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Abstract

Theoretical methods for predicting CD8+ T-cell epitopes are an important tool in vaccine design and for enhancing our
understanding of the cellular immune system. The most popular methods currently available produce binding affinity
predictions across a range of MHC molecules. In comparing results between these MHC molecules, it is common practice to
apply a normalization procedure known as rescaling, to correct for possible discrepancies between the allelic predictors.
Using two of the most popular prediction software packages, NetCTL and NetMHC, we tested the hypothesis that rescaling
removes genuine biological variation from the predicted affinities when comparing predictions across a number of MHC
molecules. We found that removing the condition of rescaling improved the prediction software’s performance both
qualitatively, in terms of ranking epitopes, and quantitatively, in the accuracy of their binding affinity predictions. We
suggest that there is biologically significant variation among class 1 MHC molecules and find that retention of this variation
leads to significantly more accurate epitope prediction.
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Introduction

Cytotoxic T lymphocytes (CTLs) discriminate between healthy

and pathogen-infected cells by recognizing and responding to a

molecular complex on the surface of the infected cell. This

complex consists of a specific major histocompatibility complex

(MHC) molecule and a peptide derived from the proteins

contained in the cell. If the cell contains a pathogen, peptides

from the pathogen proteome will be presented and, with the right

MHC – peptide complex, a CTL response will be elicited.

Of the large number of peptides that can be derived from a

pathogen only a small minority elicits a CTL response. This number

has been estimated to be between 1 in 2,000 and 1 in 5,600 [1,2].

This limitation in the number of peptides that are immunogenic is

conferred by three main constraints: the requirement for peptide

cleavage and transport, the requirement for MHC-peptide binding

and the requirement for CTL recognition. By far the most stringent

of these is the requirement for MHC-peptide binding, because only

1 in 40–200 peptides binds a specific MHC molecule with sufficient

affinity to elicit an immune response [1,2]. Further selection is

largely due to the limitations of peptide processing and transport. In

these processes, individual peptides are produced from the

precursor polypeptides by proteasomal cleavage of the polypeptide,

which can be followed by N-terminal trimming by other peptidases.

This is followed by the transport of the peptides from the cytosol to

the endoplasmic reticulum, mediated by the TAP complex. Further

N-terminal trimming may occur before the peptide binds to the

MHC molecule. The requirements of processing and transport

eliminate approximately 80% of potential epitopes [1]. Finally, T

cell specificity, i.e. the requirement for T cell receptor binding of the

MHC-peptide complex, further halves the number of presented

peptides that elicit a response. The probability of each of these steps

is determined by the polypeptide sequence, amongst other factors

[3].

Once CTLs recognize the MHC-peptide complex, they are

capable of destroying the infected cell by the release of lytic

granules containing cytotoxic effector proteins. This results in the

destruction of the target cell by apoptosis. An effective CTL

response has been shown to confer protection against viral

infection, such as HIV [4] and HTLV-I [5]. Hence, the

identification of T cell epitopes is of vital importance in the

design of vaccines and understanding of the immune system

[6,7,8]. However, given the scarcity of epitopes, experimentally

screening all possible peptides for each MHC allele (e.g. by IFNc
ELISpot) is time consuming, expensive and inefficient. One way to

improve the efficiency of the identification process is to first use

theoretical algorithms to predict which peptides are more likely to

be epitopes and then experimentally screen this much smaller,

selected list of peptides. This method is widely used [9–12] and has

been applied in a number of studies to identify potential vaccine

targets [13,14]. The use of theoretical methods to ‘‘pre-screen’’

peptides is of particular importance in the case of emerging

infections such as avian influenza [15] where rapid vaccine

development would be vital. This approach underpins a large bio-

preparedness initiative coordinated by the Large-Scale Antibody

and T Cell Epitope Discovery Program [7], which intends to foster

development of immune-based therapeutics for emerging and

reemerging pathogens including potential bioterrorism agents.

The accuracy of these methods has also been demonstrated by the

prediction of the vast majority of CTL epitopes from the vaccinia

virus [16].
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More generally, epitope prediction algorithms are being

increasingly used to understand the CTL response. For example,

in the case of HIV-1 infection, algorithms have been used to

confirm which MHC-associated epitope mutations are likely to

confer escape from a CTL response [17] and to understand why

some MHC class I alleles are associated with slow rates of disease

progression [18,19].

