
Can Monkeys Choose Optimally When Faced with Noisy
Stimuli and Unequal Rewards?
Samuel Feng1, Philip Holmes1,2*, Alan Rorie3, William T. Newsome3

1 Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey, United States of America, 2 Department of Mechanical and Aerospace

Engineering, Princeton University, Princeton, New Jersey, United States of America, 3 Howard Hughes Medical Institute and Department of Neurobiology, Stanford

University, Stanford, California, United States of America

Abstract

We review the leaky competing accumulator model for two-alternative forced-choice decisions with cued responses, and
propose extensions to account for the influence of unequal rewards. Assuming that stimulus information is integrated until
the cue to respond arrives and that firing rates of stimulus-selective neurons remain well within physiological bounds, the
model reduces to an Ornstein-Uhlenbeck (OU) process that yields explicit expressions for the psychometric function that
describes accuracy. From these we compute strategies that optimize the rewards expected over blocks of trials
administered with mixed difficulty and reward contingencies. The psychometric function is characterized by two
parameters: its midpoint slope, which quantifies a subject’s ability to extract signal from noise, and its shift, which measures
the bias applied to account for unequal rewards. We fit these to data from two monkeys performing the moving dots task
with mixed coherences and reward schedules. We find that their behaviors averaged over multiple sessions are close to
optimal, with shifts erring in the direction of smaller penalties. We propose two methods for biasing the OU process to
produce such shifts.
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Introduction

There is increasing evidence from in vivo recordings in monkeys

that oculomotor decision making in the brain mimics a drift-diffusion

(DD) process, with neural activity rising to a threshold before

movement initiation [1–4]. In one well-studied task, monkeys are

trained to decide the direction of motion of a field of randomly

moving dots, a fraction of which move coherently in one of two

possible target directions (T1 or T2), and to indicate their choice with

a saccadic eye movement [5–7]. Varying the coherence level

modulates the task difficulty, thereby influencing accuracy.

This paper addresses ongoing experiments on the motion

discrimination task, but unlike most previous studies in which

correct choices of either alternative are equally rewarded, the

experiment is run under four conditions. Rewards may be high for

both alternatives, low for both, high for T1 and low for T2, or low

for T1 and high for T2. This design allows us to study the

interaction between bottom-up (stimulus driven) and top-down

(expectation driven) influences in a simple decision process. A

second distinction with much previous work is that reponses are

delivered following a cue, rather than given freely. We idealize this

as an interrogation protocol (cf. [8]), in which accumulated

information is assessed at the time of the cue rather than when it

passes a threshold, and we model the accumulation by an

Ornstein-Uhlenbeck (OU) process. Closely related work on

human decision making is reported in [9,10].

Consistent with random walk and diffusion processes [4,11–15],

neural activity in brain areas involved in preparing eye

movements, including the lateral intraparietal area (LIP), frontal

eye field and superior colliculus [7,16–18], exhibits an accumu-

lation over time of the motion evidence represented in the middle

temporal area (MT) of extrastriate visual cortex. Under free

response conditions, firing rates in area LIP reach a threshold level

just prior to the saccade [19]. Further strengthening the

connection, it has recently been shown that models of LIP using

heterogeneous pools of spiking neurons can reproduce key features

of this accumulation process [20,21], and that the averaged

activities of sub-populations selective for the target directions

behave much like the two units of the leaky competing

accumulator (LCA) model of Usher and McClelland [22]. In

turn, under suitable constraints, the LCA can be reduced to a one-

dimensional OU process: a generalization of the simpler DD

process [8,23,24]. This allows us to obtain explicit expressions for

psychometric functions (PMFs) that describe accuracy in terms of

model and experimental parameters, and to predict how they

should be shifted to maximize expected returns in case of unequal

rewards.

The goals of this work are to show that PMFs derived from the

OU model describe animal data well, that they can accommodate

reward information and allow optimal performance to be

predicted analytically, and finally, to compare animal behaviors

with those predictions. Analyzing data from two monkeys, we find
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that, when faced with unequal rewards, both animals bias their

PMFs in the appropriate directions, but by amounts larger than

the optimal shifts. However, in doing so they respectively sacrifice

less than 1% and 2% of their expected maximum rewards, for all

coherence conditions, based on their signal-discrimination abilities

(sensitivities), averaged over all session of trials. They achieve this

in spite of significant variability from session to session, across

which the parameters that describe their sensitivity to stimuli and

reward biases show little correlation with the relationships that

optimality theory predicts.

This paper extends a recent study that describes fits of

behavioral data from monkeys learning the moving dots task,

which also shows that DD and OU processes can provide good

descriptions of psychometric functions (PMFs) [25]. A related

study of humans and mice performing a task that requires time

estimation [26] shows that those subjects also approached optimal

behavior. The paper is organised as follows. After reviewing

experimental procedures in the Methods section, we describe the

LCA model and its reduction to OU and DD processes, propose

simple models for the influence of biased rewards, and display

examples of the resulting psychometric functions. The Results

section contains the optimality analysis, followed by fits of the

theory to data from two animals and assessments of their

performances. A discussion closes the paper.

Methods

Behavioral Studies
To motivate the theoretical developments that follow, we start

by briefly describing the experiment. More details will be

provided, along with reports of electrophysiological data, in a

subsequent publication.

Procedures. Two adult male rhesus monkeys, A and T (12 and

14 kg), were trained on a two-alternative, forced-choice, motion

discrimination task with multiple reward contingences. Daily access

to fluids was controlled during training and experimental periods to

promote behavioral motivation. Prior to training, the monkeys were

prepared surgically with a head-holding device [27] and a scleral

search coil for monitoring eye position [28]. All surgical, behavioral,

and animal care procedures complied with National Institutes of

Health guidelines and were approved by the Stanford University

Institutional Animal Care and Use Committee.

During both training and experimental sessions monkeys sat in

a primate chair at a viewing distance of 57 cm from a color

monitor, on which visual stimuli were presented under computer

control. The monkeys’ heads were positioned stably using the

head-holding device, and eye position was monitored with a

magnetic search coil apparatus (0.1u resolution; CNC Engineer-

ing, Seattle, WA). Behavioral control and data acquisition were

managed by a PC-compatible computer running the QNX

Software Systems (Ottawa, Canada) real-time operating system.

The experimental paradigm was implemented in the NIH Rex

programming environment [29]. Visual stimuli were generated by

a second computer and displayed using the Cambridge Research

Systems VSG (Kent, UK) graphics card and accompanying

software. Liquid rewards were delivered via a gravity-fed juice

tube placed near the animal’s mouth, activated by a computer-

controlled solenoid valve. Subsequent data analyses and computer

simulations were performed using the Mathworks MATLAB

(Natick, MA) programming environment.

Motion stimulus. The monkeys performed a two-

alternative, forced-choice, motion discrimination task that has

been used extensively to study both visual motion perception (e.g.

[30–32]) and visually-based decision making [17,33,34]. The

stimulus is composed of white dots, viewed through a circular

aperture, on a dark computer screen. On each trial a variable

proportion of the dots moved coherently in one of two opposite

directions while the remaining dots flashed transiently at random

locations and times (for details see [5]), and the animals reported

which of two possible directions of motion was present.

Discriminability was varied parametrically from trial to trial by

adjusting the percentage of the dots in coherent motion: the task

was easy if a large proportion of dots moved coherently (i.e. 50%

or 100% coherence), but became progressively more difficult as

coherence decreased. In what follows we indicate the motion

direction by signing the coherence: thus +25% and 225%

coherences are equally difficult to discriminate, but the coherent

dots move in opposite directions. Typically, the animals viewed a

range of signed coherences spanning psychophysical threshold.

Animals were always rewarded for indicating the correct direction

of motion, except that 0% coherence was rewarded randomly

(50% probability) irrespective of their choices.

