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Abstract

An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in
various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel
regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks.
We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support
Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM
uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by
RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a
variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of
known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification
programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence
identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery
of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs
in the 59 untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and
metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 59-
UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs
from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted
transcription terminators or attenuators, and other candidate regulatory RNA motifs. Our study provides a list of promising
novel regulatory RNA motifs potentially involved in post-transcriptional gene regulation. Combined with the previous cis-
regulatory DNA motif study in S. oneidensis, this genome-wide discovery of cis-regulatory RNA motifs may offer more
comprehensive views of gene regulation at a different level in this organism. The RSSVM software, predictions, and analysis
results on Shewanella genomes are available at http://ural.wustl.edu/resources.html#RSSVM.
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Introduction

RNA is remarkably versatile [1,2], acting not only as messengers

to transfer genetic information from DNA to protein, but also as

critical structural components [3] and catalytic enzymes [4,5] in

the cell. More intriguingly, non-coding RNAs (ncRNA) have been

found to play important regulatory roles. They can mediate gene

expression post-transcriptionally in two ways: one is to serve as

trans-acting antisense RNAs, such as microRNAs, which hybridize

with target mRNAs to silence their expression [6,7]; the other is to

form structural cis-elements in the mRNAs, such as riboswitches,

which regulate gene expression by mediating transcription

termination or translation initiation [8,9]. The regulatory roles

of ncRNAs make them promising drug targets [10] and efficient

tools for drug development and gene therapy [11,12].

In the past a few years, many cis-regulatory RNA structural

motifs have been identified in prokaryotes [13–15]. They are often

located in the 59 untranslated regions (UTR) of the mRNAs and

can sense or interact with cognate factors, including proteins,

RNAs, small metabolites, or even temperature changes, to mediate

transcription attenuation [8], translation initiation [9], or mRNA

stability [16]. The functions of the regulatory RNAs are

intrinsically tied to their secondary structures, mostly recognizable

as stem-loops or pseudoknots. Moreover, regulatory RNAs are

often conserved during evolution: similar regulatory RNA

elements can be shared by multiple co-regulated genes in the

same metabolic pathway, or conserved in orthologous genes across

closely related species [17].

Experimental screenings [18] for cis-regulatory RNAs are highly

labor and time consuming. As demonstrated by previous studies

[19,20], a parallel way is to find good candidates computationally

followed by targeted experimental validation. Because functional

regulatory RNAs are often evolutionarily conserved in their

secondary structures, we can identify them by finding significantly

conserved RNA secondary structures in orthologous genes across

closely related species. To accomplish this, we need two tools: one

is to accurately predict common RNA secondary structures in

multiple related sequences, and the other is to distinguish
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functional RNA secondary structures from random foldings of

RNA sequences.

A number of algorithms have been developed for common

RNA secondary structure prediction, such as RNAalifold [21],

Dynalign [22], comRNA [23], CMFinder [24] and FoldAlign

[25,26]. We recently published a new algorithm, called RNA

Sampler [27], for predicting common RNA secondary structures

and structural alignments in multiple sequences. Both our study

[27] and independent studies from other researchers [28,29] have

demonstrated that RNA Sampler provides more accurate

structure predictions and generates better structural alignments

on sequences of a wide range of identities than other leading

software for similar purposes. Moreover, RNA Sampler runs fast

and is feasible for common RNA secondary structure prediction

on the genome scale.

Studies have shown that for a single sequence RNA secondary

structure alone is not sufficient to distinguish functional RNA from

random sequence [30,31]. However, with the availability of

multiple RNA sequences from related species, comparative

genomics approaches provide additional power to identify

functional RNA structures. One strategy is to design a scoring

function for the predicted RNA secondary structures and examine

the difference between the score distributions of real structures and

randomly permutated structures, as employed by the RNA

identification pipeline based on CMfinder [32] or comRNA

[23]. But one limitation of such an approach is that the user needs

to generate a large number of random sequence sets for each set of

real sequences and doing structure predictions on these permu-

tated sequence sets is usually time consuming. Besides, it can be

difficult to find a score cutoff to make the call between functional

and random RNAs. Another strategy is to train a classification

model based on features that can distinguish common structures of

known functional RNAs from those of random RNAs and then

apply the classification model on the newly predicted common

RNA structures to determine whether they are of functional or

random RNAs. RNA classification algorithms employing this

strategy include QRNA, RNAz and Dynalign+LIBSVM. QRNA

[33] classifies a pairwise sequence alignment by the posterior

probabilities of three probabilistic models, ‘‘RNA’’, ‘‘Coding’’ and

‘‘Null’’ (position independent). RNAz [34] and Dynalign+
LIBSVM [35] both employ support vector machines (SVM) to

build the classification models. To train a classification model, the

developer still needs to generate a large number of random

sequence sets as the negative training sets and make structure

predictions on them, but once the classification model is trained,

the user can directly utilize the model to identify functional RNAs

without the need to generate, and perform folding of, random

sequences. The type of sequences used to train the classification

models is essential to their classification performance on new

sequences. QRNA and Dynalign+LIBSVM only use tRNAs and

rRNAs in their training on RNA structures, and RNAz is trained

on multiple RNA gene/motif families from the Rfam database but

only uses sequence sets with high identities. To avoid overfitting

the classification model to specific classes of RNAs, using training

sets that cover a wide range of sequence identities and a variety of

RNA families is more desirable. In addition, training the

classification model using more accurately predicted RNA

common structures and alignments is advantageous for more

sensitive classification of functional RNAs from random ones.

RNAz uses RNAalifold [36] for common RNA structure

prediction. When using sequence alignments as its input,

RNAalifold performs poorly in predicting RNA structures on

sequence sets of low identities [27]. The structure prediction

accuracy of RNAalifold may be improved by using structural

alignments, but RNAz might need to be re-trained to use

structural alignments.

In this paper, we present a new SVM based functional RNA

identifier named RSSVM (RNA Sampler+Support Vector Ma-

chine). RSSVM applies a set of features to represent common

RNA secondary structures and structural alignments generated by

RNA Sampler, which predicts RNA structures more accurately

than other approaches [27–29]. RSSVM is trained with RNA sets

with a wide range of sequence identities from all bacterial RNA

motif/gene families in the Rfam database [37]. RSSVM is more

sensitive in identifying real functional RNAs than other leading

RNA classification programs, including RNAz, Dynalign+
LIBSVM and QRNA, at the same false positive rate. We applied

RSSVM on multiple Shewanella genomes to identify putative cis-

regulatory RNA motifs in the 59-UTRs of orthologous genes.

Shewanella oneidensis is a facultative, gram-negative c-proteobac-

terium. It has extraordinary abilities to use a wide variety of metals

and organic molecules as electron acceptors in respiration [38–40],

which gives it great potential to be applied in bioremediation of

both metal and organic pollutants. The complete genomic

sequences of Shewanella oneidensis and multiple other Shewanella

species provide good resources for discovering cis-regulatory RNAs

using comparative genomics approaches. Combining with the

recent predictions of putative DNA cis-regulatory motifs in S.

oneidensis [41], we will have a more complete view of gene

regulation in S. oneidensis at different regulation levels.

