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Abstract

Despite decades of research, the question of how the mRNA splicing machinery precisely identifies short exonic islands within
the vast intronic oceans remains to a large extent obscure. In this study, we analyzed Alu exonization events, aiming to
understand the requirements for correct selection of exons. Comparison of exonizing Alus to their non-exonizing counterparts
is informative because Alus in these two groups have retained high sequence similarity but are perceived differently by the
splicing machinery. We identified and characterized numerous features used by the splicing machinery to discriminate
between Alu exons and their non-exonizing counterparts. Of these, the most novel is secondary structure: Alu exons in general
and their 59 splice sites (59ss) in particular are characterized by decreased stability of local secondary structures with respect to
their non-exonizing counterparts. We detected numerous further differences between Alu exons and their non-exonizing
counterparts, among others in terms of exon–intron architecture and strength of splicing signals, enhancers, and silencers.
Support vector machine analysis revealed that these features allow a high level of discrimination (AUC = 0.91) between
exonizing and non-exonizing Alus. Moreover, the computationally derived probabilities of exonization significantly correlated
with the biological inclusion level of the Alu exons, and the model could also be extended to general datasets of constitutive
and alternative exons. This indicates that the features detected and explored in this study provide the basis not only for precise
exon selection but also for the fine-tuned regulation thereof, manifested in cases of alternative splicing.
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Introduction

How are short exons, embedded within vast intronic sequences,

precisely recognized and processed by the splicing machinery?

Despite decades of molecular and bioinformatic research, the

features that allow recognition of exons remain poorly understood.

Various factors are thought to be of importance. These include the

splicing signals flanking the exon at both ends, known as the 59 and

39 splice sites (59ss and 39ss, respectively), auxiliary cis-elements

known as exonic and intronic splicing enhancers and silencers

(ESE/Ss and ISE/S) that promote or repress splice-site selection,

respectively [1,2], and exon [3] and intron length [4]. There is an

increasing body of evidence that secondary structure is a powerful

modifier of splicing events [5–12]. Secondary structure is thought

to present binding sites for auxiliary splicing factors, correctly

juxtapose widely separated cis-elements, and directly affect the

accessibility of the splice sites. However, only very few studies have

used bioinformatic approaches to broadly study the effects of

secondary structure on splicing [13–15].

Many of the above-listed factors have been subjected to analysis

in the context of comparison between constitutively and

alternatively spliced exons. It has been found, for example, that

constitutively spliced exons are flanked by stronger splicing signals,

that they contain more ESEs but fewer ESSs, and are longer but

flanked by shorter introns with respect to their alternatively spliced

counterparts (reviewed in [16]). However, to what extent do these

features contribute to the selection of exons and allow discrimi-

nation between true exons and ‘‘non-exons’’, i.e. sequences

resembling exons but not recognized by the splicing machinery?

This question is fundamental for understanding the process of

exon selection by the spliceosome, and yet has not been subjected

to much analysis. This is presumably because unlike alternatively

and constitutively spliced exons, both of which are relatively easy

to define computationally, defining a non-exon or a pseudo-exon is

more of a challenge. One approach is to compare exons to

sequences of up to a certain length which are flanked by splicing

signals exceeding a certain threshold [17,18]. Although this

approach is powerful and has contributed to the discovery of the

‘‘vocabulary’’ of exons, it is also limited. The primary limitation is

that it is circular: For the mere definition of pseudo-exons, we are

forced to fix various features—such as minimal splice site strength

and exon length—that we would prefer to infer.

To circumvent these obstacles, we have studied Alu exonization

events. Alu elements are primate-specific retroelements present at

about 1.1 million copies in the human genome. A large portion of Alu

elements reside within introns [19]. Alus are dimeric, with two

homologous but distinct monomers, termed left and right arms [20–

22]. During evolution, some intronic Alus accumulated mutations

that led the splicing machinery to select them as internal exons, a

process termed exonization [23–25]. Such exonization events may

occur either from the right or the left arm of the Alu sequence, but are

observed predominantly in the antisense orientation relative to the

mRNA precursor. Almost invariably, such events give birth to an

alternatively spliced exon, as a constitutively spliced exon would
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compromise the original transcriptomic repertoire and hence

probably be deleterious [19,24,26,27]. The fact that exonizing and

non-exonizing Alus have retained high sequence similarity but are

perceived as different by the splicing machinery makes them excellent

candidates for studying the factors required for precise recognition of

exons by the spliceosome. The natural control group of non-

exonizing Alus obviates the need to fix different parameters in the

control set, and the high degree of sequence similarity shared by all

Alus, regardless of whether they do or do not undergo exonization,

enables direct comparison of a wide array of features.

Based on the comparison between Alu exons and their non-

exonizing counterparts, we were able to identify several key features

that characterize Alu exons and to determine the relative importance

of these features in the process of Alu exonization. A novel result of

this comparison was the importance of pre-mRNA secondary

structure: More thermodynamically stable predicted secondary

structure in an Alu arm harboring a potential Alu exon decreases

the probability of an exonization event originating from this Alu.

Thus, this study is among the first to provide wide-scale statistical

proof of the importance of secondary structure in the context of exon

selection. We identified numerous further factors differentiating

between Alu exons and non-exons, and integrated them in a machine

learning classification model. This model displayed a high perfor-

mance in classifying Alu exons and non-exons. Moreover, the strength

of predictions by this model correlated with biological inclusion levels,

and higher probabilities of exonization were given by the model to

constitutive exons than to alternative ones. These findings indicate

that the features identified in this study may form the basis for precise

exon selection, and make the difference between a non-selected

element, an alternatively-selected element, and a constitutively

selected one.