Experimental paradigm. The horizontal row of panels in

Figure 1 illustrates the sequence of events comprising a typical

trial, which began with the onset of a small, yellow dot that the

monkey must visually fixate for 150 msec. Next, two saccade

targets appeared (open gray circles) 10u eccentric from the visual

fixation point and 180u apart from each other, in-line with the axis

of motion to be discriminated. By convention, target 1 (T1)

corresponds to positive coherence and target 2 (T2) to negative

coherence. After 250 msec the targets changed color, indicating

the magnitude of reward available for correctly choosing that

target. A blue target indicated a low magnitude (L) reward (1 unit,

<0.12 ml of juice), while a red target indicated a high magnitude

(H) reward (2 units). There were four reward conditions overall,

schematized by the column of four panels in the Reward segment

of Figure 1: (1) LL, in which both targets were blue, (2) HH, in

which both were red, (3) HL, in which T1 was red and T2 blue,

and (4) LH: the mirror image of HL.

The colored targets were visible for 250 msec prior to onset of

the motion stimulus which appeared for 500 msec, centered on the

Author Summary

Decisions are commonly based on multiple sources of
information. In a forced choice task, for example, sensory
information about the identity of a stimulus may be
combined with prior information about the amount of
reward associated with each choice. We employed a well-
characterized motion discrimination task to examine how
animals combine such sources of information and whether
they weigh these components so as to harvest rewards
optimally. Two monkeys discriminated the direction of
motion in a family of noisy random dot stimuli. The
animals were informed before each trial whether reward
outcomes were equal or unequal for the two alternatives,
and if unequal, which alternative promised the larger
reward. Predictably, choices were biased toward the larger
reward in the unequal reward conditions. We develop a
decision-making model that describes the animals’ sensi-
tivities to the visual stimulus and permits us to calculate
the choice bias that yields optimal reward harvesting. We
find that the monkeys’ performance is close to optimal;
remarkably, the animals garner 98%+ of their maximum
possible rewards. This study adds to the growing evidence
that animal foraging behavior can approach optimality
and provides a rigorous theoretical basis for understand-
ing the computations underlying optimality in this and
related tasks.

Optimal Decisions with Unequal Rewards
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fixation point. Following stimulus offset, the monkey was required

to maintain fixation for a variable delay period (300–550 msec,

varied across trials within each session), after which the fixation

point disappeared, cueing the monkey to report his decision with a

saccade to the target corresponding to the perceived direction of

motion. The monkey was given a grace period of 1000 msec to

respond. If he chose the correct direction, he received the reward

indicated by the color of the chosen target. Fixation was enforced

throughout the trial by requiring the monkey to maintain its eye

position within an electronic window (1.25u radius) centered on

the fixation point. Inappropriate breaks of fixation were punished

by aborting the trial and enforcing a time-out period before onset

of the next trial. Psychophysical decisions were identified by

detecting the time of arrival of the monkey’s eye in one of two

electronic windows (1.25u radius) centered on the choice targets.

Trials were presented pseudo-randomly in block-randomized

order. For monkey A, we employed 12 signed coherences, 0%

coherence and four reward conditions, yielding 52 conditions

overall. For monkey T we eliminated two of the lowest motion

coherences because this animal’s psychophysical thresholds were

somewhat higher than those of monkey A, giving 36 conditions

overall. We attempted to acquire 40 trials for each condition,

enabling us to characterize a full psychometric function for each

reward condition, but because the behavioral data were obtained

simultaneously with electrophysiological recordings, we did not

always acquire a full set for each condition (the experiment

typically ended when single unit isolation was lost). For the data

reported in this paper, the number of repetitions obtained for each

experiment ranged from 19 to 40 with a mean of 36. The

behavioral data analyzed here consists of 35 sessions from monkey

A and 25 sessions from monkey T.

Behavioral training. Standard operant conditioning

procedures were used to train both animals, following well-

established procedures in the Newsome laboratory.

Monkey A began the study naive. His basic training stages were:

(1) fixation task (3 weeks), (2) delayed saccade task (3 weeks), (3)

direction discrimination task (3 months), and (4) discrimination

task with varied reward contingencies (2 months). Training on

motion discrimination began with high coherences only and a

short, fixed delay period. White saccade targets cued small, equal

rewards. As the animal’s psychophysical performance improved,

we progressively added more difficult coherences. When the range

of coherences fully spanned psychophysical threshold, we slowly

extended the duration and variability of the delay period to the

final desired range. At this stage the monkey was performing the

final version of the task, lacking only the colored reward cues.

After establishing stable stimulus control of behavior in this

manner, we introduced all four reward contingencies simulta-

neously. Following a brief period of perseveration on the H reward

condition, Monkey A learned reasonably quickly to base decisions

on a mixture of motion and reward information. Training

continued until psychophysical thresholds and bias magnitude

stabilized.

Monkey T had performed the basic direction discrimination

task for a period of years before entering this study. We therefore

began by shaping this animal to perform the discrimination task

with the same timing as for monkey A (2–3 weeks). Once his

performance stabilized, we again introduced the four reward

conditions simultaneously. This animal took much longer than

monkey A to adapt to the new reward contingencies: about five

months. He seemed to explore a wider range of erroneous

strategies before settling on the correct one. While it is tempting to

attribute this to his earlier extended performance of the task with

equal reward contingencies, we do not know this to be true.

Regardless, the behavioral endpoints were very similar for the two

animals, and we therefore conclude that the different training

histories were not relevant to the results of this study. We did not

explicitly shape the magnitude or direction of the behavioral bias

for either monkey; we simply trained the animals until threshold

and bias became asymptotic. Target colors (red and blue) and

associated reward magnitudes (H and L) were fixed throughout the

entire run of training and experimental sessions.

Models for Evidence Accumulation and Choice
We now describe a simple model for two-alternative forced-

choice (2AFC) tasks. Several other models are reviewed in [8],

along with the relations among them and conditions under which

they can be reduced to OU and DD processes. The model yields

explicit expressions that predict psychometric functions and that

reveal how these functions depend upon parameters describing the

stimulus discriminability and reward priors. While optimality

analyses can be conducted using fitted PMFs such as sigmoidal

functions, our derivation links the behavioral data to underlying

neural mechanisms.
The leaky competing accumulator model. The LCA is a

stochastic differential equation [35] whose states x1 tð Þ,x2 tð Þð Þ
describe the activities of two mutually-inhibiting neural

populations, each of which receives noisy sensory input from the

stimulus, and also, in the instantiation developed here, input

derived from reward expectations. See [22,36]. The system may

Figure 1. The motion discrimination task. Target colors cue the magnitude of rewards for correct responses, red denoting a value twice that of
blue. The four panels in the reward segment show the possible reward conditions. See text for full description.
doi:10.1371/journal.pcbi.1000284.g001

Optimal Decisions with Unequal Rewards
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be written as

dx1~ {cx1{bf x2ð ÞzI1 tð Þ½ �dtzsdW1, ð1Þ

dx2~ {cx2{bf x1ð ÞzI2 tð Þ½ �dtzsdW2, ð2Þ

where f :ð Þ is a sigmoidal-type activation (or input-output)

function, c and b, respectively, denote the strengths of leak and

inhibition, and sdWj are independent white noise (Weiner)

increments of r.m.s. strength s. The inputs Ij tð Þ are in general

time-dependent, since stimulus and expectation effects can vary

over the course of a trial. To fix ideas, we may suppose that the

states x1 tð Þ,x2 tð Þð Þ represent short-term averaged firing rates of

LIP neurons sensitive to alternatives 1 and 2. We recognize that

the decision may be formed by interactions among several

oculomotor areas, but note that a partial causal role for LIP has

been demonstrated [34].