Results

Comparison of Performance between RSSVM, RNAz,
Dynalign+LIBSVM, and QRNA on Test Sets

We examined the performance of RSSVM in identifying RNA

regulatory motifs on 1686 positive and 1686 negative test sequence

sets (see Methods) and compared its performance with that of

RNAz, Dynalign+LIBSVM and QRNA. Both Dynalign+
LIBSVM and QRNA only work on two sequences, thus we

examined their performance on all unique pairs of RNA sequences

for each test set. The sensitivity and false positive rate (FPR) of the

Author Summary

RNA is remarkably versatile, acting not only as messengers
to transfer genetic information from DNA to protein but
also as critical structural components and catalytic
enzymes in the cell. More intriguingly, RNA elements in
messenger RNAs have been widely found in bacteria to
control the expression of their downstream genes. The
functions of these RNA elements are intrinsically linked to
their secondary structures, which are usually conserved
across multiple closely related species during evolution
and often shared by genes in the same metabolic
pathways. We developed a new computational approach
to find putative functional RNA elements by looking for
conserved RNA secondary structures that are distinguished
from random RNA secondary structures in the orthologous
RNA sequences from related species. We applied this
approach to multiple Shewanella genomes and predicted
putative regulatory RNA elements in Shewanella oneiden-
sis, a bacterium that has extraordinary respiratory and
metal reducing abilities and great potential for bioreme-
diation and alternative energy generation. Our findings
not only recovered many RNA elements that are known or
supported by literature evidence but also included
exciting novel RNA elements for further exploration.

Discover cis-Regulatory RNAs in Shewanella Genomes
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predictions were measured by the fractions of true positive

classifications on the positive sets and false positive classifications

on the negative sets, respectively. For each prediction, RSSVM,

RNAz and Dynalign+SVM are able to report an SVM

classification probability (P) which measures the confidence of

the prediction. The higher the P-value, the more confident the

prediction. A P-value cutoff can be selected to call positive

predictions. When a lower P-value cutoff is used, although more

regulatory RNAs can be identified from the positive sets, more

negative test sets may be simultaneously misclassified as regulatory

RNAs, leading to a higher false positive rate.

The prediction results from different SVM models at the same

P-value cutoff are not readily comparable, because their

corresponding sensitivities and false positive rates can be

significantly different (Figure 1). Thus, to make fair comparisons,

we always compare the performance of two programs at the same

false positive rate which may be achieved by using different P-

value cutoffs for different programs (Table S1). The Receiver

Operating Characteristic (ROC) curves in Figure 1 demonstrate

the prediction sensitivities of RSSVM, RNAz and Dynalign+
LIBSVM at different FPRs. RSSVM and RNAz have similar

sensitivities on all test sets when the FPR is lower than 0.01.

However, when a higher FPR is allowed, RSSVM becomes more

sensitive. At the FPR of 0.05, the sensitivities of RSSVM and

RNAz are 0.86 and 0.75, respectively. We also compared the

performance of RSSVM and RNAz on test sets whose average

pairwise sequence identities are lower than 70%. On these test

sets, RNAz only has slight improvement in sensitivity in the low

FPR range comparing to its performance on all test sets. The

prediction sensitivities of RSSVM, however, are about 10% higher

than those on all test sets at the same FPRs. RSSVM is much more

sensitive than RNAz at any FPR. At the FPR of 0.01, the

sensitivity of RSSVM (0.77) is higher than that of RNAz (0.64) by

20% (Dataset S1). The higher prediction sensitivity than RNAz at

the same FPR makes RSSVM an alternative choice for the whole

genome RNA motif search, as it can find more targets while

maintaining a low FPR.

At any FPR, Dynalign+LIBSVM has significantly lower

sensitivities than RSSVM and RNAz on all test sets and on test

sets with low identities, especially in the range of low FPRs

(FPR,0.05) (Figure 1). At the FPR of 0.02, the sensitivities of

Dynalign+LIBSVM are only 0.28 and 0.42 on all test sets and on

test sets with low identities (,70%), respectively. The mediocre

performance of Dynalign+LIBSVM in our tests may be attributed

to the following reasons: 1) Dynalign+LIBSVM only uses

information from two sequences, but RSSVM and RNAz take

advantage of covariance information from multiple sequences; 2)

Dynalign+LIBSVM was trained only on tRNAs and 5S rRNAs,

which may cause overfitting of its classification model to these

RNA families. In fact, we did observe a much higher classification

sensitivity of Dynalign+LIBSVM on test sets comprising tRNAs

and 5S rRNAs than on all test sets at the same FPRs (data not

shown). For whole genome RNA motif scan, an ideal tool is

required to have a high sensitivity and a low false positive rate.

Dynalign+LIBSVM might not be a good choice for large scale

scan of RNA motifs.

QRNA does not provide a similar measurement of P-value for

its predictions, thus we are not able to generate its ROC curve. But

on all test sets, the overall FPR of QRNA is 0.05. At this FPR,

RSSVM has a significantly higher sensitivity (0.86) than QRNA

(0.51) (Table S1).

We further evaluated the performance of RSSVM on test sets

with different ranges of average sequence identities. We use

correlation coefficient (CCclassification), the geometric mean of the

classification sensitivity and (12FPR), to measure the overall

performance of RSSVM in each identity range. Because the

overall FPR of QRNA on all test sets is 0.05, to make fair

comparisons, we use different P-value cutoffs for RSSVM, RNAz

and Dynalign+LIBSVM to achieve the same FPR of 0.05 on all

test sets. As shown in Figure 2A, all algorithms have similar

performance on test sets with high identities ($70%), but RSSVM

significantly outperforms all the other algorithms on test sets with

low identities (,70%). In general, all tested algorithms tend to

Figure 1. The Receiver Operating Characteristic (ROC) curves of
RSSVM, RNAz and Dynalign+LIBSVM on all test sets and on test
sets with identities lower than 70%. ‘‘n’’ and ‘‘#’’ mark the results
at P-value cutoff of 0.90 and 0.50, respectively. Detailed data for this
figure are provided in Dataset S1.
doi:10.1371/journal.pcbi.1000338.g001

Figure 2. The Correlation Coefficients of RNA classification
(CCclassification) by RSSVM, RNAz, Dynalign+LIBSVM and QRNA on
test sets with different sequence identities (detailed values are
in Table S1). (A) At the overall FPR of 0.05. (B) At the more stringent
overall FPR of 0.01 or 0.02. The lowest possible FPR that Dynalign+
LIBSVM can achieve is 0.02.
doi:10.1371/journal.pcbi.1000338.g002

Discover cis-Regulatory RNAs in Shewanella Genomes
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have lower FPRs on sequence sets with low identities (,70%) than

with high identities ($70%) (Table S1). The increases in FPRs on

high-identity sets may be mainly due to the loss of covariant

mutations in the structures. Although Dynalign+LIBSVM and

QRNA have low FPRs on low-identity sets, they also make few

positive predictions in those sets, leading to low sensitivities.