A range of computational algorithms have been developed to

predict CTL epitopes in pathogen protein sequences. Since the

most selective requirement for a peptide to be immunogenic is the

ability of the peptide to bind to the MHC molecule, most

prediction methods focus on this stage of the pathway. As a

general rule, information gained from experimental binding assays

is used to train the algorithm until it is efficient at predicting novel

MHC–peptide complexes. The algorithms that are used vary in

complexity and accuracy. Some can be trained to recognize

peptide motifs that are required for binding to a particular MHC

molecule [20], others use a weight-matrix method to identify

amino acids that occur at a higher-than-expected frequency at

specific epitope positions [21,22,23]. However, the most accurate

methods available use logistic regression [24] and, more generally,

artificial neural networks [3].

Artificial neural networks (ANNs) take into account, in addition

to the identity of each amino acid residue, the interactions between

adjacent amino acids in a potential epitope. In summary, an ANN

for a particular MHC molecule is trained to recognize associated

inputs (a peptide sequence) and outputs (the binding affinity for

that sequence with the MHC molecule) [25]. Once an ANN is

trained for a particular molecule, it can predict the binding affinity

of novel peptide sequences.

NetCTL [3] and NetMHC [25,26,21] are two of the most

accurate prediction methods currently available [27]. NetMHC

uses ANNs for a number of alleles to predict MHC molecule-

peptide binding affinities. NetCTL, as well as using ANNs to

predict MHC – peptide binding, also utilizes information about

the proteasomal cleavage of the input peptide sequence, and its

ability to bind to TAP. NetCTL or NetMHC will predict a score

(either integrated or simply a binding affinity, respectively) for

every overlapping nonamer peptide sequence in an input sequence

to each MHC molecule for which the method has an ANN.

Henceforth, we refer to the trained prediction algorithm for each

MHC class I allele as an ‘‘allelic predictor’’.

Rescaling
In order to make the prediction values comparable between

each MHC molecule, it is recommended that the MHC-peptide

binding affinity scores are rescaled [28]; this is explicitly

implemented in NetCTL. The method of rescaling involves

obtaining the predicted binding affinities of 500,000 random

natural peptides for each MHC allelic predictor. From these

affinities, a rescale value is calculated, defined as the binding

affinity that is the threshold for the top 1% of total binding

affinities. The rescaled affinity is then defined as the predicted

affinity score divided by this rescale value [3]. Hence, from this

calculation, all alleles are predicted to bind the same number of

high-affinity peptides. One pragmatic reason for rescaling is to

correct for any discrepancies between the allelic predictors that

resulted from inconsistent training data (e.g. data that came from

different sources), by assuming that all alleles should bind the same

number of epitopes (C. Keşmir, pers. comm.). Additionally, there

are biological arguments for believing that different alleles should

bind similar numbers of epitopes. It has been postulated that the

opposing constraints of effective pathogen recognition but

tolerance of self would result in a very narrow range of optimal

promiscuity for viable MHC class I molecules. A narrow range of

promiscuity would also be predicted as a direct outcome of

effective tapasin-dependent peptide optimization in the endoplas-

mic reticulum [29,30,31].

However, we will present evidence in this paper that in

correcting for differences between the allelic predictors, informa-

tion is being lost that reflects true biological variation between

MHC molecules and, by extension, differences in their ability to

bind to peptide sequences. We show that, for both qualitative and

quantitative measures of binding, rescaling impairs rather than

improves allelic predictor performance. This is of importance for

vaccine design and to understand the nature of the CTL response.

In particular, crucial between-allele variations in binding affinity

and preference which may contribute to differences in the

outcome of infection are likely to be obscured by rescaling.

Methods

Prediction Method Outputs
In order to test the effect of rescaling on epitope prediction

accuracy, we used two web-based prediction methods, NetCTL

v1.2 [3] and NetMHC v3.0 [25,26,21]. NetCTL is an integrated

method that uses information pertaining to TAP and protein

cleavage in its predictions, together with MHC binding. The

output is combined by rescaling the MHC binding result and

adding this to the weighted scores for TAP and protein cleavage.