Under the interrogation protocol the choice is determined by

the difference x ~
def

x1 tð Þ{x2 tð Þ: if xw0, T1 is chosen, and if

xv0, T2 is chosen. As explained in [8], this models the ‘‘hard

limit’’ of a cued response, in which subjects may not answer before

the cue, and must answer within a short window following it, to

qualify for a reward.

Reduction to an Ornstein-Uhlenbeck process. In the

absence of noise (s~0) and with constant inputs I1,I2, equilibrium

solutions of Eqs. (1–2) lie at the intersections of the nullclines given by

cx1~{bf x2ð ÞzI1 tð Þ and cx2~{bf x1ð ÞzI2 tð Þ, and, depending

on the values of the parameters c,b,I1,I2 and the precise form of f :ð Þ,
there may be one, two or three stable equilibria, corresponding to

low activity in both populations, high activity in x1 and low in x2,

and vice-versa. If the nullclines lie sufficiently close to each other over

the activity range that encompasses the equilibria, it follows that a

one-dimensional, attracting, slow manifold exists that contains both

stable and unstable equilibria, and solutions that connect them

[23,37]: see Figure 2. With s=0 (and Ij tð Þ non-constant), we must

appeal to the theory of stochastic center manifolds to draw a similar,

probabilistic conclusion ([38,39] and Chapter 7 of [40]). For

reduction of higher-dimensional and nonlinear neural systems, see

[41].

To illustrate, we simplify Eqs. (1–2) by linearizing the sigmoidal

function at the central equilibrium point x,xð Þ in the case of equal

inputs Ij(t);I, where x~ {bf xð ÞzI½ �=c. Parameterizing the

sigmoid so that df =dx xð Þ~1, Eqs. (1–2) become

dx1~ {cx1{bx2zI1 tð Þ½ �dtzsdW1, ð3Þ

dx2~ {cx2{bx1zI2 tð Þ½ �dtzsdW2, ð4Þ

and subtracting these equations yields a single scalar SDE for the

activity difference x:

dx~ lxzA tð Þ½ �dtzsdW , ð5Þ

where l~b{c, A tð Þ~I1 tð Þ{I2 tð Þ and dW~dW1{dW2 are

independent white noise increments. Thus, if stimulus A is

displayed, we expect A~I1{I2w0 and vice versa.

Eq. (5) describes an OU process, or, for l~0, a DD process.

The DD process is a continuum limit of the sequential probability

ratio test [8], which is optimal for 2AFC tasks in that it delivers a

decision of guaranteed accuracy in the shortest possible time, or

that, given a fixed decision time, it maximizes accuracy [42,43].

The latter case is relevant to the cued responses considered here.

Prediction of psychometric functions. The probability of

choosing alternative 1 under the interrogation protocol can be

computed from the probability distribution of solutions p x,tð Þ of

Eq. (5), which is governed by the forward Kolmogorov or Fokker-

Planck equation [44]:

Lp

Lt
~{

L
Lx

lxzA tð Þð Þp½ �z s2

2

L2p

Lx2
: ð6Þ

When the distribution of initial data is a Gaussian (normal)

centered about m0,

p x,0ð Þ~ 1ffiffiffiffiffiffiffiffiffiffi
2pn0

p exp {
x{m0ð Þ2

2n0

" #
, ð7Þ

solutions of (6) remain Gaussian as time evolves:

p x,tð Þ~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pn tð Þ

p exp {
x{m tð Þð Þ2

2n tð Þ

" #
, where ð8Þ

m tð Þ~m0eltz

ðt

0

el t{sð ÞA sð Þ ds and n tð Þ~n0e2ltz
s2

2l
e2lt{1
� �

ð9Þ

contain integrated stimulus and noise respectively. Note that

n tð Þw0 regardless of the sign of l, so the square root in Eq. (11) is

well-defined. In the DD limit l~0 m tð Þ and n tð Þ simplify to

m tð Þ~m0z

ðt

0

A sð Þ ds and n tð Þ~n0zs2t: ð10Þ

Henceforth we set n0~0, assuming that all sample paths start

from the same initial condition x 0ð Þ~m0. From Eq. (10) the

probability that T1 is chosen at time t~T can be computed

explicitly as a cumulative normal distribution:

P Tð Þ~
ð?

0

p x,Tð Þdx~
1

2
1zerf

m Tð Þffiffiffiffiffiffiffiffiffiffiffiffi
2n Tð Þ

p
 !" #

: ð11Þ

Figure 2. A typical state space of the LCA model, showing
nullclines on which dxj~0 for s~0 (thin curves), fixed points
(filled circles with arrows indicating stability types) and slow
manifold (dashed line). Diagonal solid line represents one-dimen-
sional state space x of reduced OU model, with associated probability
distribution p x,tð Þ of sample paths.
doi:10.1371/journal.pcbi.1000284.g002
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Here erf yð Þ~ 2=
ffiffiffi
p
p

ð Þ
Ð y

0
exp {u2
� �

du denotes the error function

and Eq. (11) represents a psychometric function (PMF) whose values

rise from 0 to 1 as the argument m
� ffiffiffiffiffi

2n
p� �

runs from 2‘ to +‘, so

multiplying it by 100 gives the expected percentage of T1 choices.

In addition to its dependence on viewing time T , the PMF also

depends on the functional forms of the drift and noise terms

embedded in m tð Þ and n tð Þ. In particular m tð Þ depends on the

coherence or stimulus strength via A tð Þ, and upon prior

expectations or biases that reward information might introduce,

for example via m0 (examples are provided in the next subsection).

To emphasize this we sometimes write the PMF as P C,Tð Þ or

P C,T ; m0ð Þ, to denote its dependence on C and other parameters.

Specifically, we shall examine two aspects of the PMF as a function

of C: the slope
dP tð Þ

dC
at 50% accuracy, and the shift: the value of C at

which P C,Tð Þ~0:5, or equivalently, where m Tð Þ~0.

Models of stimuli and reward biasing. Following [45,46],

we suppose that the part of the drift rate due to the stimulus

depends linearly on coherence: Astim = aC. (While power-law

dependence on C has been introduced to account for behavior

early in training, a linear relationship seems generally adequate for

well-trained animals [46].) Here C[ {1,1½ � (between 100%

leftward and 100% rightward motion coherence), as determined

by the experimenter, and a is a scaling or sensitivity parameter

that allows one to fit data from different subjects, or from one

subject during different epochs of training (Figure 14 of [25]).

We propose two strategies to account for prior reward

information. The first and simplest is to bias the initial condition

at stimulus onset t~0, taking x 0ð Þ~m0w0 if T1 garners a higher

reward (HL) and x 0ð Þ~{m0v0 if T2 does so (LH), with x 0ð Þ~0
for equal rewards (LL and HH). In this case, from Eq. (9), the

integrated drift rate and noise levels are:

m C,tð Þ~m0eltz
aC

l
elt{1
� �

and n tð Þ~ s2

2l
e2lt{1
� �

,

where t[ 0,T½ �,
ð12Þ

and the decision is rendered at the end of the motion period t~T .

Such biasing of initial data is optimal for the free response protocol

if coherences remain fixed over each block of trials [8], but, as we

shall see, other strategies can do equally well under the

interrogation protocol.

Alternatively, motivated by the task sequence of Figure 1, and as

suggested by J.L. McClelland (personal communication), one can

assume that bias enters throughout a reward indication period

(marked ‘‘targets’’ in Figure 1) of duration t and the ensuing

motion period, as a drift term upon upon which the stimulus is

additively superimposed to form a piecewise-constant drift rate:

A C,tð Þ~
b, {tƒtv0,

bzaC, 0ƒtƒT :

�
ð13Þ

From Eqs. (9) the resulting integrated drift and noise during the

motion period 0,T½ � are

m C,tð Þ~ b

l
el tztð Þ{1
� �

z
aC

l
elt{1
� �

and

n tð Þ~ s2

2l
e2l tztð Þ{1
� �

,

ð14Þ

where we set m0~0, since b accounts for reward bias, with bw0 if

T1 has higher reward, bv0 if T2 has higher reward and b~0 for

equal rewards. Note that accumulation of reward information now

begins at t~{t.