At the more stringent overall FPR of 0.01 on all test sets, RSSVM

(0.68) and RNAz (0.65) have almost the same overall prediction

sensitivity (Table S1), and both perform significantly better than

Dynalign+LIBSVM, whose lowest possible overall FPR is 0.02

(Figure 2B). However, RSSVM and RNAz outperform each other in

different identity ranges. RSSVM is much more sensitive on

sequence sets with identities lower than 60%, but RNAz performs

better on sequence sets with high identities ($60%), while both

algorithms maintain low FPRs in all identity ranges.

Overall, for the best performance, RNAz, Dynalign+LIBSVM

and QRNA are in favor of sequence sets with high identities.

RSSVM, however, has consistent and more sensitive performance

on the low-identity sets while keeping the same FPRs. These

programs can complement each other for the best performance in

identifying regulatory RNAs on sequences with a wide range of

identities.

Three major improvements may contribute to the better

performance of RSSVM compared to RNAz in identifying

regulatory RNAs, especially on test sets whose identities are lower

than 70%. The first improvement is using the more accurately

predicted common RNA secondary structures by RNA Sampler.

The accuracy of predicted structures can be measured by the

correlation coefficient of structure prediction (CCstructure), which

approximates the geometric mean of the sensitivity and specificity

of predicted base pairings [27]. RNA Sampler and RNAalifold are

the corresponding core algorithms used by RSSVM and RNAz for

predicting common RNA secondary structures, respectively. As

shown in Figure 3, RNA Sampler gives similar performance to

RNAalifold on the high-identity sequence sets ($80%) but makes

much more accurate structure predictions on the low-identity sets

(,80%). The more accurately predicted structures and better

alignments by RNA Sampler provide a better start point for

RSSVM to identify RNA motifs. Second, the additional features

used by RSSVM (see Methods), such as the SCI scores calculated

based on common structures predicted by RNA Sampler, the

information content (IC) which grasps the information of sequence

conservation, and the mutual information (MI) which represents

covariant mutations in the structural alignments, allow it to

generate better SVM models to separate regulatory RNA motifs

from shuffled ones, especially on sequence sets with low identities

(Figure 1). Third, RSSVM is trained on sequence sets of a wider

variety of RNA families and a broader range of sequence

identities.

In addition, because the common structures predicted by RNA

Sampler are more accurate in general, they may provide insightful

hints for inferring the functions of the predicted RNA motifs and

guiding the design of experimental validation.

Prediction of Regulatory RNAs in 59-UTRs of Shewanella
Genomes

As many known bacterial regulatory RNA sites are located in

the 59-UTR sequences and often conserved during evolution, we

applied RSSVM, RNAz and QRNA on multiple Shewanella

genomes to identify potential regulatory RNA motifs in the 59-

UTR regions. We retrieved 1002 sets of UTR sequences of

orthologous genes from five related Shewanella genomes. The

average pairwise sequence identities of the UTR sets range from

25% to 88%, with a mean of 45% and median 42%. The majority

of the sequence sets are in the identity range of 40–70%, which is

ideal for RSSVM to identify functional RNA motifs. We examined

each set of UTR sequences in three overlapping windows that

cover the regions of 2250 to 2100, 2200 to 250, and 2150 to

20 (1 corresponds to the translation start site). For each UTR set,

we report the classification result from the window with the best

SVM probability for RSSVM or RNAz. We chose P$0.95 and

P$0.50 as the confidence probability cutoffs for RSSVM and

RNAz, respectively, which give the same overall false positive rate

of 0.01 on all test sets. For QRNA, we classified a set as regulatory

RNA if more than two pairwise alignments of the sequences were

identified as ‘‘RNA’’.

The total numbers of predicted regulatory RNA motifs by

different approaches are listed in Table 1. Of the 1002 orthologous

UTR sets, RSSVM, RNAz and QRNA predicted 166, 109 and

112 putative regulatory RNA motifs, respectively. The sensitivities

of the predictions can be estimated by the fraction of correctly

predicted known RNA motifs/genes. By scanning the orthologous

UTR sets with all known bacterial RNA motif models from the

Rfam database using the RNA motif searching software Infernal

[42], we obtained 19 known RNA motifs that gave infernal scores

higher than 10 bits and occurred in at least two orthologous

sequences of a UTR set. 6 of the 19 RNA motifs have orthologous

sequences from S. oneidensis and E. coli in the Rfam seed

alignments. RSSVM, RNAz and QRNA successfully detected

17, 16 and 11 of these 19 known RNA motifs, respectively, and the

three approaches combined discovered 18 known RNA motifs

(Table 2). It suggests that RSSVM and RNAz have similar

sensitivities and both methods are able to discover more known

motifs than QRNA. The one missed by all three approaches is the

S15 mRNA leader sequence which contains alternative pseudo-

knot and stem-loop structures. If we slightly lower the P-value

cutoff for RSSVM to 0.9, it is able to identify the RNA motif in the

S15 UTR set. The success of identifying almost all known RNA

Figure 3. The Correlation Coefficients of predicted structures
(CCstructure) by RNA Sampler and RNAalifold, the corresponding
core algorithms used by RSSVM and RNAz, respectively, for
predicting common RNA structures, on test sets with different
sequence identities.
doi:10.1371/journal.pcbi.1000338.g003

Discover cis-Regulatory RNAs in Shewanella Genomes
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motifs in the studied sequence sets demonstrates the high

sensitivity of RSSVM.

The predictions by the three approaches overlap significantly

with each other, as shown in the Venn diagram in Figure 4. 36

RNA motifs are identified by all three approaches, including 9

matching the known RNA motifs. This suggests that consensus

predictions by all approaches may have high specificity. RSSVM

and RNAz have additional 44 predicted motifs in common, and 6

Table 1. Numbers of predicted regulatory RNAs with supporting evidence by RSSVM, RNAz and QRNA in the 1002 orthologous 59-
UTRs of five Shewanella species.

RSSVM (FPR = 0.01) RNAz (FPR = 0.01) QRNA

Total number of predicted regulatory RNAs 166 109 112

False positives on shuffled sequences 0 0 13

Matching known RNA motifs in Rfam a (19)d 17 16 11

Overlapping with predicted transcription terminators or attenuators 72 49 40

Overlapping with predicted transcription terminators b (106)d 62 42 31

Overlapping with predicted transcription attenuators c (123)d 56 37 32

With literature support 21 11 7

aWe searched all the orthologous UTRs with Infernal using all bacterial RNA motif models from Rfam, and 19 known RNA motifs gave Infernal scores higher than 10 bits
and occurred in at least two orthologous sequences of a UTR set. 6 of the 19 RNA motifs have orthologous sequences from S. oneidensis and E. coli in the Rfam seed
alignments.

bPutative transcription terminators predicted by Rnall [43].
cPutative transcription attenuators predicted by a previous comparative genomics study [44].
dNumbers in the parentheses are the total numbers of known RNA motifs or predicted transcription terminators/attenuators in the 1002 Shewanella 59-UTR sequence

sets.
doi:10.1371/journal.pcbi.1000338.t001

Table 2. Predicted regulatory RNAs that match the known cis-regulatory RNA elements or genes in the Rfam database.