NetCTL has allelic predictors for 12 different class I alleles that are

chosen to be representative of each of 12 supertypes; hence it has

12 different rescaling factors.

NetMHC v3.0 simply predicts MHC-peptide binding, using

ANNs to predict binding affinities for 43 MHC molecules. In

order to test the effect of rescaling, it was necessary to produce

rescale values for each of the 43 allelic predictors. This was

performed as in NetCTL; 500,000 unique random nonamers were

obtained from the proteome of Mycobacterium tuberculosis, their

binding affinity was predicted and the rescale value (top percentile)

was found for each allelic predictor. We also performed this

calculation with 500,000 random natural peptides to test for the

possibility of error from bias in amino acid usage in Mycobacterium

Author Summary

The use of prediction software has become an important
tool in increasing our knowledge of infectious disease. It
allows us to predict the interaction of molecules involved
in an immune response, thereby significantly shortening
the lengthy process of experimental elucidation. A high
proportion of this software has focused on the response of
the immune system against pathogenic viruses. This
approach has produced positive results towards vaccine
design, results that would be delayed or unobtainable
using a traditional experimental approach. The current
challenge in immunological prediction software is to
predict interacting molecules to a high degree of accuracy.
To this end, we have analysed the best software currently
available at predicting the interaction between a viral
peptide and the MHC class I molecule, an interaction that
is vital in the body’s defence against viral infection. We
have improved the accuracy of this software by challeng-
ing the assumption that different MHC class I molecules
will bind to the same number of viral peptides. Our
method shows a significant improvement in correctly
predicting which viral peptides bind to MHC class I
molecules.

Rescaling in Epitope Prediction
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tuberculosis. There was no significant difference in the rescale values

obtained using these two different sources (supplementary

material, figure S4).

In summary, we tested two sets of rescaling values: those

obtained from NetCTL v1.2 and those that we calculated using

NetMHC v3.0.

Datasets
Epitope datasets were constructed from sources detailed below.

In each case, the prediction methods were tested by their ability to

detect these epitopes amongst the full set of overlapping nonamers

derived from the proteins that contained the epitopes. The full set

of nonamers will contain a small number of known epitopes and

the remainder will be ‘non-epitopes’. Of course, this set of non-

epitopes could include epitopes that have not been experimentally

verified. However, the majority (see introduction) would be non-

binders with the corresponding MHC molecule. Added to this, the

labelling of epitopes as ‘non-epitopes’ impact on both rescaled and

non-rescaled calculations equally. Previous research has also

shown that this property of the ‘non-epitope’ set did not produce

significantly different results [24]. Each respective set of experi-

mentally defined epitopes was denoted the positive dataset and the

set of non-binding (or unknown) peptides was denoted the negative

dataset.

The SYF1 Dataset
The SYF1 dataset is a supertype dataset derived from

SYFPEITHI [20] and is identical to that used in the original

paper for NetCTL [3]. Each epitope in SYF1 was experimentally

verified to bind to one of 10 MHC class I supertypes [32]. The

resulting dataset consisted of 148 epitope-supertype pairs. The

corresponding negative dataset was obtained by concatenating the

SwissProt entry proteins from which each of the epitopes was

derived. The length of the concatenated protein sequence was

78,259 amino acids. The ROC curve (see below for explanation)

was generated using a negative set of ((78,259*10)2148) = 782,442

nonamers and a positive set of 148 nonamers. The positive set of

SYF1 is available in the supplementary material (dataset S2).

The Lanl661 Dataset
Experimentally defined epitopes in HIV-1 were extracted from

the HIV Molecular Immunology Database [33]. In total, 1,618

CTL epitopes were found that were bound by human MHC

molecules. However, this set was highly redundant; the epitope

lengths were variable and a large number of epitopes differed only

by mutations within the sequence. Also, resolution of their MHC

typing varied from 2 to 4 digits. To correct for this variability, a

number of changes were made to the MHC allele-epitope list.

Firstly, all MHC alleles were defined to two digits. Secondly,

variant epitopes binding the same allele were discarded. Finally, as

the prediction software only produced binding predictions for

nonamer epitopes, all epitopes that were not 9 amino acids long

were removed from the list.