The first model assumes that reward information is assimilated

during the target period {t,0½ � and loaded into the initial

accumulator state m0 at motion onset t~0, after which it is

effectively displaced by the stimulus. In the second strategy the

reward information b continues to apply pressure throughout the

motion period 0,T½ �. (Presumably m0 and b should scale

monotonically, but not necessarily linearly, with reward ratio.)

These represent extremes of a range of possible strategies. More

complex time-varying drift functions could be proposed to model

reward expectations, waxing and waning attention to stimuli, and

for the fixation, target and delay periods, but analyses of

electrophysiological data (LIP firing rates), currently in progress,

are required to inform such detailed modeling. Here we simply

assume that the accumulation process starts at reward cue onset

(t~0 or t~{t) and ends at motion offset (t~T ), the decision

state being preserved until the cue to respond appears. Moreover,

as we now show, lacking data with variable stimulus and/or

reward information times, it is impossible to distinguish between

models even as simple as the two described above.

The PMF (11) depends only upon the ratio m Tð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffi

2n Tð Þ
p

(which is one half the descriminability factor d9 of Eq. (7) of [22],

cf. [47]), and in Eqs. (12) and (14) reward biases appear as additive

factors in the numerator m Tð Þ. Thus, if all parameters other than

C are fixed, and C appears linearly as assumed above, the

argument of the PMF can be written in both cases in the simple

form b1 Czb2ð Þ, so that

P C,Tð Þ~ 1

2
1zerf

m Tð Þffiffiffiffiffiffiffiffiffiffiffiffi
2n Tð Þ

p
 !" #

~
1zerf b1 Czb2ð Þ½ �

2
: ð15Þ

Here b1 and b2 respectively determine the slope and shift of the

PMF: the slope at 50% T1 choices being b1=
ffiffiffi
p
p

in the units of

probability of a T1 choice per % coherence, and b2 having the

units of % coherence. In turn, b1 and b2 depend upon the

parameters a,s,l,m0,T ,b, and t introduced above; for the specific

cases of Eqs. (12) and (14), we respectively have:

b1~
a elT{1
� �

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l e2lT{1ð Þ

p , b2~
m0lelT

a elT{1ð Þ , ð16Þ

and b1~
a elT{1
� �

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l e2l tzTð Þ{1ð Þ

p , b2~
b el tzTð Þ{1
� �
a elT{1ð Þ : ð17Þ

The ratios a=s and m0=a or b=a in Eqs. (16) and (17) characterize

a subject’s ability to extract information from the noisy stimulus, and

the weight placed on reward information relative to stimulus.

Experiments in which t and T are varied independently could in

principle distinguish between these cases, but with the present data

we can only fit the slope b1 and shift b2. Nor can we determine

whether the process is best described by a pure DD process with

l~0 and constant drift A, or an OU process with l=0, or, indeed,

whether the drift rate varies with time. Recent experiments on

human subjects with biased rewards that use a range of interrogation

times [9,10] suggests that a leaky competing accumulator model [22]

is indeed appropriate, and data from those experiments may allow

such distinctions to be made.

Examples of psychometric functions. To illustrate how

PMFs depend upon the parameters describing evidence

Optimal Decisions with Unequal Rewards
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accumulation (a,C,s,l,T ) and reward biasing (b,t), we compute

examples based on the second model described above. Substituting

the expressions (14) in Eq. (11), we obtain:

P C,Tð Þ~ 1

2
1zerf

b el tzTð Þ{1
� �

zaC elT{1
� �

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l e2l tzTð Þ{1ð Þ

p
 !" #

: ð18Þ

In case l~0 the exponential expressions simplify (cf. Eqs. (10)),

giving:

P C,Tð Þ~ 1

2
1zerf

b tzTð ÞzaCT

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tzTð Þ

p
 !" #

: ð19Þ

Examples of these PMFs are plotted in Figure 3 for lv0, lw0
and l~0. Parameter values, listed in the caption, are chosen to

illustrate qualitative trends. Note that the slopes of the functions

are lower for l=0 (top row) than for l~0 (bottom), and lowest for

lw0 (middle), illustrating that the DD process l~0 is optimal.

Also, for fixed a,b,t and T , the PMFs are shifted to the left or right

for bw0 and bv0 respectively, by an amount that grows as l
increases from negative to positive.

To understand these trends, we recall that a stable OU process

(lv0) exhibits recency effects while an unstable one (lw0)

exhibits primacy effects [22]. In the former case information

arriving early decays, while for lw0 it grows, so that reward

information in the pre-stimulus cue period exerts a greater

influence, leading to greater shifts. Unstable OU processes also

yield lower accuracy than stable processes. Specifically, the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 2l t . . .ð Þð Þ

p
in Eq. (18) reflects the fact that noise accumulates

during the cue period, leading to accelerating growth of solutions

when lw0 which the stimulus cannot repair. In general, while

accuracy increases monotonically with viewing time, it approaches

a limit below 100% for any l=0: specifically:

lim
T??

P C,Tð Þ~
1
2

1zerf bzaC

s
ffiffiffiffi
lj j

p
� 	
 �

, for lv0,

1
2

1zerf bzaCe{lt

a
ffiffi
l
p

� �h i
, for lw0:

8><
>: ð20Þ

The slopes of the PMF can clearly be increased by setting l~0
and raising the sensitivity-to-noise ratio a=s, but these parameters

are constrained for individual subjects by physiological factors and

by training. Indeed, Eckhoff et al. [25] find that a=s and l remain

stable over relatively long periods (several sessions) for trained

animals. As noted below Eqns. (15–17), the present data does not

allow us to estimate such ‘‘detailed’’ parameters. In the analysis to

follow we therefore adopt the two-parameter form of Eq. (15),

regarding the PMF slope b1, which quantifies sensitivity to stimulus,

as fixed, and seeking shifts in b2 that maximize the overall expected

reward for that sensitivity, although this implies a causal chain that

animals may not follow, as we note in the Discussion.

Results

Optimality Analysis
Given a fixed slope b1, we now ask what is the shift b2 in the

PMF that maximizes expected rewards in the case that the two

alternatives are unequally rewarded. How much should the subject

weight the reward information relative to that in the stimulus, in

order to make optimal use of both?

Two motivating examples. Let r denote the reward

obtained on a typical trial, namely, r1 if alternative 1 is offered

and chosen, and r2 if 2 is offered and chosen. The expected reward

E r½ � is obtained by multiplying each rj by the probability that the

corresponding alternative is chosen, when it appears in the

Figure 3. Psychometric functions showing fraction of T1
choices as a function of coherence C for constant reward bias
b applied before and during motion period. (A) l~{0:2; (B)
l~z0:2; (C) l~0; each panel shows the cases b~z0:1,0 and 20.1
(left to right). Remaining parameters are a~0:005, s~0:2214, t~4 and
T~40 (arbitrary time units). Green lines indicate slopes for zero bias;
arrows show shifts.
doi:10.1371/journal.pcbi.1000284.g003
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stimulus. To make this explicit, first suppose that coherence is

fixed from trial to trial and that the two possible stimuli C~zC

(T1) and C~{C (T2) are equally likely. In this case

E r½ �~r1

P zC; b1,b2

� �
2

zr2

1{P {C; b1,b2

� �� 

2

, ð21Þ

where we use the fact that P C; b1,b2ð Þ and 1{P {C; b1,b2ð Þ½ � are

the average proportions of correct T1 choices and T2 choices for

coherences +C and we write the argument of P explicitly to

indicate its dependence on coherence and the slope and bias

parameters introduced in Eq. (15).