Ranka GI RSSVMb RNAzb QRNAc Gene Name Gene Product Matching RNA Family in Rfam

1 24349136 1.000 1.000 +d trpE anthranilate synthase component I RF00513 Trp_leader RNA element

3 24346870 1.000 1.000 +d SO1202 conserved hypothetical protein RF00005 tRNA tRNA

4 24351250 1.000 0.998 +d SO4727 conserved hypothetical protein RF00558 L20_leader RNA element

6 24347627 1.000 0.998 ppiD peptidyl-prolyl cis-trans isomerase D RF00506 Thr_leader RNA element

7 24349634 1.000 0.997 +d thrA aspartokinase I/homoserine
dehydrogenase, threonine-sensitive

RF00506 Thr_leader RNA element

8 24347975 1.000 0.997 + hisG ATP phosphoribosyltransferase RF00514 His_leader RNA element

16 24347418 1.000 0.523 rpsB ribosomal protein S2 RF00127 t44 RNA RNA gene

34 24346699 1.000 1.000 + SO1071 conserved hypothetical protein RF00080 yybP-ykoY Riboswitch

39 24347085 1.000 0.997 + pheA chorismate mutase/prephenate
dehydratase

RF00513 Trp_leader RNA element

64 24346616 1.000 1.000 + SO1007 conserved hypothetical protein RF00168 Lysine Riboswitch

73 24348868 0.999 0.240 + Rne ribonuclease E RF00370 sroD RNA RNA gene

93 24346037 0.997 0.678 SO0547 conserved hypothetical protein RF00522 PreQ1 Riboswitch

100 24348781 0.995 0.986 SO2715 TonB-dependent receptor RF00059 TPP Riboswitch

117 24350326 0.989 0.765 +d lysC aspartokinase III, lysine-sensitive RF00168 Lysine Riboswitch

120 24348446 0.989 0.420 thiC thiamin biosynthesis protein ThiC RF00059 TPP Riboswitch

125 24347051 0.987 0.969 nadB L-aspartate oxidase RF00522 PreQ1 Riboswitch

133 24346318 0.982 0.690 SO0774 5-formyltetrahydrofolate cyclo-ligase
family protein

RF00013 6S RNA RNA gene

195 24346874 0.903 0.014 rpsO ribosomal protein S15 RF00114 S15 leader RNA element

302 24346370 0.661 0.820 + SO0815 TonB-dependent receptor C-terminal
domain protein

RF00174 Cobalamin Riboswitch

Total counts 17 16 11

aThe rank is based on the P-value of RSSVM.
bBold fonts represent predictions above the P-value cutoff for RSSVM (0.95) or RNAz (0.50).
c‘‘+’’ represent QRNA predictions that fit the ‘‘RNA’’ model in at least two pairwise alignments.
dThe shuffled sequences were identified as ‘‘RNA’’ by QRNA.
doi:10.1371/journal.pcbi.1000338.t002
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of them are known motifs. QRNA has additional 11 and 7 motifs

overlapping with the predictions by RSSVM and RNAz,

respectively, including 2 matching known motifs. These results

suggest that predictions cross-validated by different approaches are

more likely to be real. Although a large fraction of the predictions

by RSSVM and RNAz overlap, 2 and 1 known RNA motifs are

identified only by RSSVM and RNAz, respectively, suggesting

that combining predictions from different approaches may find

more real RNA regulatory motifs. RSSVM made more predic-

tions than RNAz. Besides the 80 predictions in common, 86 and

29 motifs were identified specifically by RSSVM or RNAz,

respectively. The overall sequence identity of the commonly

predicted sets by RSSVM and RNAz (mean 50%) is significantly

higher than that of the predicted sets only by RSSVM or RNAz

(mean 41%), with t-test p-values of 761027 between the common

and RSSVM specific predictions and 161023 between the

common and RNAz specific predictions, respectively. As seen in

Figure S1, 87% of the sets predicted only by RSSVM or RNAz

have sequence identities lower than 50%, while only 60% of the

commonly predicted sets have identities lower than 50%. 5% more

of the RNAz specific predictions are in the high-identity region

($60%) than the RSSVM specific predictions. As demonstrated

with the test sets, RNAz performs better on sequences of high

identities, which is consistent with the observation that majority of

the RNAz predictions, especially those in common with the

RSSVM predictions, have higher identities than the RSSVM

specific predictions. The fact that RSSVM gives more indepen-

dent predictions than RNAz further demonstrates that RSSVM is

more sensitive than RNAz on the low-identity sequence sets.

The specificity, the fraction of correct predictions, is difficult to

accurately measure because of the poor knowledge on RNA motifs

in S. oneidensis. We use the false positive predictions on shuffled

sequences to evaluate whether the RNA motifs could be predicted

by chance. The RNA Sampler structural alignments or ClustalW

alignments of orthologous UTR sets were shuffled using the same

approach that generated the negative training and test sets

described in Methods and were used as negative controls for

RSSVM and RNAz/QRNA, respectively. Both RSSVM and

RNAz did not report any RNA motifs in these shuffled sequences,

but QRNA had 13 false positive predictions. These results are

consistent with the performance of these three approaches on the

test sets, with QRNA tending to have more false positives than

RSSVM and RNAz.

Predictions with Supporting Evidence
Besides predictions that match Rfam motifs, we can also assess

the accuracy of our predictions by comparing them to other

independent types of predictions and to published reports of

regulatory motifs or genes undergoing post-transcriptional regu-

lation.

Predicted transcription terminators/attenuators. As

transcription attenuation is a common regulatory mechanism for

RNA motifs in the 59-UTRs, we checked whether the orthologous

UTR sets contain any putative rho-independent transcription

terminators predicted by Rnall [43] or putative transcription

attenuators predicted by a previous comparative genomics study

[44]. Although these predictions are not experimentally verified,

agreements between different approaches may provide extra

confidence in the predictions. In the 1002 orthologous UTR sets

we studied, Rnall predicted 106 putative transcription terminators

that are conserved in S. oneidensis and at least one other Shewanella

species. 62 of 166 (37%) and 42 of 109 (39%) RNA motifs

predicted by RSSVM and RNAz, respectively, overlap with these

predicted transcription terminators. It indicates that the putative

transcription terminators are significantly enriched in the

predictions by RSSVM and RNAz, corresponding to the

hypergeometric p-values of 4.0610226 and 5.3610217,

respectively. In a previous study, Merino and Yanofsky [44]

searched the upstream regions of predicted transcription units for

transcription attenuators in 180 bacterial genomes, including S.

oneidensis. They predicted 449 transcription attenuators in S.

oneidensis, 123 of which are located in the 1002 orthologous UTR

sets that we studied. 56 (34%) and 37 (34%) of the predictions by

RSSVM and RNAz match the predicted transcription attenuators,

showing significant enrichment with the hypergeometric p-values

of 2.5610216 and 1.8610210, respectively. In both cases,

RSSVM’s predictions show higher enrichment than RNAz’s

predictions for putative transcription terminators or attenuators.