Results

Compilation of Datasets
We set out to determine the features underlying the recognition

of Alu exons by the splicing machinery. We therefore required

datasets of Alus that undergo and that do not undergo exonization.

We took advantage of the fact that Alu elements may exonize

either from the right or from the left arm, and composed three

core datasets (Figure 1A): (1) A dataset of 313 Alu exons (AEx) that

are exonized from the right Alu arm, termed AEx-R; (2) A dataset

of 77 Alus that undergo exonization in the left arm, termed AEx-L;

(3) A dataset of 74,470 intronic Alus lacking any evidence of

exonization, called No AEx. In all these datasets, Alus had to be

embedded in the antisense orientation within genes, since most

exonization events of Alus occur in this orientation [19,23,28].

Finally, to allow direct comparison between parallel positions in

different Alus, we used pairwise alignments to align each Alu in

each of the datasets against an Alu consensus sequence.

We next computationally searched for the optimal borders, or

splice sites, of non-exons within both the right arm and the left arm of

the sequences in the No AEx dataset. This was done in two steps: (1)

We first empirically determined the positional windows in which the

selected 39ss and 59ss appeared within exonizing Alus; (2) We next

searched the above-determined positional windows for the highest

scoring splicing signals (see Materials and Methods). We found that

computational selection of the highest scoring splicing signal yielded a

high extent of congruence (ranging between 74%–96%, depending

on the arm and on the signal) with the ‘‘true’’ splicing signal based on

EST data. Since the congruence was not perfect, we created two

control datasets based on the AEx-R and AEx-L group, termed AEx-

R(c) and AEx-L(c), respectively, in which exon borders were searched

for computationally as in the No AEx dataset. These two subsets were

used to verify that differences between the exonizing and non-

exonizing datasets were not due to the manner in which exons and

non-exons were derived (ESTs versus computational predictions). To

complete the picture, we computationally searched for non-exons

within the right arm of the AEx-L group and in the left arm of the

AEx-R group. Notably, we demanded that all exons within all

datasets have a minimal potential 39ss (AG) and 59ss (GT/GC),

because lacking such minimal conditions Alus cannot undergo

exonization at all. Thus, our analyses are based on three core and

two control sets of Alus with two sets of start and end coordinates

mapped for each Alu—one in the right arm and one in the left (see

Materials and Methods for further details).

Alu Exons Are Flanked by Stronger Splicing Signals Than
Their Non-Exonizing Counterparts

Previous studies, based on much smaller datasets, implicated the

39ss [24] and the 59ss [26] splicing signals as major factors

determining exonization events. To assess whether this held for our

dataset as well, we calculated the strength of the 59ss and 39ss of the

exons/non-exons in the right and in the left arms in each of the five

datasets. Indeed, we found that in the right arms the 39ss and the 59ss

scores were highest among those Alus that underwent exonization

(Figure 1B and 1C, respectively). Similarly, in the left arms, the scores

of the 39ss and the 59ss are highest among the exonizing Alus

(Figure 1D and 1 E, respectively). These results were highly

statistically significant (see Text S1). Moreover, these differences are

even more pronounced when comparing the two control datasets to

their non-exonizing counterparts (compare the results for AEx-R and

AEx-L to AEx-R(c) and AEx-L(c), respectively, in Figure 1B–E).

Thus, these analyses fit in with previous analyses emphasizing the role

of the two major splicing signals.

Exonizing Alus Have Less Stable Secondary Structures
Than Their Non-Exonizing Counterparts

We were interested in assessing the role of secondary structure

in the context of Alu exonization events. We therefore began by

Author Summary

A typical human gene consists of 9 exons around 150
nucleotides in length, separated by introns that are ,3,000
nucleotides long. The challenge of the splicing machinery is
to precisely identify and ligate the exons, while removing
the introns. We aimed to understand how the splicing
machinery meets this momentous challenge, based on Alu
exonization events. Alus are transposable elements, of
which approximately one million copies exist in the human
genome, a large portion of which within introns. Through-
out evolution, some intronic Alus accumulated mutations
and became recognized by the splicing machinery as exons,
a process termed exonization. Such Alus remain highly
similar to their non-exonizing counterparts but are per-
ceived as different by the splicing machinery. By comparing
exonizing Alus to their non-exonizing counterparts, we were
able to identify numerous features in which they differ and
which presumably lead to the recognition only of the
former by the splicing machinery. Our findings reveal
insights regarding the role of local RNA secondary
structures, exon–intron architecture constraints, and splic-
ing regulatory signals. We integrated these features in a
computational model, which was able to successfully mimic
the function of the splicing machinery and discriminate
between true Alu exons and their intronic counterparts,
highlighting the functional importance of these features.

Exon Recognition Features
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computing the thermodynamic stabilities of the secondary

structures predicted for the Alus in each of the core datasets. We

used RNAfold [29] to calculate the secondary structure partition

function; but rather than use this metric directly, we used a

dinucleotide randomization approach to yield a Z-score that is not

sensitive to sequence length or nucleotide composition (see

Materials and Methods). We found that Alus that gave rise to

exonization events, regardless of whether from the left or from the

right arm, were characterized by weaker secondary structures than

Alus that do not undergo exonization (Figure 2A). This was highly

significant in the case of exonizations originating from the right

arm (AEx-R vs. No AEx p = 9.8E212) and of borderline

significance for the left arm exonizations (AEx-L vs. No AEx

p = 0.07). This provided the first indication that strong secondary

structures might prevent Alu exonizations.