Using Eq. (15) and the fact that

d

du
erf uð Þ~ 2ffiffiffi

p
p exp {u2

� �
, ð22Þ

we may compute the derivatives of P +C; b1,b2

� �
with respect to

b2 to derive a necessary condition for a maximum in E r½ �:

LE r½ �
Lb2

~
b1 r1exp {b2

1 b2zC
� �2

� �
{r2exp {b2

1 b2{C
� �2

� �h i
2
ffiffiffi
p
p

~0:

ð23Þ

This implies that

r1

r2
~

exp {b2
1 b2{C
� �2

� �
exp {b2

1 b2zC
� �2

� �
~exp 4b2

1b2C
� �

, and thus b
opt
2

~
1

4b2
1C

ln
r1

r2

� 	
:

ð24Þ

To verify that (24) identifies the global maximum we compute the

second derivative at b2~b
opt
2 :

L2E r½ �
Lb2

2

����
b

opt

2

~
{b3

1b2Cffiffiffi
p
p r1exp {b2

1 b2zC
� �2

� �h

zr2exp {b2
1 b2{C
� �2

� �i
v0:

ð25Þ

For equal rewards r1~r2 we recover b
opt
2 ~0: an unbiased PMF

with P 0; b1,0ð Þ~0:5, and for a fixed reward ratio, b
opt
2 varies

inversely with C, approaching ‘ as C?0. In this limit the stimulus

contains no information and it is best to always choose the more

lavishly rewarded alternative. Figure 4A (top panel, solid blue

curves) shows examples of b
opt
2 plotted as a function of reward ratio

for fixed b1 and three different coherence levels.

Coherences are mixed during blocks of trials in the experiment

of interest, so we now consider a continuum idealization in which

coherences are selected from a uniform distribution over C1,C2½ �
(again positive for T1 and negative for T2). Instead of summing

the weighted probabilites of correct 1 and 2 choices for +C, we

must now average over the entire range of coherences:

E r½ �~ 1

C2{C1ð ÞðC2

C1

r1

2
P zC; b1,b2ð Þz r2

2
1{P {C; b1,b2ð Þ½ �

h i
dC:

ð26Þ

Computing the derivative via the Leibniz integral rule, noting that

the limits of integration do not depend on b2, and again using Eq.

(22) we find that

LE r½ �
Lb2

~
1

2 C2{C1ð ÞðC2

C1

r1
LP

Lb2

zC; b1,b2ð Þ{r2
LP

Lb2

{C; b1,b2ð Þ

 �

dC~0,

Figure 4. Optimal shifts bopt
2 as a function of the reward

ratio r1/r2 for fixed coherences (solid blue curves) and for
coherence ranges centered on the fixed coherences (dashed
red curves). (A): C = 10; 20 and 30% (top left to bottom right, solid
blue), and [C1;C2] = [5; 15]; [15; 25] and [25; 35] (top left to bottom right,
dashed red). (B): Coherence bands centered on C = 20% (solid blue
curve) with widths 10; 20; 30 and 40% (bottom left to top right, dashed
red). Approximation of Eq. (30) shown in green. The slope b1 is fixed at
0.06 throughout.
doi:10.1371/journal.pcbi.1000284.g004
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which implies that

r1

r2
~

ÐC2

C1
exp {b2

1 b2{C
� �2

� �
dCÐC2

C1
exp {b2

1 b2zC
� �2

� �
dC

, ð27Þ

where we have cancelled common terms in the integrands that do

not depend upon C. To turn these expressions into standard error

function integrals we change variables by setting y~b1 b2+Cð Þ
and dy~+b1dC. Integrating Eq. (27) and cancelling further

common terms yields the optimality condition:

r1

r2
~{

erf b1 b
opt
2 {C2

� �� 

{erf b1 b

opt
2 {C1

� �� 

erf b1 b

opt
2 zC2

� �� 

{erf b1 b

opt
2 zC1

� �� 

( )

: ð28Þ

Setting C2~Cze, C1~C{e, expanding (28) in a Taylor series

and letting e?0, we recover the single coherence level result (24).

The expression (28) cannot be inverted to solve explicitly for

the optimal starting point b
opt
2 in terms of the the other

parameters, but we may use it to plot the reward ratio r1=r2 as

a function of b
opt
2 for fixed a, T , s and coherence range C1,C2½ �.

The axes of the resulting graph can then be exchanged to

produce a plot of b
opt
2 vs. r1=r2 for comparison with the single

coherence prediction (24). The dashed red curves in Figure 4A

show optimal shifts for C{5%,Cz5%
� 


centered around the

three fixed coherence levels (solid blue curves). Figure 4B shows

optimal shifts for coherence bands of increasing width centered

around C~20%. Note that the coherence bands require larger

biases than fixed coherences at their centers demand (top panel),

and that optimal bias increases with the width of a band centered

on a given coherence (bottom panel). Biases, and hence optimal

shifts of the PMF, increase with coherence range because the

reward information is more significant for coherences close to

zero, where accuracy is lowest. This fact will play a subtle role

when we compare optimal shifts predicted for the two monkeys,

one of which worked with a smaller set of coherences than the

other.

If coherences span the range from C1~0 to an upper limit C2

that is sufficently large that we may approximate

erf b1 b
opt
2 {C2

� �� 

&{1 and erf b1 b

opt
2 zC2

� �� 

&1, ð29Þ

then (28) implies that

r1

r2

&
1{erf b1b

opt
2

� �
1zerf b1b

opt
2

� � or erf b1b
opt
2

� �
&

r1{r2

r1zr2

: ð30Þ

(Note that limu??erf uð Þ~1 and erf uð Þw0:985 for u§1:75, and

that the latter condition holds for the parameters estimated for

both monkeys below.) Eq. (30) in turn implies that, instead of the

relationship b
opt
2

�� ��*1
�

b2
1 of Eq. (24) in the single coherence case,

for a sufficiently broad band of coherences including zero, we have

b
opt
2

�� ��*1=b1 or b1b
opt
2 ~constant. The green curve in Figure 4B

shows that this simple relationship can provide an excellent

approximation.

Optimal shifts for a finite set of coherences. In the

present experiment a finite set of fixed nonzero coherences

+Cj ,j~1, . . . N
� �

is used, along with zero coherence, each of

these 2Nz1 conditions being presented with equal probability.

Moreover, zero coherence stimuli (for which there is no correct

answer) are rewarded equally probably with r1 and r2. The

expected reward on each trial is therefore:

E r½ �~ 1

2Nz1
r1

XN

j~1

P b1 zCjzb2

� �� �(

zr2

XN

j~1

1{P b1 {Cjzb2

� �� �� 


z
r1P b1b2ð Þzr2 1{P b1b2ð Þð Þ½ �

2

)
:

ð31Þ

As in the preceding subsection the optimal shift is determined by

seeking zeros of the derivative of (31) with respect to b2. Excluding

the normalization factor 2Nz1, this leads to:

LE r½ �
Lb2

~r1

XN

j~1

LP

Lb2

b1 zCjzb2

� �� �
{r2

XN

j~1

LP

Lb2

b1 {Cjzb2

� �� �

z
r1{r2ð Þ

2

LP

Lb2

b1b2ð Þ~0,

ð32Þ

from which, again appealing to Eq. (22), we obtain the expression

r1

r2
~

PN
j~1 exp {b2

1 b2{Cj

� �2
� �

{exp {b2
1b2

2

� �
PN

j~1 exp {b2
1 b2zCj

� �2
{exp {b2

1b2
2

� �� � : ð33Þ

As for Eq. (28) we cannot solve Eq. (33) explicitly for b2 in terms of

the reward ratio and b1, but we can again plot r1=r2 as a function

of b2 for fixed b1 values, and invert the resulting graph, as is done

in Figure 6 below.