In total, 72 unique RSSVM predictions overlap with predicted

transcription terminators or attenuators. The 106 putative

conserved terminators and the 123 predicted attenuators overlap

in 74 orthologous UTR sets, which are more likely to contain real

terminators. RSSVM, RNAz and QRNA identified 46 (71%), 30

(46%) and 23 (35%) of the common transcription terminators/

attenuators, respectively, indicating that RSSVM has better

sensitivity than RNAz and QRNA in finding putative conserved

RNA motifs.

Predictions with literature support. We examined the

leading genes of all the 166 operons with predicted regulatory

RNAs by RSSVM (Table S2). 40 of the leading genes in these

operons are hypothetical proteins that lack annotations. Of the 17

59-UTRs containing predicted RNA motifs whose structure match

known ncRNAs from Rfam, 5 of them encode hypothetical

proteins. For the remaining 114 genes that have annotations and

whose structures do not match ncRNAs from Rfam, we searched

the literature for additional supporting evidence for our

predictions. Table 3 lists 21 59-UTRs which contain predicted

RNA regulatory motifs that have been either identified or

proposed from previous studies, such as ilvG, ilvI, leuA, rpoB, rpsL,

rplU, aspS, glnS, flgB and fliE, or whose downstream genes or

orthologs have been shown to be post-transcriptionally regulated

in S. oneidensis or other bacterial species but without proposed

Figure 4. The Venn-diagram of the numbers of predicted
regulatory RNAs by RSSVM, RNAz and QRNA. The numbers in the
parentheses are of the predictions matching known RNA motifs.
doi:10.1371/journal.pcbi.1000338.g004
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regulatory RNA structures, such as ldhA, aroH, adhE, ahpC,

SO1769, pflB, SO3896, speA, secE and aroF. RNAz and QRNA

identified 11 and 7 of these 21 motifs with supporting literature

evidence, respectively.

One class of our predicted RNA motifs correspond to known

RNA regulatory motifs upstream of the operons involved in amino

acid and vitamin biosynthesis, including ilvG and ilvI for isoleucine,

leuA for leucine, pheA for phenylalanine, tryE for tryptophan, thiC

for thiamin, hisG for histidine, lysC for lysine, and aroH and aroF for

aromatic amino acids. One common regulatory mechanism for

some of these operons, such as ilvG, leuA, pheA, tryE and hisG, is that

the 59-UTR of the mRNA contains a transcription terminator and

a short sequence that encodes a leader peptide enriched with

amino acids that are the synthesized products of the downstream

genes. The translation of the leader peptide may sense the

concentration of the amino-acid charged tRNAs in the cell. When

the charged tRNA is abundant, the leader peptide can be

translated successfully and a stable terminator structure is formed,

blocking the transcription of the downstream genes. But during the

shortage of the amino acid charged tRNA, the translation of the

leader peptide is stalled and the terminator structure is opened,

allowing the transcription of the downstream genes. Another

regulatory mechanism for some of the operons involved in

biosynthesis pathways, such as for thiC and lysC, is the riboswitch,

in which the RNA structure can bind small metabolites, the

product of the downstream genes, and stabilize a terminator

Table 3. Predicted regulatory RNAs that have supporting literature evidence.

Ranka GI RSSVMb RNAzb

QRNA (Q)
Terminator (T)
Attenuator (A) Gene Name Gene Product Knowledge of Regulation Reference

5 24350784 1.000 0.998 Q T - ilvG acetolactate synthase II,
large subunit

Leader peptide, and
transcription attenuator

[48]

17 24346570 1.000 0.507 - T A ldhA D-lactate dehydrogenase Possible post-transcriptional
effect

[56]

23 24348431 1.000 0.105 - T - aspS aspartyl-tRNA synthetase tRNA synthetase leader

25 24348233 1.000 0.904 - - - ilvI acetolactate synthase III,
large subunit

Leader peptide, and
transcription attenuator

[48]

26 24349427 1.000 0.862 - - - flgB flagellar basal-body rod
protein FlgB

Putative GEMM element [20]

27 24348700 1.000 0.241 - - - aroH phospho-2-dehydro-3-
deoxyheptonate aldolase,
trp-sensitive

Possible transcription
termination

[57]

35 24350656 1.000 0.998 Q T A leuA 2-isopropylmalate synthase Leader peptide, and
transcription attenuator

[48]

41 24345882 1.000 0.094 - - - pdhR pyruvate dehydrogenase
complex repressor

PdhR-box in E. coli [58]

52 24348056 1.000 0.893 - T - adhE aldehyde-alcohol
dehydrogenase

Stem-loop for occupying
RBS in E. coli

[59]

55 24346560 1.000 0.196 - - - ahpC Alkyl hydroperoxide
reductase, C subunit

Post-transcriptionally regulated
by CsrA in Helicobacter pylori

[60]

63 24347612 1.000 0.012 Q T A glnS glutaminyl-tRNA synthetase tRNA synthetase leader [61]

83 24347590 0.998 0.451 - T A SO1769 glutamate decarboxylase,
putative

Possible post-transcriptional
regulation in S. oneidensis

[47]

88 24345631 0.998 0.999 Q T - rpoB DNA-directed RNA
polymerase, beta subunit

Transcriptional attenuation [62,63]

91 24345625 0.998 1.000 - - - rplJ ribosomal protein L10 Ribosomal protein leader Rfam

105 24349015 0.994 0.274 Q T - pflB formate acetyltransferase Possible post-transcriptional
regulation

[64]

106 24350214 0.994 0.688 - - - SO3896 Outer membrane porin,
putative

Post-transcriptional regulation
in S. oneidensis

[65]

109 24345633 0.992 0.988 Q T A rpsL ribosomal protein S12 Ribosomal protein leader [32]

112 24349403 0.990 0.179 - T - fliE flagellar hook-basal body
complex protein FliE

Putative GEMM element [20]

124 24345621 0.987 0.108 - T - secE preprotein translocase,
SecE subunit

RNaseIII sites in the leader
sequence of SecE in E. coli

[66]

147 24347716 0.972 0.456 - T - speA biosynthetic arginine
decarboxylase

Possible post-transcriptional
regulation in S. oneidensis

[47]

161 24347079 0.958 0.524 Q - - aroF phospho-2-dehydro-3-
deoxyheptonate aldolase,
tyr-sensitive

Attenuator sensing tyr-tRNA [67]

163 24349925 0.956 0.102 - - - rplU ribosomal protein L21 Ribosomal protein leader [32]

a, bsame as those in Table 2.
doi:10.1371/journal.pcbi.1000338.t003
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structure which will shut down the transcription or translation of

the downstream genes.