To pinpoint the subsequences to which the differences in

strength of secondary structure could be attributed, we next

calculated secondary structure Z-scores for each of the two Alu

arms separately. We found that the secondary structures of right

and the left arms were weakest in cases in which these arms

undergo exonization (Figure 2B and 2C, respectively). These

changes relative to the No AEx group were highly significant

(p = 2E215 and p = 1.08E25, respectively). Interestingly, the non-

exonizing arm tended to have weaker secondary structure in those

cases in which the opposite arm underwent exonization (p = 0.001

when comparing the left arm of the AEx-R to the No AEx dataset,

and p = 0.055 when comparing the right arm of the AEx-L to the

No AEx dataset). These observations suggested that secondary

structures have a detrimental effect on the recognition of Alu exons

primarily when the structure incorporates sequence from the exon

itself, but also when stable structures are located in relative

proximity to the exon.

The 59ss of Alu Exons Tends To Be Unstructured
Secondary structure has been shown to impair exon recognition

by affecting the accessibility of splice sites [8,9,11,12,30]. To

examine whether sequestration of splice sites within secondary

structures plays a role in the context of Alu exonizations, we used a

measure indicating the probability that all bases in a motif are

unpaired (denoted probability unpaired or PU value) [31]. Briefly,

this measure indicates the probability that a motif, located within a

longer sequence, is participating in a secondary structure. Higher

values indicate that the motif is more likely to be single stranded

and lower values indicate a greater likelihood of participating in a

secondary structure (see Materials and Methods). We assessed the

single strandedness of the two most frequently selected 59ss in the

right arm located at positions 156 and 176 relative to the

consensus (also termed sites B and C [28]) and the most frequently

selected 59ss of the left arm, located at position 291 (see Figure 2A).

We found that 59ss selected in exonization events are characterized

by significantly higher PU values than their non-exonizing

counterparts, indicating that selected 59ss have a lower tendency

to participate in secondary structures (see Figure 2E–G). We

repeated this analysis for the two most frequently selected 39ss in

the right arm and the most frequently selected 39ss in the left arm,

but did not observe higher single-strandedness in the selected 39ss

Figure 1. Diagram of the five datasets and splicing signal scores for each dataset. (A) Diagram depicting the three core datasets and the
two control datasets used throughout the study. Each dataset is represented by an illustration of an Alu sequence in the antisense orientation. The
right and left arms are indicated, along with the typical poly-T stretch located at the 59 end of each arm. Boxes in the left and right arms mark the
potentially exonizing sequence. Solid box borders mark exon boundaries derived based on EST data, whereas dashed borders mark exon boundaries
based on bioinformatic predictions, as indicated by the legend on the upper right. The exons in the exonizing groups and in the corresponding
control groups, were visualized in the same colors, to emphasize that the latter serves as a control to the former. (B–E) 39ss and 59ss scores in the two
arms of the Alu element across the different core datasets, as well as for the relevant control dataset.
doi:10.1371/journal.pcbi.1000300.g001

Exon Recognition Features
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with respect to their non-selected counterparts (data not shown).

However, this finding may also be attributed to the fact that all

Alus, regardless of whether they undergo exonization or not, are

characterized by relatively strong 39ss, due to the poly-T stretch

characterizing them (see Discussion). See Text S1 for description

of a control analysis.

Exons Are 10 nt Longer But Flanked by Dramatically
Shorter Introns

Intron-exon architecture has well-documented effects on splicing.

Therefore, we compared the lengths of the Alu exons to their

counterpart non-exons (diagram in Figure 3A). We found that exons

were ,10 nt longer than their non-exonizing counterparts

(Figure 3C and 3D). Exons in the right arm of the AEx-R dataset

were 112 nt long, on average, whereas non-exons were only 102 nt

long in the No AEx dataset. The same trend was observed in the

AEx-L dataset: Exons in the left arm of the AEx-L dataset were

88 nt long, whereas the non-exons in the No AEx group were 78 nt

long. In both cases, the differences were highly statistically

significant (see Text S1). This indicates that increased exon length

is an advantage in terms of exonization of Alu elements.

Analyzing the lengths of the flanking introns, we found that

introns flanking Alu exons were almost 50% shorter than those

flanking their non-exonizing counterparts. Introns upstream of Alu

exons in the AEx-R or AEx-L dataset were 7,216 and 9,497 nt

long, respectively, on average (Figure 3B), but 14,458 nt long

upstream of the non-exons in the No AEx group. These

differences were highly significant (No AEx vs. AEx-R

p = 1.38E213, No AEx vs. AEx-L p = 0.0047). Highly significant

findings were observed in the downstream intron as well. These

introns were 7,844 and 9,210 nt long for exons in the AEx-R and

AEx-L dataset, respectively, but 14,808 nt long for Alus in the No

Figure 2. Impact of local secondary structure on exonization. (A) Diagram representing an Alu sequence, as in Figure 1A, indicating which
parts of the Alu sequence were folded in (B–D). The positions of the three main 59 splice sites, used in (E–G), are indicated as well. (B) Comparison of
predicted secondary structure free energy upon folding of the entire Alu sequence, with lower Z-scores representing stronger secondary structures
(see text). The mean Z-scores (y-axis) are shown for the Alus in each of the three core datasets. Error bars mark the standard error of the means. (C)
Comparison of the predicted secondary structure free energy upon folding of the right arm only. (D) Comparison of the predicted secondary
structure free energy upon folding of the left arm only. (E–G) PU values in each of the three main positions serving as 59ss across the three core
datasets. Higher PU values indicate that the 59ss is less likely to form part of a secondary structure.
doi:10.1371/journal.pcbi.1000300.g002
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AEx dataset (Figure 3E). Taken together, these results indicate that

recognition of exons by the splicing machinery correlates positively

with exon length but negatively with intron length, yielding insight

on the constraints and the mechanism of the splicing machinery

(see Discussion).