To get an explicit idea of how the key quantities of slope b1, shift

b2 and reward ratio r1=r2 are related at optimal performance, we

recall the relationships (24) and (30) derived for the special cases of

a single coherence and a broad range of uniformly-distributed

coherences including zero. These predict, respectively, that

b
opt
2

�� ��*1
�

b2
1 and b

opt
2

�� ��*1=b1. For non-uniformly distributed

coherences such as those used in the present experiments, we have

found that a function of the form

b
opt
2 ~Kb{a

1 , ð34Þ

with K and a suitably chosen constants that depend upon the set of

coherences and the reward ratio, fits the optimal shift-sensitivity

relationship very well; we shall appeal to this in analyzing some of

the experimental data in the next section. In all cases, optimal

shifts increase rapidly as sensitivity (b1*a=s) diminishes.

Fitting the Theory to Monkey Data
Here we perform fits of accuracy data collected for a discrete set

of coherences, namely C~0, +1:5%, +3%, +6%, +12%,
+24%, +48%, under the four reward schedules described under

Experimental paradigm. As noted there, T was not tested with the

lowest coherences C~+1:5% and 63%. Data from the two

monkeys (A and T) are analyzed separately. While each coherence

is presented with equal probability, their spacing increases with C,

so that the majority of trials occurs in the center of the range

around C~0, unlike the case of uniformly-distributed coherences.

This will play a subtle role when we compare optimal shifts for the

two animals.

Optimal Decisions with Unequal Rewards

PLoS Computational Biology | www.ploscompbiol.org 8 February 2009 | Volume 5 | Issue 2 | e1000284



Fits of data averaged over multiple sessions to

PMFs. Drawing on the observations in Models of stimuli and

reward biasing, we start by estimating average values of the

parameters b1 and b2 in the psychometric function in the form

(15), by collectively fitting all the data for each animal: 35 blocks of

trials for A and 25 for T. We first fitted b1 and b2 separately for the

four reward conditions by computing the fraction of T1 choices

F Cj

� �
for each coherence level and minimizing the residual error:

Err~
XzN

j~{N

F Cj

� �
{P Cj

� �� 
2
,

obtaining the values in the top two rows of Table 1. Fits were done

using MATLAB’s lsqnonlin with default options (Matlab codes

used for data analysis, computation of statistics, and producing

figures are available at www.math.princeton.edu/,sffeng).

Figure 5 shows the resulting PMFs for A (top) and T (bottom).

We then pooled the accuracy data for equal rewards, re-fitted to

determine common b1 and b2 values for conditions HH and LL

for each animal, and held b1 at the resulting value while re-

estimating b2 for the unequal rewards data, to obtain rows 3 and 4

of the table. The bottom two rows list values of b1 and b2 obtained

when b2~0 is imposed in separate fits of conditions LL and HH

(first two columns), and the value of b1 obtained from pooled HH

and LL data with b2~0, along with values of b2 for unequal

rewards obtained using that same b1 value (last two columns). Fit

errors are substantially higher for monkey T under the b2~0
constraint, due to his greater shifts for LL and HH (figures in

parentheses in last row). PMFs obtained using the b1 and b2 values

from the lower four rows of Table 1 are very similar to those of

Figure 5 (not shown).

Figure 5. Fits of accuracy data from monkeys A (A) and T (B) to
the PMF (15), for the four reward conditions averaged over all
sessions. Bars denote standard errors. See text for details.
doi:10.1371/journal.pcbi.1000284.g005

Figure 6. Optimal shifts b2 for a range of reward ratios r1/r2 and
b1 = 0.0508 (solid, black) and b1 = 0.0432 (dot-dashed, red),
corresponding to slopes of PMFs fitted to equal rewards data
for monkeys A and T. Vertical dotted lines at r1/r2 = 0.5 and 2
intersect the curves at the symmetrically-placed optimal shifts for those
reward ratios. (A) Predictions for the different sets of nonuniformly-
distributed coherences viewed by each animal. (B) Results for
coherences distributed uniformly from 248% to 48%: note smaller
optimal shifts and reversal of order of curves for A and T compared to
panel A. Triangles and crosses respectively indicate shifts determined
from data for monkeys A and T for r1/r2 = 0.5, 1 and 2 (cf. Table 1).
doi:10.1371/journal.pcbi.1000284.g006
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In the first and least-constrained fits, Monkey A’s b1 values

change across the four reward conditions by a factor of only 1.05,

indicating that the predominant effect of unequal rewards is a

lateral shift of the PMF, with no significant change in slope. His

shifts for the HL and LH conditions are significantly different from

zero and from those for HH and LL (according to one- and two-

sample t tests on the underlying normal distributions
LP
LC

~ b1ffiffi
p
p exp {b2

1 Czb2ð Þ2
h i

with parameters listed in the top

row of Table 1 and pv0:01 (section 9.2 of [48])). At 15.5% and

214.0% the HL and LH shifts are not significantly asymmetrical (t

test, p~0:77), and his PMFs for equal rewards are also statistically

indistinguishable from each other (t test, p~0:86) and from an

unshifted PMF with b2~0 (t tests, p~0:82). In contrast, Monkey

T displays slopes that differ by a factor of 1.18 and shifts toward

T2 of 4.58% and 2.87% respectively in the the LL and HH

conditions, his slope being lower and his shift larger for LL than

for HH, possibly indicating increased attention in the case of high

rewards. However, his PMFs for LL and HH are also statistically

indistinguishable (t test, p~0:83) and, in spite of the more obvious

asymmetry their shifts are also not significantly different from zero

(t tests, p~0:44). Like A’s, his PMFs for the unequally rewarded

conditions are significantly shifted (t tests, pv0:05), but again

without significant asymmetry (t test, p~0:85).

In the optimality analysis to follow we require a common

estimate of slope as a measure of the animal’s sensitivity, or ability

to discriminate the signal. Rows 3 and 4 of Table 1 show that shifts

for the unequally rewarded conditions change by at most 0.4%

when b1 is held at the common value fitted to the equal rewards

data. We therefore believe that the common slope estimates

b1~0:0508 for monkey A and b1~0:0432 for monkey T are

suibases for optimality predictions. We have already noted that

monkey T’s higher psychophysical threshold led us to exclude the

61.5% and 63% coherences, and his common slope value is

substantially less than that of monkey A.

Finally, we computed rows 5 and 6 of Table 1 with b2

constrained to zero in order to check that the slope parameter is

not significantly affected by shifts and left/right asymmetries in the

equally rewarded cases. Monkey A’s slope is unchanged (to 3

significant figures) and Monkey T’s distinct LL and HH slopes

change by factors of only 0.96 and 0.98. Even when a common fit

to LL and HH data with b2~0 is enforced, Monkey T’s shifts for

unequal rewards change by only 0.1%, and monkey A’s are

unchanged.

We remark that the sigmoidal or logit function

Psig Cð Þ~ 1

1zexp {b1 Czb2ð Þ½ � , ð35Þ

used in the work reported in [9,10], provides an alternative model

for the PMF. We examined fits to Psig Cð Þ and found that they

were generally similar to the cumulative normal fits, but typically

incurred slightly higher residual fit errors. Eq. (35) appears simpler

than the cumulative normal distribution (15), which involves the

error function, but after taking derivatives to compute optimal

shifts, the final conditions are no easier to use. More critically, Eq.

(35) lacks a principled derivation from a choice model.

How close are the animals, on average, to optimal

performance? We took the slope values b1~0:0508 for A

and b1~0:0432 for T, fitted to the pooled LL and HH equal

rewards data averaged over all sessions (rows 3 and 4 of Table 1) to

best represent the animals’ average sensitivities. Using these values,

we then computed optimal shifts predicted by Eq. (33) for unequal

reward conditions over the range r1=r2[ 0,4½ �, which includes the

ratios r1=r2~2 (HL) and 0.5 (LH) that were tested. We did this

both for the sets of coherences viewed by A and T, and for a

uniformly distributed set of coherences spanning the same range.