In summary, it was possible to test 41 of the 43 allelic predictors

for MHC molecules in NetMHC v3.0. The positive set consisted

of 661 epitopes, defined in terms of start and end positions relative

to the HIV reference strain HXB2 (supplementary dataset S1) and

a matching MHC type to 2 digits. The input protein sequence to

NetMHC contained 3,000 overlapping nonamers that covered the

proteome from which the whole positive set of epitopes was

derived. The total ‘negative set’ for the ROC analysis was (3,000 *

41)2661) = 122,339 nonamers, and a positive set of 661

nonamers. The positive set of Lanl661 is available in the

supplementary material (dataset S3).

The Lanl179 Dataset
The Lanl661 dataset was modified for testing with NetCTL.

From these 661 epitopes, a total of 179 bound to the 12 alleles for

which NetCTL has allelic predictors. The input sequence to

NetCTL contained 3,000 overlapping nonamers. For this

experiment, the negative set consisted of ((3,000 * 12)2179)

35,821 nonamers, and a positive set of 179 nonamers. The positive

set of Lanl179 is available in the supplementary material (dataset

S4).

ROC Curves
ROC curves give a visual measure of the accuracy of a

prediction method. The threshold at which the prediction method

identifies a peptide as being an epitope varies along the length of

the curve. Each point on the curve gives the fraction of true

positive epitopes found as a function of the number of false positive

‘epitopes’ at that threshold. Hence, setting a strict threshold for

epitope detection will result in high specificity (correct predictions)

but low sensitivity (missing a high proportion of true binders). The

area under the ROC curve gives the AUC (Area under Curve)

measurement. In order to test for significant difference between

ROC curves, we conducted the bootstrapping analysis detailed in

[34]. Briefly, using bootstrapping with replacement, 100 replicates

were formed from each dataset and the resulting non-rescaled and

rescaled whole AUC values were compared using a paired t test.

Other Measurements of Performance
Using the 2 epitope datasets, HIV216 and SYFPEITHI863, and

the same methods from [35], we repeated 3 of the measurements

described in that paper for the rescaled and non-rescaled results of

NetCTL v1.2. For the Rank measure, we analysed the proteins

from which each epitope was derived. For each protein, we

calculated the rank of the epitope amongst all overlapping 9-mers

using rescaling and non-rescaling scoring methods for all alleles.

We then analysed these ranks to see which method ranked the

epitopes higher. For the second method, we measured the

specificity of both rescaling and non-rescaling at predefined

sensitivities. Finally, we measured the sensitivity among the top 5%

top-scoring peptides, again for the rescaled and non-rescaled

binding affinities.

Other Data Sources
The training data for NetMHC v3.0 is available at http://

mhcbindingpredictions.immuneepitope.org/. An independent set

of experimental epitope-allele binding affinities was obtained from

the Immune Epitope Database and Analysis Resource (IEDB) by

selecting all experimental data that did not originate from the

laboratories of Sette et al. or Buus et al. (the training data originated

from these two sources).

Results

The Effect of Rescaling on Qualitative Epitope Prediction
ROC curves were used to analyse the effects of rescaling on

epitope prediction. Both NetCTL v1.2 and NetMHC v3.0 were

tested and 3 datasets were used (figure 1 and table 1). In each case,

rescaling resulted in a significant loss of performance (bootstrap

test: p,0.001).

Variation in Rescale Values as a Function of Accuracy
One possible explanation for why rescaling has a detrimental

impact on prediction is that there may be a positive correlation

between rescale factor and allelic predictor accuracy. To check this

Rescaling in Epitope Prediction
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hypothesis we calculated the AUCs for each NetMHC v3.0

predictor using the Lanl661 dataset and plotted this against the

corresponding rescale factor, the results of which are shown in

figure 2. This shows no evidence of a correlation between rescaling

values and the AUC values (R2 = 0.0068, p = 0.606).

Consequently, it is unlikely that a correlation between rescale

values and AUC values explains our findings. However, certain

alleles like B0801 do have both a low rescale value and a low

AUC. To double check that these poor accuracy predictors were

not causing the inaccuracies in rescaled predictions we repeated

our ROC curve analysis for Lanl661 without the low accuracy

predictors (those with an AUC value below 0.9; namely A6801,

A6802, B3501, B0702, B0801, B0802 and B4501). In the

remaining, reduced subset of predictors there was even less

evidence for a correlation between AUC and rescale factor

(R2 = 0.0007, p = 0.887). For this subset of predictors the accuracy

was still significantly better if rescaling was not applied (figure S1;

bootstrap test: p,0.001) and comparable to the ROC curve

analysis using the full set of alleles (figure 1C).