Alu Exons Are Enriched in Enhancers and Depleted in
Silencers

Based on both biologic and bioinformatic methodologies,

datasets of exonic splicing enhancers (ESEs) and silencers (ESSs)

have been compiled; these sequences are believed to increase or

decrease, respectively, the spliceosome’s ability to recognize exons.

Indeed, exons were found to be enriched in ESRs with respect to

pseudo-exons or exons [32–34]. Thus, our next step was to

determine the densities of ESEs and ESSs in exons and non-exons.

We made use of four datasets of exonic splicing regulators (ESRs):

the groups of SR-protein binding sites in ESEfinder [35], the

dataset of ESEs from Fairbrother et al. [36], the exonic splicing

regulatory sequences compiled by Goren et al. that consists mostly

of ESEs [37], and the ESS dataset compiled by Wang et al. [38].

For each exon (or non-exon) in the two Alu arms (Figure 4A) in the

three core and two control datasets, we calculated the ESR density

for the four groups of ESRs. The ESR density was calculated as

the total number of nucleotides within an exon that overlap with

motifs from a given dataset divided by the length of the exon.

We found that Alu exons showed a marked tendency for

enrichment in ESEs and depletion in ESSs with respect to their

non-exonizing counterparts. Right arm Alu exons had significantly

higher densities of ESEfinder ESEs than their counterparts in the

No AEx group (Figure 4B, p = 0.00007) and higher densities of

ESEs from Fairbrother et al. (Figure 4C, p = 0.00009). Higher

densities were also observed in terms of ESEs found in Goren et al.

(Figure 4D), whereas slightly lower densities were observed for the

ESSs of Wang et al (Figure 4E); However, the trends for the latter

two datasets were not statistically significant. In the left arms,

similar tendencies were observed: Exons originating from this arm

were highly enriched in ESEs of Goren et al. (Figure 4H,

p = 0.0001) and depleted in ESSs of Wang et al. (Figure 4I,

p = 0.0003). They also tended to be enriched in ESEs of

Fairbrother et al. (Figure 4G), although this was not significant

(p = 0.12); and in this arm no differences were found in terms of

ESEs of ESEfinder (Figure 4F, p = 0.72). To summarize, in all

cases in which significant differences were observed, these

differences reflect an increase in ESE densities in parallel with a

decrease in ESS densities in exons relative to non-exons.

Machine-Learning Mimicking of Spliceosomal Function
Since the splicing machinery is able to differentiate between

exonizing and non-exonizing Alus, we were interested in

discovering whether the features identified here can give rise to

such precise classification. Toward these aims, we used Support

Vector Machine (SVM) machine learning, which has shown

excellent empirical performance in a wide range of applications in

science, medicine, engineering, and bioinformatics [39]. We

created two classifiers: One discriminating between non-exonizing

Alus and Alus exonizing from the right arm and one discriminating

between non-exonizing Alus and Alus exonizing from the left arm.

Receiver-operator curves (ROC curves) were used to test

performance. Briefly, ROC curves measure the tradeoff between

sensitivity and specificity of a given classification. A perfect

classification with 100% sensitivity and 100% specificity will yield

an area under the curve (AUC) of 1, whereas a random

classification will yield an AUC of 0.5 (see Materials and Methods

for complete details of the SVM protocol used). 14 features were

selected for the machine learning. These were divided into 5

clusters: 59ss strength (1 feature: 59ss score), 39ss strength (1 feature:

39ss score), secondary structure (5 features: z-scores for the stability

of secondary structure of the entire Alu and of each of the two Alu

arms, PU values of the 59ss, and PU values of the 39ss), exon-intron

architecture (3 features: lengths of upstream intron, of Alu exon,

and of downstream intron), and ESRs (4 features: density in terms

of each of the 4 groups of ESRs).

Based on the above-described features, we were able to achieve

a high degree of classification between exonizing and non-

exonizing Alus. Figure 5A presents the ROC curves and AUC

values for the classification between Alus exonizing from the right

arm and non-exonizing Alus and Figure 5B presents these values

for the classification between the Alus exonizing from the left arm

and the non-exonizing ones. The AUC values of ,0.91,

demonstrate that our features achieve a high degree of accuracy

in discriminating between true exons and non-exons, thus

mimicking the role of the splicing machinery.