Figure 6 shows the resulting optimal shift curves along with the

actual session-averaged shifts computed from the animals’ unequal

reward data as listed in the top two rows of Table 1, and the

common values for equal rewards as listed in rows 3 and 4

(triangles and crosses). Both animals ‘‘overshift’’ beyond the

optimal values for the LH and HL conditions, T’s overshifts being

greater than A’s. The figure also clearly shows T’s appreciable shift

for equal rewards, in contrast to A’s nearly optimal behavior under

those conditions.

Figure 6A shows that, when based on the coherences used in the

experiment, monkey T’s optimal curve predicts shifts smaller than

those for monkey A, despite T’s lower sensitivity. For a given

Table 1. Parameter values for data fits for monkeys A and T, averaged over all sessions, to the PMF (15).

Subject b1,b2 for LL b1,b2 for HH b1,b2 for HL b1,b2 for LH

Monkey A 0.0509, 0.890
(0.00096)

0.0509, 20.110
(0.0011)

0.0526, 15.5
(0.0017)

0.0531, 214.0
(0.0013)

Monkey T 0.0399, 24.58
(0.00087)

0.0469, 22.87
(0.00057)

0.0415, 15.6
(0.00081)

0.0460, 217.5
(0.0018)

Monkey A 0.0508, 0.390
(0.00036)

0.0508, 0.390
(0.00036)

0.0508, 15.8
(0.0020)

0.0508, 214.3
(0.0018)

Monkey T 0.0432, 23.68
(0.00023)

0.0432, 23.68
(0.00023)

0.0432, 15.4
(0.0011)

0.0432, 217.9
(0.0024)

Monkey A 0.0507, 0
(0.0059)

0.0509, 0
(0.0012)

0.0508, 15.8
(0.0013,0.0020)

0.0508, 214.3
(0.0013,0.0018)

Monkey T 0.0385, 0
(0.047)

0.0460, 0
(0.023)

0.0421, 15.5
(0.033,0.00085)

0.0421, 218.0
(0.033,0.0030)

Upper two rows show separate fits of b1 and b2 for the four reward conditions. Middle two rows show fits for pooled LL and HH data, with resulting common b1 value
held fixed across unequal reward conditions. Lower two rows show results with b2 constrained to zero for equal rewards; in columns 1 and 2 LL and HH are fitted
separately, in columns 3 and 4 LL and HH data is pooled to produce b1 , and this value is fixed across unequal reward conditions. Units of b1 and b2 respectively are
increase in probability of a T1 choice per change in % coherence, and % coherence (see Models of stimuli and reward biasing). Values are given to 3 significant figures
with residual fit errors (in mean square norm) in parentheses. In rows 5 and 6 of the HL and LH columns the first error figure refers to the LL and HH pooled data fit with
b2~0.
doi:10.1371/journal.pcbi.1000284.t001
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reward ratio and the same set of coherences, a smaller b1 requires

greater shifts because, as sensitivity falls, it is better to place

increasing weight on the alternative that gains higher rewards, as

shown in Figure 6B. However, since monkey A views four low

coherence stimuli that T does not (61.5% and 63%), his optimal

shifts are additionally raised as noted above in the subsection Two

motivating examples, thus outweighing his higher sensitivity. We

also observe that the overall magnitudes of the optimal shifts

predicted for uniformly distributed coherences are substantially

smaller, being 6.14% and 7.16% for A and T respectively, in

comparison with 11.7% and 9.92% for the coherences used in the

experiments.

While the overshifts for conditions HL and LH are significant in

terms of coherence, it is important to assess how dearly they cost the

animals in reduced rewards. In Figure 7 we plot expected reward

functions (31) for r1=r2~2 and the sets of coherences experienced by

each animal (expected rewards for r1=r2~1=2 are obtained by

reflecting about b2~0). This reveals that, given the animals’

averaged b1 values (dashed magenta lines), the second derivatives

d2E r½ �
�

db2
2 at the maxima are small, so the peaks are mild and

deviations of 610% coherence from b
opt
2 lead to reductions in

expected rewards by only 2–3% from the maximum values (blue

curves): an observation to which shall return below. Moreover, for

unequal rewards the expected values decrease from their maxima

more rapidly as b2 falls below b
opt
2 than they do for b2 above b

opt
2 .

(The asymmetry becomes stronger as the reward ratio increases, and

the curves are even functions when r1~r2 (not shown here).) This

provides a rationale for the overshifting exhibited by the monkeys:

smaller losses are incurred than in undershifting by the same

amount. A similar observation appears in pp 728–729 of [8], in

connection with the dependence of reward rate on decision threshold

in a free response (reaction time) task.

We conclude that, when averaged over all sessions, both

animals’ shifts err in the direction that is least damaging, and

that neither suffers much penalty due to his overshift. Figure 8

further quantifies this by plotting the optimal PMF curves based

on the slope values b1 for pooled equal rewards (b
opt
2 ~0), and

with the symmetric optimal shifts +b
opt
2 =0 for the HL and LH

reward conditions predicted by Eq. (33), along with bands that

contain over- and under-shifted PMFs that garner 99.5% of the

maximum rewards. With two exceptions (C~+48%), monkey

A’s mean shifts for all conditions lie within or on the borders of

these bands. Monkey T is less accurate, exhibiting substantial

shifts for the HH and LL conditions and significantly overshifting

for unequal rewards (especially LH); even so, his rewards lie

within 99% bands with the exception of that for the LH

condition, which lies within the 98% band (not shown here, but

see Figure 9 below).

Variability of behaviors in individual sessions. As

Figures 5 and 8 illustrate, when averaged over all sessions,

monkeys A and T respectively come within 0.5% (except for two

outlying points) and 2% of achieving maximum possible rewards,

given their limited sensitivities. However, the standard errors in

Figure 5 show that their performances are quite variable. Indeed,

the mean slopes b1~0:0569 for A and b1~0:0491 for T,

obtained by averaging values fitted separately for each session,

have standard deviations of 0.0116 and 0.0076 respectively

(<20% and 15% of their means). (These means differ from the

averages of the four b1 values in rows 1 and 2 of Table 1 because

they were obtained by averaging the results of individual session

fits, rather than from fits of data that was first averaged over

sessions.)

Since both sensitivity, quantified by b1, and shift (b2) vary

substantially from session to session, we asked if these parameters

exhibit any significant correlations that would indicate that the

animals are tracking the ridges of maxima on Figure 7.

Specifically, from Eq. (33) we can compute values of b2 for which

E r½ � is maximized for given b1 for reward ratios r1=r2~2 (HL) and

r1=r2~0:5 (LH), yielding loci of optimal shifts as a function of

sensitivity, and from Eq. (31) we can deduce similar loci on which

fixed percentages of maximum expected rewards are realised. In

Figure 9 we compare the results of individual experimental

sessions, plotted as points in the b1,b2ð Þ-plane, with these curves.

The asterisks indicate the mean values of b1 and b2 for each

combination of animal and reward condition; the points indicate

outcomes for individual sessions.

While in some cases the data seems to ‘‘parallel’’ the optimal

performance contours (e.g., for both monkeys in condition LH and

for A in conditions LL and HH), computations of Pearson’s

Figure 7. Contours (black curves) of expected rewards E r½ � for
r1=r2~2 for monkeys A (A) and T (B) over the (b1,b2)-plane,
based on the coherences viewed by each animal. Vertical dashed
lines indicate b1 values fitted to pooled equal rewards data. Note that
gradients in b2 in either direction away from ridges of maximum
expected rewards (blue curves) become smaller as b1 decreases, that
gradients are smaller for overshifts in b2 than for undershifts, that this
asymmetry increases as b1 decreases, and that gradients are steeper for
T than for A. See text for discussion.
doi:10.1371/journal.pcbi.1000284.g007
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product moment correlation (r) between b1 and b2 reveal weak

correlations that approach or exceed 0.5 only if the unequally

rewarded (HL and LH) data for each animal are pooled (r~0:542,

with a 95% confidence interval [0.351,0.689] for A; r~0:458 and

[0.205,0.653] for T). Moreover, as noted by J. Gao and J.