Therefore, we believe there is no evidence to support the

hypothesis that the reason rescaling is detrimental is because there

is a correlation between rescale factors and AUC.

Figure 1. ROC curve analysis on the effects of rescaling. Each graph shows the ROC curves using different combinations of datasets and
prediction methods (see table 1). Figure 1A uses NetCTL with the SYF1 dataset, figure 1B NetMHC with the SYF1 dataset, figure 1C NetMHC with the
Lanl661 dataset and figure 1D NetCTL with the Lanl179 dataset. The x-axis has been scaled to show the region of importance (the AUC with high
specificity values). The rescaled results (red dashed line) are compared against non-rescaled (black solid line). Table 1 gives the statistics for each
graph.
doi:10.1371/journal.pcbi.1000327.g001

Rescaling in Epitope Prediction
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Other Measurements of Performance
We used 3 other metrics [35] to compare predictive perfor-

mance with and without rescaling.

(1) The rank of known epitopes was compared with non-epitopes

from the same protein for both rescaled and non rescaled

predictions. From figure S2, it can be seen that the non-rescaled

results produced significantly more accurate results for both

epitope datasets (paired Wilcoxon ranked sum test, P,0.001).

(2) Non-rescaling predicted binding affinities produced improved

results compared to rescaling at given sensitivities using the

epitope datasets from [35] (supplementary table S1).

(3) Non-rescaling predicted binding affinities also produced

improved results comparing the total number of epitopes

among the top 5% predicted binding affinities (supplementary

table S2), again using the epitope datasets from [35].

The Effect of Rescaling on Quantitative Predictions of
Binding Affinities

Using 2 sets of experimentally-derived epitope-allele binding

affinities, we also showed that the correlation between predicted

and experimental affinities was weaker with rescaling than without

(supplementary figure S3).

Table 1. The summary statistics and details of each ROC curve from figure 1.

ROC Curve Colour Method Dataset Rescaling AUC Bootstrap P-Value

Figure 1A Black solid NetCTL v1.2 SYF1 Noa 0.949 ,0.001

Red dashed NetCTL v1.2 SYF1 Yes 0.937

Figure 1B Black solid NetMHC v3.0 SYF1 No 0.932 ,0.001

Red dashed NetMHC v3.0 SYF1 Yes 0.905

Figure 1C Black solid NetMHC v3.0 Lanl661 No 0.944 ,0.001

Red dashed NetMHC v3.0 Lanl661 Yes 0.937

Figure 1D Black solid NetCTL v1.2 Lanl179 Noa 0.933 ,0.001

Red dashed NetCTL v1.2 Lanl179 Yes 0.918

aIn NetCTL v1.2, the TAP and cleavage scores are combined with the rescaled MHC binding score to produce a combined score for each submitted nonamer. In order to
test how NetCTL performed without rescaling, it was still necessary to divide the MHC binding score by a rescaling value so the weightings of the TAP and cleavage
score were still applicable and accurate. By averaging over all rescaling values and dividing the MHC binding value by this number, rescaling differences were
‘‘averaged out’’ and it was still possible to use the extra information from the TAP and cleavage predictions.

doi:10.1371/journal.pcbi.1000327.t001

Figure 2. The relationship between AUC and rescale value. There is no evidence for a correlation of AUC and rescale value for the whole set of
allele predictors (R2 = 0.0068, p = 0.606), nor for the subset of predictors with an AUC.0.9 (R2 = 0.0007, p = 0.887). This analysis used the Lanl661

epitope dataset.
doi:10.1371/journal.pcbi.1000327.g002

Rescaling in Epitope Prediction
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Discussion

Rescaling is, in theory, a sound approach to improving epitope

prediction and in particular comparability of predictions obtained

using different allelic predictors. However, using a number of

different measures of accuracy, in the context of two commonly

used prediction methods, we have demonstrated that rescaling

actually impairs rather than improves predictive performance and

comparability. We suggest that rescaling predicted affinities results

in a loss of information that outweighs any advantage gained in

correcting for differences in training data.