If selection of an Alu exon is indeed determined by this set of

features, then this same set of features may well also determine the

Figure 3. Analysis of lengths of the Alu exons/non-exons and flanking introns. (A) Diagram depicting the exon-intron architecture of a
representative Alu. The potential sites of exonization are denoted by dashed boxes, the lines flanking these sites represent introns, and the exons
flanking the Alu exon/non-exon are marked by solid boxes. (B,E) Lengths of introns upstream and downstream of the Alu sequence, respectively, in
the groups No AEx, AEx-R, and AEx-L. (C,D) Exon/non-exon lengths; data is presented for the three core groups, as well as for the relevant control
group (either AEx-R(c) or AEx-L(c)).
doi:10.1371/journal.pcbi.1000300.g003
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Figure 4. Analysis of ESR densities. (A) Diagram depicting the two Alu arms. (B–E) Mean ESR densities in the right arm Alu exon/non-exon, across
the three core groups and the relevant control (AEx-R(c)). Values are presented for four groups of ESRs: the groups of SR-protein binding sites in
ESEfinder [35], the dataset of ESEs of Fairbrother et al. [36], the ESR dataset of Goren et al. [37], and the ESSs of Wang et al. [38]. The ESR density is
calculated as the total number of nucleotides that overlap with motifs from each dataset divided by the length of the exon. The error bars present the
standard error. (F–I) ESR densities in the left arm across the different groups.
doi:10.1371/journal.pcbi.1000300.g004
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inclusion level of an Alu exon. A ‘‘strong’’ set of features will lead to

a high selection rate by the spliceosome, and hence to high

inclusion levels, whereas ‘‘weaker’’ features may lead to a more

reduced selection rate by the spliceosome and to lower inclusion

levels. Indeed, we found a positive, highly significant correlation

between probabilities of exonization based on the SVM model and

between inclusion levels of exons based on EST data in the case of

right arm Alu exons (Pearson, r = 0.28, p = 6.35e207). For the sake

of comparison, the correlation between 59ss scores and inclusion

levels is considerably lower and less significant (r = 0.15, p = 0.007).

Thus, although the computational model was explicitly trained on

the basis of a dichotomous input (Alus were labeled either as

exonizing or as non-exonizing), the model managed to capture the

more stochastic nature of the spliceosomal recognition of exons. A

positive correlation existed in the left arm as well, but this

correlation was not significant presumably due to the fewer

number of Alus in the AEx-L dataset.

Although our model was trained on Alus, and specifically on

comparing non-exonizing Alus to mostly alternatively recognized

Alus, we reasoned that the same set of features which make the

difference between a non-recognized and an alternatively-

recognized Alu exon might also make the difference between an

alternatively recognized exon and a constitutively recognized one.

We therefore applied the SVM model to datasets of constitutive

and cassette exons. For this purpose, we generated a dataset of

55,037 constitutive and 3,040 cassette exons based on EST-data

(see Materials and Methods). For each of these exons, we first

extracted all above-described features, and then applied the SVM

model to them. Our model classified constitutive and alternative

exons as different in a highly statistically significant manner. The

Figure 5. Results of SVM machine learning discriminating between true exons and non-exons in the Alu right arm. (A) Averaged
receiver-operator curves (ROC) and mean area-under-the-curve (AUC) values for 10 cross-validation support vector machine (SVM) runs for
classification between right arm exons in the AEx-R(c) group and in the No AEx group. (B) Analysis as in (A), but for left arm Alus. (C) DAUC values of
each cluster of features indicating the contribution of each cluster to correct classification of non-exonizing Alus and exonizing Alus from the right
arm. (D) Analysis as in C, but for the left arm.
doi:10.1371/journal.pcbi.1000300.g005
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mean probability of undergoing exonization, provided by the

logistic regression transformed SVM model, was 73% for the

constitutive exons, but only 60% for the alternative ones (Mann-

Whitney, p,2.2e216). In addition, 82% of the constitutive exons

were classified as ‘‘exonizing’’, in comparison to only 63% of the

alternative exons. These results demonstrate that the features

learned by the SVM model are relevant for exonization in general,

and control not only the shift of non-exons to alternative ones, but

also of alternative exons to constitutive ones.

Finally, we were interested in assessing the importance of

different features in allowing correct discrimination between

exonizing and non-exonizing elements. For this purpose, we used

DAUC to measure the contribution of each feature cluster. This

measure compares the performance of the classification with and

without each cluster of features, with greater differences indicating

greater contribution of a given cluster of features to precise

classification. The feature with the highest contribution, both in

the right arm (Figure 5C) and in the left arm (Figure 5D), was the

strength of the 59ss, in concordance with previous bioinformatic

findings [26]. However, much information is included in the other

features as well. The second most important feature both in the left

and in the right arm was exon-intron architecture. Secondary

structure and the 39ss had a comparable contribution in the right

and left arm. Despite the differences in terms of ESR densities

between the different datasets, this feature cluster had a negligent

contribution to classification in the right arm, and a slightly higher

one in the left arm. Using a mutual information based metric to

measure the contribution of the different features, yielded similar,

consistent results (see Text S1).

Discussion

In this study, we sought to determine how the splicing machinery

distinguishes true exons from non-exons. Alu exonization provided a

powerful model for approaching this question. Exonizing Alus have

retained high sequence similarity to their non-exonizing counter-

parts but are perceived differently by the splicing machinery. Past

studies have emphasized mainly the splice sites, but our results

indicate the importance additional features that lead to exonization.

These features, which include splicing signals (splice sites and ESRs),

exon-intron architecture, and secondary structural features,

achieved a high degree of classification between true Alu exons

and non-exons, demonstrating the biological relevance of these

layers in determining and controlling exonization events.

