporation/removal of histone

variant H3.3 (reviewed in [24,25]). In yeast, there is no such

histone H3 variant and thus detailed experiments will be necessary

to reveal the precise role of gene-specific relative exchange in

epigenetic transcription regulation.

Methods

Data Preparation
We retrieved yeast ORFs and intergenic regions from the

Saccharomyces Genome Database (http://www.yeastgenome.org,

July 2007). To avoid biases related to genes that are not

transcribed by RNAPII and global effects on histone H3

exchange, we removed non-coding genes, 25-kbp regions near

the telomeres and centromeres, and 1-kbp regions near rRNA,

tRNA, ARS and mitochondrial DNA (see Text S5). In total, we

applied our analysis to 3760 coding regions. Replication-

independent histone H3 exchange data and RNAPII density were

taken from [7,8] (see Text S5).

Computational Analysis
In many cases there is dependency between two molecular

features x and y. To analyze x independently of confounding

influences due to y, we define y-independent x-values as the distance

of each x value from a running average of x values along the y-axis.

This procedure is commonly used in noise analysis (e.g., [26]) and

can be applied recursively to analyze x independently of y1,…,yn

values. For example, relative exchange was defined as a transcription

rate–independent total exchange. Therefore, relative exchange is

Gene-Specific Histone Exchange
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the vertical distance of a given total exchange point from the

running average line in the total exchange–transcription rate plot

(Figure 1A).

Segmental relative exchange was calculated as follows: we split the

coding regions into six equal segments. The relative exchange of

each segment was calculated using only measurements from

probes located within this segment. Figure 2D presents segmental

relative exchange differences between 1-st segments of different

genes, and between the 1-st vs. 4-th and 1-st vs. 6-th segments of

the same gene.

In Figures 2C, 4D and 5D, relative exchange values are

reported per single tiling array probes from Rufiange et al. [8]. For

each probe, we used total exchange and RNAPII density that were

measured only on this probe (referred to as probes’ total exchange and

probe’s RNAPII density, respectively). To calculate relative exchange,

we needed the running average curve of total exchange along the

RNAPII density. To avoid complications arising from different

total exchange along the coding region (slightly higher near 59 and

39 end and lower in the middle, see [8]), we did not calculate a

common running average curve for all probes. Instead, the coding

regions were split into six segments of equal length, and all probes

were assigned to one of six groups according to their coding region

segment. All probes nearby a coding region were split into four

segments (50 bp each) upstream or downstream the coding region.

For each segment, we calculated a running average curve using

only probes within it. The relative exchange of a probe, denoted

probe’s relative exchange, is the distance of its probe’s total exchange to

its segment’s running average curve (on the coordinate of the

probe’s RNAPII density).

In order to present the relation between relative exchange and

other molecular features, we used a heat map, which illustrates the

functional relationship between transcription rate (x-axis), total

exchange (y-axis) and an additional molecular feature (color coded;

Figures 1A, 4C and 5AB). The heat map has the shape of a scatter

plot, but additionally visualizes the values of the data points with

respect to the third feature. In the heat map, each cell represents a

2D bin including all genes with total exchange and transcription

rate in a defined range. Empty and near-empty 2D bins (below five

genes) are colored white. Bins with more then five genes are color-

coded according to the level of a molecular feature averaged over

the genes contained within the bin. The information in each cell is

therefore independent of the information in neighbor cells. In case

of functional relation between relative exchange and a molecular

feature, hyper exchange bins would have different color than hypo

exchange bins (as illustrated in Figure 1B bottom panel).

In this study, all correlations and their P-values are based on the

non-parametric Spearman correlation test [27]. The correlation of x

and z independently of y, referred also as y-independent Spearman

correlation, is the correlation of two variables x and z when

eliminating the contribution of a third or more other variables y.

This was calculated as the Spearman correlation between y-

independent x and y-independent z. Therefore, we applied a non-

parametric equivalent to the statistical calculation of partial

correlation [27].

All reported Spearman correlations between relative (total)

exchange and an additional molecular feature, were calculated

independently of total (relative) exchange and transcript length.

This way, the correlation with any exchange measure is calculated

only after factoring out the contribution of the other exchange

measure and after eliminating potential effects of transcript length.

For each coding region, we used the molecular feature value

averaged over the coding region. Transcript lengths were

computed based on sequencing of cDNA library ([28], see Text

S5 for details).
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