The first approach used ROC curve analysis and showed clear

differences between rescaling and non-rescaling. The ROC curve

gives a graphical representation of how well the prediction method

ranks true epitopes among a set of non-binding peptides. Or to use

an analogy, how efficient it is at finding the epitopic needle in a

haystack of random peptides. From figure 1, it is clear that

rescaling across all allelic predictors results in a performance loss in

terms of how well the method ranks its peptides by binding affinity;

that is, rescaling impairs intra-allelic comparisons. This loss could

be demonstrated using epitope data from a number of sources

(SYFPEITHI, the HIV Molecular Immunology Database) and

with two different methods of prediction (the combined approach

of NetCTL v1.2 and NetMHC v3.0). This effect of rescaling would

be detrimental to any studies screening across a number of alleles

for possible epitopes (such as [15]). The effect of this performance

difference can be gauged from figure 1 (A). In order to identify

correctly 85% of the epitopes the percentage of false positives

detected was 9% and 15%, for non-rescaled and rescaled methods

respectively. To put this result into context, the viral protein NS1

from the H5N1 strain of Avian Influenza A consists of 221

overlapping nonamers. To screen this protein for potential

epitopes, 33 epitopes would need to be experimentally checked

for each MHC molecule of interest if rescaled predictions were

used, as opposed to 20 for the non-rescaled predictions (providing

85% epitope coverage was sufficient).

Added to the significant results from the ROC curve analysis,

the supplementary analysis demonstrated the positive effect of

removing rescaling in terms of the correlation with experimental

data (supplementary figure S3) and also in terms of per-protein

and sensitivity analysis (supplementary figure S2 and tables S1 and

S2). Taken together, these results strongly demonstrate the

improvement in accuracy of removing the condition of rescaling

when comparing predictions between alleles.

There has been little research on the variation in ‘stickiness’

among MHC molecules, i.e. whether some MHC class I molecules

are capable of binding to a greater number of epitopes than others.

The binding motifs for MHC-peptide binding vary across the

range of alleles, but the assumption made for rescaling is that each

molecule would bind to the same number of peptides out of a large

random selection. Estimates based upon mass spectrometry

suggest that over 2,000 peptides are associated with HLA-A2.1

and 2B7 and it is speculated that the actual total could be over

10,000 per MHC molecule [36]. However, it is not known how

this number varies between molecules. It has been postulated that

the twin constraints of effective pathogen recognition but tolerance

of self would result in a very narrow range of promiscuity for viable

MHC class I molecules [29]. Contrary to this, recent research has

shown that this range may be wider than initially envisaged [37]

and our results suggest that there is considerable inter-allelic

variation in promiscuity.

This data may also be informative regarding optimization of

peptide cargo in the endoplasmic reticulum (ER). We would argue

that peptide optimization is the biological interpretation of

rescaling: alleles have similar numbers of epitopes because peptides

with a lower binding affinity are replaced in the ER. We know that

optimisation cannot be complete because otherwise every allele

would just present one epitope: the one with highest affinity.

However, it seems likely that there is a degree of optimization

[30,31]. The observation that rescaling gives worse predictions

may put a bound on how much optimisation is occurring. Allied to

this, it has been observed that the release of an MHC class I

molecule from the peptide-loading complex with a suboptimal peptide

takes precedence over the prolonged detention of the MHC class I

molecule in the complex until an optimal peptide comes along

[30]. Hence, peptide optimization acts to reduce inter-allelic

variation and promiscuity results from inter-allelic variation in

allele-peptide affinity. However, this peptide optimization is

limited by time and is not complete and hence, we note this

variation in promiscuity across different alleles.

In summary, we suggest that much of the observed variation

between allelic predictors reflects genuine biological information

which should not be discarded as experimental noise and that

rescaling is based on an unjustified assumption: that all alleles bind

the same number of peptides. Removing this assumption, we have

demonstrated a significantly improved predictive performance.

These conclusions are important both for studies that use

prediction methods to understand the CTL response and for T cell

epitope discovery programs where avoiding rescaling could save a

large amount of experimental effort, ultimately leading to

improved vaccine implementation.
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