Perhaps the most interesting result to emerge from this study is

that secondary structure is critical for exon recognition. It has been

assumed that pre-RNA is coated in vivo by proteins [10] and that

these RNA-protein interactions either prevent pre-mRNAs from

folding into stable secondary structures [40] or provide pre-

mRNAs with a limited time span for folding [41]. However, an

increasing number of studies are finding that secondary structure

plays a crucial role in the regulation of splicing. Secondary

structures involving entire exons (e.g., [5–7]), the splice sites only

(e.g., [8,11,12]), or specific regulatory elements [42,43] were

shown to be involved in the regulation of alternative splicing.

Hiller et al. [14] recently found that regulatory elements within

their natural pre-mRNA context were significantly more single

stranded than controls. Our current study puts these findings into

a broad context, and provides bioinformatic evidence for the

notion that the structural context of splicing motifs is part of the

splicing code. Such a structure, as we have shown, is detrimental

for exonization in general, and specifically if it overlaps the 59ss.

Several intriguing observations can be made when merging our

results based on the exonizing and non-exonizing Alus with those

of the alternative and constitutive datasets. In terms of inclusion

level, these four groups form a continuum, with non-exonizing Alus

having a 0% inclusion level, exonizing Alus having a mean

inclusion level of 10%, cassette exons having a mean inclusion

level of 25%, and constitutive exons being included in 100% of the

cases. Gradual changes when moving from non-exonizing Alus, to

exonizing Alus, to alternative exons, to constitutive ones are

observed in several additional features: The strength of the 59ss

gradually increases from non-exonizing Alus to constitutive exons,

the strength of the secondary structure gradually decreases, lengths

of the upstream and downstream introns gradually decrease while

length of the exons gradually increase (see Figure 6 for detailed

values). These gradual changes are all coherent in biological terms:

Stronger 59 splice sites allow higher affinity of binding between the

spliceosomal snRNAs and the 59ss, and have well documented

effects in increasing exon selection [28,44]; stronger secondary

structure can sequester binding sites of spliceosomal components;

And it has been previously shown that longer flanking introns

profoundly increase the likelihood that an exon is alternatively

spliced [4], and that alternative exons tend to be shorter than their

constitutive counterparts (reviewed by [16]), presumably due to

spliceosomal constraints. In addition, our finding that selective

constraints are simultaneously applied both on the lengths of the

exons and of their flanking introns suggests that the exon and its

flanking introns are recognized, to some extent, as a unit. This

challenges the more traditional exon-definition and intron-

definition models [3,45], according to which either the exon, or

its flanking introns, but not both, are recognized by the splicing

machinery.

Notably, in our search for features differentiating between

exonizing and non-exonizing Alus, we focused only on features

which can potentially be mechanistically employed by the splicing

machinery to differentiate between exons and introns. For this

reason, we did not use phylogenetic conservation, nor the age of

the Alu exons, nor the location of the exonization event (CDS vs.

UTR) as features. Although these features are informative as well

(see Text S1, and [32]), and thus may potentially boost the

performance of our classifier, these cannot be directly sensed by

the spliceosome. Rather, these elements reflect the evolutionary

pressures to which an exonizing Alu element is subjected.

In our study we found that introns flanking exonizing Alus are

dramatically shorter than the introns flanking their non-exonizing

counterparts. These results appear to contradict recent results [46]

according to which there is a tendency for new exons to form within

longer introns. However, two points must be borne in mind in this

context: First, the introns flanking exonizing Alus are longer than

average introns, and thus our results are consistent with the above

study in that exonizations occur in longer introns. Second, our

findings may reflect an upper bound in terms of intron length within

which exonization optimally occurs, and introns longer than a

certain threshold may cease to be good candidates for exonization.

Our results indicate that the Alu-trained model could be applied

to a more general context of alternative and constitutive exons,

where it yielded coherent results. This does not, however, imply

that all findings made in the context of Alus can be directly

extrapolated to exons in general. For Alu sequences, we found the

59ss to be the most informative feature for correctly predicting

exonization events, in agreement with previous findings [26,28].

We found, however, that the 39ss, which was also found to play a

major role in exonization [24], is less critical. This finding may not

necessarily hold for all exons. The relatively low contribution of

the 39ss to Alu exonization may reflect the general tendency of Alus

to have relatively strong splice signals at their 39 end, regardless of

whether they undergo exonization or not. This is since the poly-T

Exon Recognition Features
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track, present in all Alus in the antisense orientation, serves as a

strong polypyrimidine tract [24,47]. On the other hand, our

results regarding the importance of ESRs are consistent with

several previous studies that have found exons to be enriched in

ESRs with respect to pseudo-exons, more poorly recognized

exons, and introns [32–34]. Thus, while the importance of

different features may vary from one exon to another, our results

provide a general understanding of the features impacting on exon

recognition.

It is noteworthy, that the majority of Alu exonization events in our

two exonizing datasets presumably reflect either errors of the

splicing machinery or newly born exons, which presumably do not

give rise to functional proteins (see also [48]). This is indicated by the

low inclusion level of the Alu exons, averaging 13% and 10% in the

AEx-R and AEx-L groups, respectively. In addition, the symmetry

of the Alu exons (i.e., divisibility-by-three), at least in the AEx-R

dataset, is very low: Only 23% of the exons are symmetric (in the

AEx-L dataset 55% of the Alus are symmetric). Thus, the majority of

Alus in this dataset insert a frame-shift mutation. These numbers

contrast with the 73% symmetry found in alternative events

conserved between human and mouse [49]. However, since our

objective in this research was to understand the requirements of the

spliceosome, the potential function of the transcript is irrelevant.