Another class of our predicted RNA motifs are located in the

operons encoding ribosomal proteins and tRNA synthetases, such

as rpsB (encoding ribosomal protein S2), rplJ (L10), rpsL (S12), rplJ

(L21), glnS (glutaminyl-tRNA synthetase) and aspS (aspartyl-tRNA

synthetase). A large number of the operons in these functional

categories are known to be regulated post-transcriptionally by

RNA structural elements [45,46], and the enrichment of our

predictions in these functional categories demonstrates the

effectiveness of RSSVM.

In our predictions, some genes have been known to be regulated

at the transcriptional level through binding of transcription factors

(TF) to their palindromic DNA binding sites, such as pdhR (ranked

41), metJ and metB (ranked 72 and 89, sharing the same intergenic

region). The palindromic TF binding sites contained in the

promoters of these genes are usually long and have complemen-

tary mutations in the alignments. In a previous comparative

genomics study [41], we identified 189 unique putative TF binding

palindromic DNA motifs that are not only conserved across

multiple Shewanella species, but also shared by multiple genes in S.

oneidensis. 62 of these palindromic sites match known transcription

factor binding motifs, and their corresponding regulated target

genes also show significant functional enrichment or expression

coherence, indicating that these predictions are likely to be real.

231 of all the 1002 UTRs here studied contain predicted

palindromic DNA motifs that have at least one type of supporting

evidence, and 38 of them are in the 166 top predictions by

RSSVM. There is no significant enrichment (hypergeometric p-

value = 0.57) for these putative palindromic sites in the RSSVM

predictions, suggesting that the majority of the predictions by

RSSVM are RNA structural motifs instead of palindromic TF

binding sites. However, we cannot rule out the possibility that

some genes may be regulated at both the transcriptional level

(through TF DNA binding sites) and post-transcriptional level

(through RNA regulatory motifs in mRNAs). Knowing the 59 end

of the mRNA would help resolve whether the predicted structure

is within the mRNA, but that information is not currently

available for most genes.

Putative candidates for novel regulatory RNA

motifs. Besides the known RNA motifs, our predictions also

include some interesting candidate novel motifs. One interesting

example is for gene SO3896, which encodes an outer membrane

porin, called Omp35. A previous study (Maier and Myers 2004)

showed that the mRNA levels of Omp35 in aerobic and anaerobic

conditions are almost the same, but in anaerobic conditions the

cell has 7-fold more Omp35 protein than it does in aerobic

condition, strongly suggesting that Omp35 is regulated post-

transcriptionally. In E. coli, some outer membrane porins, such

as OmpA or OmpW, are regulated by antisense small RNAs (sRNA),

micA and rybB. But these sRNAs are not found in S. oneidensis,

suggesting that S. oneidensis may have a different regulatory

mechanism for its outer membrane porins, one possibility being

that regulatory RNA elements in the 59-UTRs might be involved.

Another example is for genes SO1769 and SpeA, both of which are

found to be regulated post-transcriptionally in S. oneidensis [47] and

both contain predicted terminator structures in their 59-UTRs

from our study. It will be interesting to experimentally examine

whether the putative terminator structures are actually involved in

the regulation of these genes.

Transcription Attenuator in the LeuA Operon
We use the predicted regulatory RNA motif in front of the LeuA

operon as an example to illustrate detailed analysis of the predicted

RNA structures. The predicted alternative structures in the 59-

UTR of the LeuA operon are shown in Figure 5A. Our predicted

alternative structures match the majority of the previously

proposed structures [48], including the terminator stem and the

anti-terminator stem. Our predicted attenuator structure also

includes an additional anti-antiterminator stem in front of the

terminator stem. This anti-antiterminator is formed by part of the

sequence encoding the leader peptide and half of the anti-

terminator stem. The formation of the anti-antiterminator may

halt the RNA polymerase, which pauses the transcription and

allows translation of the leader peptide to start [8]. During the

translation of the leader peptide, the anti-antiterminator stem is

opened by the translation machinery and the paused RNA

polymerase is able to resume transcription. When tRNALeu is

adequate, the leader peptide can be successfully translated,

releasing the ribosome at the stop codon of the leader peptide,

and the reformation of the anti-antiterminator stem keeps the

terminator structure intact which constitutively shuts down the

transcription of the downstream genes. When the concentration of

tRNALeu is low in the cell, the ribosome is stalled at the region

enriched with leucine codons and the anti-antiterminator stem

stays opened, which enables the formation of the anti-terminator

and prevents the formation of the terminator stem, allowing

transcription of the downstream genes. In the structural alignment

of the predicted LeuA terminator motifs in the five Shewanella

species (Figure 5B), we observed complementary mutations, which

provide extra confidence to support the proposed anti-antitermi-

nator structure.

Discussion

In this paper, we present a new program, RSSVM, based on

support vector machines for identifying putative cis-regulatory

RNA motifs using the common secondary structures and structural

alignments generated by RNA Sampler. By sequentially predicting

common RNA secondary structures and alignments from

orthologous UTRs and identifying putative RNA regulatory

motifs based on the predicted structures and alignments, the

combination of RNA Sampler and RSSVM provides a new, fast

and efficient pipeline for large-scale searching of RNA regulatory

motifs conserved in multiple related species. We applied this

strategy to five Shewanella genomes and identified putative

conserved cis-regulatory RNA motifs on the genome scale. From

1002 orthologous 59-UTR sets, we successfully identified 166 59-

UTRs that contain putative regulatory RNA motifs, including 17

of 19 known RNA motifs from Rfam, additional 21 motifs with

supporting literature evidence, 72 motifs that overlap with

predicted transcription attenuators/terminators, and other novel

predicted regulatory RNA motifs. The fact that a large fraction of

our predictions are supported by published reports or overlap with

predictions by RNAz, QRNA and transcription attenuator/

terminator predictors suggests that many of our new predictions

are likely to be real, although experimental validation will be

needed.

Comparing to other RNA motif identification tools, such as

RNAz, Dynalign+LIBSVM and QRNA, RSSVM is more

sensitive in detecting functional RNAs at the same FPR, especially

on sequences of low identities. The more sensitive performance of

RSSVM, compared to that of RNAz and Dynalign+LIBSVM,

may be attributed to the following three improvements in the

SVM model: first, the common structures and alignments are

generated by RNA Sampler, which provides more accurate

structure predictions, does not require sequence alignments as

input and works well on sequences of low identities; second, more
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distinctive features are used to represent the common RNA

structures and alignments; third, the SVM model is trained with

more universal functional RNA structures that cover a large

number of RNA motif/gene families and a wide range of sequence

identities. We tested a few alternative SVM models which have

only one or two of these improvements, such as a modified RNAz

that is re-trained using the same training sets for RSSVM, and a

modified RNAz that is re-trained using the same training sets for

RSSVM and that uses RNA Sampler’s structural alignments

instead of ClustalW alignments as input. We observed that the

sensitivities of these SVM models on all test sets and on test sets

with low identities were higher than those of RNAz and similar to

those of RSSVM when loose FPRs were allowed, and their

sensitivities were gradually improved in the stringent FPR range

(FPR,0.02) by adding one improvement at a time (Figure S2). For

a tool designed for genome-wide motif prediction, it is essential to

keep the FPR as low as possible while achieving a high sensitivity,

as with a large number of data sets, low FPRs are always preferred

to avoid bringing too many false positives in the predictions.