McClelland (personal communications), these parameters are not

orthogonal. In the PMF of Eq. (15), b1 accounts for how coherence

scales but it is the product b1b2 that describes the effect of unequal

rewards: thus, a correlation between b1 and b2 is to be expected.

Our optimality theory allows us to perform a more telling test.

While we cannot extract an exact formula for the optimal

covariation of b1 and b2 implicit in Eq. (33), Eq. (34) provides an

excellent approximation for the blue curves of Figure 9, implying

that individual session data should lie close to b
opt
2 ba

1&constant if

the animals are tracking the ridges. Fitting values of a for A and T

(a~1:26 and 1.30 respectively) and comparing the HL and LH

data sets with these curves gives considerably weaker correlations

than those for b1 and b2 quoted above. We therefore conclude that

no significantly-correlated adjustments of b1 and b2 exist, and that

random scatter dominates the individual session data.

Discussion

We reduce a leaky competing accumulator model to an Ornstein-

Uhlenbeck (OU) process, and therefrom derive a cumulative

normal psychometric function (PMF) that describes how accuracy

depends upon coherence (signal-to-noise ratio) in a two-alternative

forced-choice task with cued responses. The key parameters in the

PMF are its slope at 50% accuracy, which quantifies a subject’s

sensitivity to the stimulus, and its shift: the coherence at which 50%

accuracy is realised. We compute analytical expressions describing

optimal shifts that maximize expected rewards for given slopes and

reward ratios. We find that this PMF can fit behavioral data from

two monkeys performing a motion discrimination task remarkably

well. The resulting slopes and shifts show that, faced with mixed

coherences, while both animals ‘‘overshift’’ for unequal rewards,

they nonetheless garner 98–99% of their maximum possible

rewards (Figure 8), and they achieve this in spite of significant

variability in sensitivity and shifts from session to session.

The linear OU process has the advantages of simplicity and it

yields an explicit expression for the PMF, but it only approximates

the dynamics of the decision process. Nonlinear drift-diffusion

processes can also be derived from multi-dimensional models

containing individual spiking neurons or neural pools [21,41], but

the Kolmogorov equations analogous to Eq. (6) cannot generally

be solved and explicit expressions for PMFs are not available. Such

more accurate models (with additional parameters) might provide

better fits to data than the cumulative normal of Eq. (11), although

the free response data presented in [41] indicates that there is little

difference between linear and nonlinear models in fit quality per

se. Nonlinear models do, however, better represent limiting neural

behavior at high and low spike rates.

We also propose two simple methods by which the OU process

could be biased by reward expectations, in order to produce such

shifts. The first requires a biased starting point for evidence

accumulation, the second assumes a continuing bias to the drift

rate that enters the OU process prior to and throughout the

stimulus viewing period. In the free response case, with blocked

trials and fixed coherence in each block, it is known that the

former is optimal [8], and recent experiments focusing on stimulus

proportions confirm that well-practiced human subjects do

approximate this [49]. As described under Models of stimuli and

reward biasing, the fixed viewing time experiment employed here

cannot distinguish among these or other biasing models.

Responses gathered for different reward cue and motion periods

would enable such distinctions; cf. [25]. Accumulator models have

also been proposed for working memory following stimulus offset

(e.g. see [50] for a somatosensory comparison task). Addition of

such a model and analysis of electrophysiological data throughout

the trial, including the variable delay period, may further

illuminate the biasing mechanism.

Our optimality analysis presumes that the PMF slope (b1) has an

upper bound that reflects fundamental limits on sensitivity to the

visual stimulus. We then seek the unique shift (b
opt
2 ) that maximizes

expected rewards over the given coherence and reward conditions,

for a fixed slope. This makes for a well-posed mathematical

analysis, but it does not imply that the animal is faced with a given

sensitivity and then ‘‘chooses’’ a shift. He might equally well

choose a shift and then ‘‘accept’’ a sensitivity that delivers

adequate rewards, perhaps by implicitly selecting a weight for the

top-down reward information, and then relaxing attention to the

stimuli until his reward rate reaches a predetermined level. He

Figure 8. Optimal PMFs (black curves) and bands (color) in
which 99.5% of maximal possible rewards are gained,
compared with session-averaged HL, LL and HH, and LH data
(triangles, left to right on each panel) for monkeys A (A) and T
(B). See text for details.
doi:10.1371/journal.pcbi.1000284.g008
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Figure 9. Slope and shift values for individual sessions and the four reward conditions, plotted as points in the b1,b2ð Þ-plane for
monkeys A (four panels in (A)) and T (four panels in (B)). Asterisks indicate values averaged over all sessions (cf. top two rows of Table 1).
Performance curves and bands show optimal b2 values for given b1 values (central blue curves) and values that gain 99% and 97% of maximum
rewards are also shown (flanking magenta curves closest to and farthest from blue curves, respectively).
doi:10.1371/journal.pcbi.1000284.g009
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may even co-vary these parameters to achieve the same end. This

is reminiscent of a robust-satisficing strategy that has been studied

in connection with setting speed-accuracy tradeoffs [51].

A related study of optimal decision strategies in two-alternative

forced-choice tasks with free responses has shown that decision

thresholds can be determined for a pure drift diffusion process that

optimize reward rate by setting a speed-accuracy tradeoff [8]. In

that work it is necessary to assume that trials are blocked (e.g. with

equal coherences +C), so that conditions remain statistically

stationary during each session and one can appeal to optimality of

the DD process [43]. In contrast, for cued responses only the

accuracy level need be maximized, one need not assume a pure

DD process, and optimization can be done in the face of mixed

coherences and mixed reward contingencies. As the theory

developed above shows, reduction to a one-dimensional process

permits explicit calculations of PMFs and optimality conditions,

and comparison with data requires only simple two parameter fits.

However, the present behavioral data lacks the reaction time

distributions that allow fits that could distinguish among multi-

paramater variants of DD and OU models [15,22,52,53].

We have taken as a utility function E r½ � the (normalised) value of

expected rewards, implicitly assuming that two drops of juice are

worth twice one drop. Subjective utility may not vary linearly with

reward size: for example, at high reward ratios it may rise more

slowly and saturate due to satiety. In contrast, if we suppose that

two drops of juice are worth 2.5 or 3 times as much as one drop,

then the shifts of both animals would lie much closer to the optimal

curves of Figure 6 (translate the HL data points horizontally from

r1=r2~2 to 2.5 or 3, and the LH data points from r1=r2~0:5 to

0.4 or 0.33). However, a study of subjective value quantification

would require investigation of a broad range of reward ratios.

The behavioral data analyzed here were obtained simulta-

neously with electrophysiological recordings from single neurons

in the lateral intraparietal area (LIP) of the cerebral cortex, a

region that is thought to play a key role in the formation of

oculomotor decisions within the central nervous system [7,19,34].

The results presented in this paper raise important questions for

our ongoing analysis of the neurophysiological data. Do decision-

related neurons in LIP encode or at least reflect effects of both the

reward prior and the coherence of the visual stimuli? Are the two

effects present in the same proportions at the neural level as at the

behavioral level (as quantified in the present paper)? Is the effect of

reward bias evident as an offset at the start of accumulation of

motion information by LIP neurons, or as a gain factor on the

accumulation process, or both? These questions will be addressed

in a future publication integrating neurophysiological data with

the behavioral results.
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