Moreover, newly born alternatively spliced Alu exons are the raw

materials for future evolution: Given the right conditions and time,

further mutations might generate a functional reading frame.

Figure 6. Diagram depicting gradual changes in different factors correlating with exonization levels. Inclusion levels are shown to
gradually increase from non-exonizing Alus, to exonizing Alus, to alternative exons, to constitutive exons. This increase correlates positively with exon
lengths and with 59ss strength, and negatively with lengths of flanking introns and predicted secondary structure stability of the exon.
doi:10.1371/journal.pcbi.1000300.g006
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The features identified here provided good, but not perfect,

classification using machine learning. A number of factors underlie

the non-perfect classification: For example, EST data is very noisy

and far from providing a comprehensive coverage of all genes in

all tissues [50]. Therefore, many Alus categorized as non-exonizing

may, in fact, undergo exonization in certain tissues. Moreover, the

features uncovered here may well not be exhaustive. Finally, as

suggested by the correlation between the strength of predictions

and the inclusion level, the alternative splicing pattern of the Alu

exons may imply that the spliceosome itself does not perfectly

recognize the exons. In this sense, the non-perfect classification of

the machine learning model may reflect, to some extent, the non-

perfect selection of the splicing machinery, giving rise to

alternative events.

Materials and Methods

Compilation of Datasets
We compiled a dataset of intronic Alus in the antisense

orientation that do not undergo exonization and datasets of Alus

that are exonized in their right arms and left arms. We used a

similar, but improved, procedure to the one described in [28]. We

retrieved all human intronic Alus in the antisense orientation by

querying the TranspoGene database [51]. Using the needle

application [52], we next performed pairwise, global alignments

between the Alu sequences and the Alu-Jo consensus sequence

which was downloaded from RepBase [53] (http://www.girinst.

org/). Since we desired only Alus sharing a ‘reasonable’ degree of

similarity which would ensure a common basis for comparison, we

next filtered out all Alus with over 40 indels relative to the Alu

consensus sequence; this cutoff was set empirically. Finally, we

filtered out all redundant entries based on overlapping genomic

coordinates. We next identified all cases in which EST evidence

(based on the TranspoGene query) supported exonization from

the right arms and from the left arms. These Alus formed the initial

AEx-R and AEx-L datasets. To form the No AEx group, we began

with all Alus lacking any evidence of exonization and retained only

those Alus overlapped by $20 ESTs, based on the hg17 ‘Spliced

ESTs’ table downloaded from the UCSC website (http://genome.

ucsc.edu/).

Finding Optimal Potential Splice Sites
To identify optimal exon boundaries (i.e. flanking 39 and 59

splice sites) in the left arms of the AEx-R dataset, in the right arm

of the AEx-L dataset, and in both arms of the No AEx dataset, we

first characterized the position windows in which 59 and 39 splice

sites tended to be located, in the right and left arms of sequences in

the AEx-R and AEx-L datasets, respectively, as in [28]. The 39ss

was defined as the 15-nucleotide (nt) sequence covering the 14 last

intronic nucleotides and the first exonic nucleotide and the 59ss

was defined as a 9-nt sequence covering the 3 terminal exonic

nucleotides and the first 6 intronic nucleotides. We found that

97% of the 39ss in the right arm of the AEx-R dataset were located

upstream of position 58 (relative to the consensus) and that .98%

of the 59ss in the right arm of the AEx-R were located between

positions 105 and 181. Similarly, .95% of the 39ss were located

between position 181 and 204 and all 59 splice sites in the left arm

of the AEx-L group were downstream of position 249. We next

searched for the highest scoring splicing signals within the relevant

positional windows of the left arm of the AEx-R group, the right

arm of the AEx-L group, and both arms of the No AEx group. Alus

lacking a minimal potential splice site in either arm, defined as an

‘AG’ for the 39ss and a GT/C for the 59ss, were filtered out. Splice

site scores were determined by first calculating log-odd scores

based on position specific scoring matrices (PSSMs) of the relevant

splicing signal and subsequently rescaling them to lie between 0

and 100, as described in [54]. The 59ss PSSM, spanning 3 exonic

and 6 exonic positions, was derived from the Analyzer Splice Tool

webserver (http://ast.bioinfo.tau.ac.il/SpliceSiteFrame.htm), and

the 39ss PSSM, spanning 14 intronic and 1 exonic position, was

derived from [55]. The two control datasets, AEx-R(c) and AEx-

L(c) were created based on the same set of Alus as the AEx-R and

AEx-L groups, respectively, but by defining exon borders in both

arms based on the computational prediction rather than on EST

evidence.

Z-Scores of Secondary Structure Strength
The predicted free energy of the ensemble of all secondary

structures of a sequence was obtained via the RNAfold application

in the Vienna RNA Package [29,56]. However, these measures are

highly sensitive to sequence length and to dinucleotide composi-

tion [57]. To overcome these biases, we used DiShuffle [58] to

generate 50 random sequences from each original sequence

sharing its length and dinucleotide composition. The Z-scores

were calculated as the difference between the free energy of the

original sequence and the mean partition function of the 50

randomized sequences, divided by the standard deviation of the

partition functions of the randomized sequences.

Measurement of Single Strandedness (PU Values)
PU values represent the probability that all bases in a motif are

unpaired (denoted as probability unpaired or PU value) [14].