RSSVM, which combines all the three improvements, gives much

better sensitivities than other SVM models in the low FPR range

(FPR,0.02), suggesting that RSSVM is well qualified for using in

large scale predictions.

RNA Sampler and RSSVM run reasonably fast for genome-

wide scan of regulatory RNAs. On average, it takes RNA Sampler

125 seconds on a single CPU workstation to predict the common

structure of a set of 5 RNA sequences of an average of 150 nt in

length. For a project with the similar size of the Shewanella study

(1000 orthologous UTR sets, 5 species, 3 scanning windows of

150 nt, one shuffled set for each UTR set), it only takes RSSVM

about 200 hours on a single CPU machine to finish the genome-

wide scan of RNA motifs. The entire process can be easily run in

parallel on multiple-CPU Linux clusters, allowing the whole

genome prediction to be done in hours or less. We recommend

that users run RNAz as well, since RNAz has better performance

on sequences of high identity, which is complementary to the

optimum performance of RSSVM on low-identity sequences.

Moreover, consensus predictions by both approaches may provide

extra confidence in the prediction quality. RSSVM is more

advantageous than Dynalign+LIBSVM and QRNA in that

RSSVM can take input of multiple sequences, which would

provide more information on sequence conservation and comple-

Figure 5. The predicted transcription terminator and anti-terminator structures of the LeuA operon in Shewanella. (A) Alternative
terminator and anti-terminator stem-loop structures improved on the previously proposed structures. Base pairs in the red boxes are the positions
where compensatory mutations are observed; blue lines are leucine codons enriched in the leader peptide coding region. (B) Structural alignment of
the anti-antiterminator and terminator structure in five Shewanella species. The orange arrows correspond to the anti-antiterminator stem and the
violet arrows correspond to the terminator stem. Colored columns represent aligned positions within the stems: red and pink colors represent
conserved base pairings, and yellow and green colors represent base pairings with covariant mutations.
doi:10.1371/journal.pcbi.1000338.g005
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mentary mutations than two sequences. Recently, Yao et al. [32]

built a pipeline based on CMfinder and successfully identified

several new RNA motifs. The major advantages of the CMfinder

pipeline lie in its relaxation on the requirement for sequence

conservation and integration of motif inference in the genome-

wide search. It builds in a scanning procedure which can

conveniently look for new instances of motifs in other genomes.

However, one major issue of the CMfinder pipeline is that it uses a

heuristic composite scoring function to sort all its predictions

without giving a clear significance cutoff for confident calls for

positive predictions. Also, the pipeline of CMfinder runs

considerably slower than RSSVM. Using CMfinder for refinement

and new instance finding on interesting predictions from a search

by RSSVM may be more efficient and rewarding for users.

The RNA classification of RSSVM is based on the common

structures generated by RNA Sampler. These predicted common

structures provide preliminary hints for the putative structures

associated to the regulatory functions. As demonstrated in the

RNA motifs for LeuA, we can infer function and mechanism of the

RNA motif from its structure. Although we cannot guarantee that

the predicted structures are correct and perfectly match the real

structures, they often indicate strong structural conservation

information in the potential regulatory regions, which leads to

sensitive detection of RNA motifs. Users can use Mfold [49] or

other programs to refold the identified regions to obtain sub-

optimal structures, which may provide good candidates for

alternative structures related to the function of the RNA motifs.

There is always a trade-off between sensitivity and specificity (1

– false positive rate) in computational predictions. Using looser

cutoffs (lower P-values in our case) will help increase prediction

sensitivities, but at the same time more false positives may appear

in the predictions. As seen in the ROC curves generated on the

test sets (Figure 1), RSSVM keep high sensitivities even at very

stringent FPRs, which makes it a good tool to be used in the

genome-wide scan of RNA motifs. In the Shewanella RNA motif

study, although we used a very stringent P-value cutoff, which

corresponded to FPR,0.01 on the test sets, we still discovered

most of the known RNA motifs. However, we noticed that some of

the known RNA motifs were scored slightly below this cutoff.

Users may consider lowering the cutoff in their own studies

depending upon the tolerance to false positives.

Application of RSSVM to find RNA regulatory motifs/genes is

not limited to the Shewanella genomes. This approach is fully

transferable to other bacterial genomes, or in fact to any set of

orthologous RNA segments that are suspected of containing

conserved secondary structure motifs. We conducted some pilot

tests on the classification performance of RSSVM on RNA

sequences from eukaryotic genomes. Without retraining it, we ran

RSSVM on 4087 sets of real RNA sequences (positive eukaryotic

test sets) from 372 eukaryotic RNA motif families from Rfam and

the same number of shuffled sequence sets (negative eukaryotic test

sets). Each sequence set contains 3–6 sequences whose average

sequence identities ranges from 20% to 100%. The ROC curves

on these test sequences are shown in Figure S3. Encouragingly,

RSSVM performs well in this test: at the FPR of 0.02, RSSVM

gives a good prediction sensitivity of 0.5, lower than it does on the

prokaryotic test sets (0.72 at FPR of 0.02) as expected (Dataset S2).

Consistent with the prokaryotic tests, RSSVM becomes more

sensitive than RNAz when FPR is greater than 0.02. Again,

RSSVM performs much better on sequence sets whose identities

are lower than 70%, with the overall prediction sensitivity jumping

to 0.6 at the FPR of 0.02. On these low-identity sequences,

RSSVM starts to outperform RNAz from a very low FPR of

0.005. These results suggest that the RSSVM model trained on

prokaryotic RNAs can also be used to search for RNA motifs in

eukaryotic sequences. It also verifies that RSSVM can find novel

RNA motifs that are distinctive from those in the training sets. By

re-training RSSVM on sequence sets from eukaryotic RNA

families, its performance may be further improved.

To better serve the Shewanella research community and research

groups who are interested in RNA regulatory motifs or post-

transcriptionally regulation, we made the RSSVM software,

predictions and comprehensive analysis results available online

at http://ural.wustl.edu/resources.html#RSSVM.

Methods

Common RNA Secondary Structure Prediction
We use the program, RNA Sampler [27], to predict common

RNA secondary structures and generate structural alignments in

homologous sequences. RNA Sampler is a probabilistic sampling

algorithm that was recently developed by our group. In previous

tests [27–29], RNA Sampler outperformed other leading algo-

rithms for similar purposes on sequences of a wide range of

identities. In this study, the default parameters of RNA Sampler,

S = 75 (structure sample size) and i = 15 (iterations), were used in

all predictions. Although RNA Sampler is able to predict RNA

secondary structures with pseudoknots, we opted to not allow

pseudoknots in this study.