These motifs were calculated as in [31]. Briefly, the PU value for

the region a to b in an mRNA sequence is defined as:

PU~e
Eall{Eunpaired

RT

where Eall is the free energy of the ensemble of all structures,

Eunpaired is the free energy of the ensemble of all structures that have

the complete region a to b unpaired, R is the universal gas

constant, and T is the folding temperature. Eall and Eunpaired were

computed using the partition function version of RNAfold [29].

For Eunpaired, we assured that the region a to b was unpaired by

applying additional constraints (RNAfold parameter-C).

To reduce the dependency on a single fixed context length, we

considered all symmetrical context lengths from 11 up to 31 nt

upstream and downstream of the splicing motif in increments of 5,

similar to [14]. Thus, for a 59ss motif of length 9 nt, we considered

sequences with a total length of 31 nt (for context length of 11,

2611+9 = 31), 41 nt (for context length 16), 51 nt, 61 nt, and

71 nt (for context length of 31). We computed the PU value of the

splicing motif for each of these context lengths and averaged them.

Determining Lengths of Flanking Introns
To determine the length of the introns flanking the Alu exons/

non-exons, we downloaded the UCSC hg18 Known Genes track,

creating a separate record for each exon. We used the LiftOver

application (available in http://hgdownload.cse.ucsc.edu/

downloads.html) to convert the Alu start and end coordinates from

hg17 (used by TranspoGene) to hg18. For each Alu in each of the

datasets, we identified the most proximal exon upstream and

downstream of the Alu, based on which we calculated lengths of the

introns flanking the Alu elements.

SVM Machine Learning
Our aim was to build two classifiers discriminating between Alus

undergoing and not undergoing exonization: one between the Alus
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undergoing exonization in the right arm and the non-exonizing

ones and one between Alus undergoing exonization in the left arm

and the non-exonizing ones. Since we had two datasets

representative of Alus exonizing from the right (AEx-R and AEx-

R(p)) and two from the left (AEx-L and AEx-L(p)), in practice we

built four classifiers, with each classifier distinguishing between the

No AEx group and one of the above four groups.

The machine learning approach we decided to use was support

vector machine (SVM). We made use of the e1071 package [59],

which provides an interface to LIBSVM [60] in R statistical package

[61]. All variables were normalized prior to the machine learning

process, to zero mean and unit variance. The variables of intron

length and PU values were first log-transformed, as well.

The difference in several orders of magnitude between the size

of the datasets of Alus undergoing and not undergoing exonization

causes the instance of the former to ‘drown’ within the latter. In

our machine learning, we therefore maintained a 3:1 ratio

between non-exonizing and exonizing Alus by randomly selecting

three Alus from within the non-exonizing dataset for each Alu in

the exonizing dataset.

SVM training involves fixing several hyper-parameters, which

have a crucial effect on the performance of the trained classifier

[39]. To identify an optimal hyper-parameter set, we used 10-fold

cross-validation on the training set and performed a grid search with

linear, polynomial, and Gaussian kernels and with a range of cost

and gamma values. For this purpose, we used the tune() function in

the e1071 package. We found that in the majority of cases the SVM

performed best with a linear kernel and a cost factor of 1.

Evaluation of the SVM prediction was achieved by implement-

ing a 10-fold stratified cross-validation procedure (i.e., in each run

maintaining the 3:1 ratio between the training and test sets) using

the area under the ROC curve (AUC) as a global performance

measure. We performed 10 cross-validation runs (in each such run

using a different set of randomly selected non-exonizing Alus) and

the 100 ROC curves from these runs were averaged and displayed

in Figure 6 via the ROCR package [62]. The mean AUC in these

runs was calculated as well, as an overall performance measure.

Logistic regression fitted to the decision values of the SVM

classifier was applied using the probability = TRUE option in the

svm() function.

Statistical Analysis
Unless explicitly stated otherwise, the hypothesis that a factor

distributed equally across different groups was tested using the

non-parametric Kruskal-Wallis one way analysis of variance test.

As post-hoc tests, we then performed Mann-Whitney tests between

each pair of groups. The results for these tests are all presented in

Text S1.

Compilation of Constitutive and Alternative Datasets
Coordinates of human (hg18) exons based on the Refseq track

and coordinates of spliced EST alignments were downloaded from

the UCSC genome browser (http://genome.ucsc.edu/). For an

EST to support exon inclusion, we demanded that the exon be

either fully included in the alignment of the EST sequence, or that

at least 50 nt of the exon and either of its two splicing signals form

part of the alignment. Alignment gaps of less than 8 nt were

ignored, as in the UCSC visualization defaults. An EST was

defined as supporting exon skipping if no alignment between them

was observed, and if the EST was defined as supporting the two

flanking exons. For the constitutive exons, we selected all exons

whose inclusion was supported by at least 20 ESTs and lacking any

ESTs supporting exon skipping, whereas for the alternative dataset

we selected all exons with at least 5 ESTs supporting inclusion and

5 ESTs supporting skipping. As a final step, the features described

in the manuscript were extracted for each of the exons in the two

datasets, with the exception of secondary structure of the opposite

Alu arm and within the entire Alu, since these features cannot be

applied to exons in general.

Supporting Information

Text S1 Supplementary Methods, Tables, and Figures

Found at: doi:10.1371/journal.pcbi.1000300.s001 (0.15 MB PDF)
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