The RNA Classifier Based on Support Vector Machines
Support Vector Machines (SVM) are supervised learning

methods widely used for classification and regression. In these

methods, labeled data are represented by vectors that are defined

by various features, and support vector machines map the feature

vectors to a higher dimensional space and construct a maximal

separating hyperplane to classify the input data into binary

categories. SVM has been used in previous studies [34,35] to

distinguish regulatory RNA secondary structures from random

RNA structures. In such methods, the RNA secondary structures

or structural alignments of homologous RNAs are represented by

a set of predefined features, and the SVM maps the vectors

defined by these features to a high-dimensional space. By training

on the RNA structures or structural alignments of known

functional and random RNAs, SVM is able to maximally separate

these two groups of RNAs. Then for any unknown RNA

secondary structure, SVM can classify it as either functional or

random.

We developed a new SVM classifier for detecting regulatory

RNAs. Our SVM classifier differs from the previous ones in three

major aspects: first, the recently developed new program, RNA

Sampler, is used to predict common RNA secondary structures

and structural alignments on any set of homologous RNA

sequence, and feature vectors based on such predictions are used

to build the SVM classifier; second, a different set of feature

parameters are used to represent the common RNA structures and

structural alignments; third, the SVM classifier is trained on a

larger number of various bacterial RNA gene and motif families

that cover a wider range of sequence lengths and identities than

previous studies [34,35].

Training sets and testing sets. To train the SVM classifier,

both positive and negative training sets are needed. We use

sequences of 112 known bacterial regulatory RNA families

retrieved from the Rfam database [37] to generate the positive

training sets. Each positive sequence set contains 3, 4, 5 or 6

sequences randomly selected from the Rfam seed alignment of

each RNA family. The lengths of the selected sequences are

between 50 and 400 nt and the maximum length difference
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between any two sequences in a set is less than 50 nt. These

training sets contain non-redundant structural alignments of

different sequence numbers and evenly cover a wide range of

sequence identities (20–90%). For each positive training set, a

corresponding negative training set is generated by randomly

shuffling the Rfam structural alignment of the positive set,

destroying the common RNA structure but preserving base

composition, overall conservation, local conservation pattern and

gap patterns of the original alignment [34].

In total, we generated 8335 positive and 8335 negative training

sequence sets. Using a similar procedure, we generated 1686

positive and 1686 negative test sequence sets that are not identical

to any training set. The distributions of the sizes and average

pairwise sequence identities of the training and test sets are shown

in Figure S4.

Features to represent the common RNA structure and

structural alignment. In our SVM classifier, we use six

features to represent the common RNA secondary structure and

structural alignment. These features are: (1) The mean minimum

free energy (MFE) z score of all sequences sharing the common

structure (Z) [34]. The MFE z score measures the thermodynamic

stability of a sequence by comparing the MFE of the sequence to

the MFE distribution of random sequences of similar length and

base composition. (2) The structure conservation index (SCI) of the

common structure, measuring the conserved structure information

contained in the structural alignment. It is defined as SCI = EA/Ē,

where EA is the consensus MFE of the common structure and Ē is

the average MFE of all sequences [34]. (3) The average

information content of stems (I), measuring the sequence

conservation of the stems in a structural alignment [50]. (4) The

average mutual information of the stems in the structural

alignment (M), measuring the overall covariation of the

complementary columns in the stems [51]. (5) The average

pairwise sequence identity. (6) The number of sequences. These

features represent different characteristics of the common structure

and structural alignment, and each feature alone is not able to

effectively distinguish real regulatory RNA structures from

random common RNA structures.

Training of the SVM classifier. On each training sequence

set, we ran RNA Sampler to generate the common structure and

structural alignment and calculated the values of the six features

described above. We implemented the SVM classifier for

regulatory RNA structure detection using the core program

LIBSVM [52]. Our SVM classifier uses a radial-basis-function

(RBF) kernel. Prior to input to LIBSVM, values of all features are

scaled to the range of [21, 1]. Training an SVM model finds the

best parameters of the penalty of the error term (c) and the value of

gamma of the RBF (g) to define a hyper-dimensional space that

gives maximal separation of the positive (real RNA motifs) and

negative training data (shuffled RNA motifs). We did a grid search

to find the best combination of c and g within certain ranges

(cM[2210, 215], gM[2210, 215]). To avoid overfitting the training

data, we employed a 5-fold cross-validation, in which the whole

training sets were divided into 5 subsets of equal size and

sequentially one subset was tested using the classifier trained on the

remaining 4 subsets. Because each training set was predicted once,

the accuracy of the cross-validation was the percentage of data

which were correctly classified. We determined that the

combination of c = 210 and g = 223.5 gave one of the best

classification results and fewer false positive predictions. Thus we

used these c and g parameters to train the SVM classifier on the

whole training sets to obtain the final classification model. The

option of ‘‘2b 1’’ was used to report confidence probability of

classification (P-value).

Testing of the SVM classifier. We predicted the common

structures and structure alignments for all positive and negative

test sets using RNA Sampler and classified the structures with the

final SVM model. We also compared the performance of our

SVM classifier on these test sets with that of other leading software

for RNA motif identification, including RNAz [34],

Dynalign+LIBSVM [35] and QRNA[33]. RNAz is also an

SVM based RNA motif classifier, which takes sequence

alignments as input and uses RNAalifold as the core algorithm

for common structure prediction. It was trained on sequences with

high identities ($50%) using the features of MFE z scores and SCI

scores [34]. Dynalign+LIBSVM is another SVM based RNA

motif identifier. It takes two unaligned sequences as input and uses

Dynalign as the core algorithm to predict common structures. It

was trained only on tRNAs and 5S rRNAs using the feature of free

energy change [35]. QRNA classifies a pairwise sequence

alignment by the posterior probabilities of three probabilistic

models, ‘‘RNA’’, ‘‘Coding’’, or ‘‘Null’’ (position independent). The

differences between RSSVM, RNAz, Dynalign+LIBSVM and

QRNA are summarized in Table S3. We used ClustalW [53] to

generate sequence alignments for RNAz. For each test set, we split

the ClustalW alignment to all possible pairwise sequence

alignments as input for QRNA. Dynalign+LIBSVM was tested

on all unique pairs of sequences for each test set. RNAz,

Dynalign+LIBSVM and QRNA were run with default

parameters.

Searching Regulatory RNAs in Shewanella Genomes
With the RNA secondary structure prediction algorithm, RNA

Sampler, and the RNA motif identification algorithm, RSSVM,

we can search putative regulatory RNA structural motifs from any

orthologous RNA sequence set. As shown in the flow chart in

Figure S5, we first retrieve orthologous RNA sequences from

multiple related species, and then use RNA Sampler to predict

common RNA secondary structures and structural alignments of

these orthologous RNA sequences. Next, RSSVM takes in the

output from RNA Sampler and identifies those containing putative

RNA motifs/genes. Finally, we evaluate the prediction results by

comparing to known RNA motifs or searching for supporting

evidence. We applied the combination of RNA Sampler and

RSSVM to multiple Shewanella genomes for genome-wide

regulatory RNA discovery.

Retrieval of mRNA leader sequences of orthologous

genes. The genomic sequences of Shewanella oneidensis MR-1, S.

denitrificans OS217, S. frigidimarina NCIMB 400, S. amazonensis SB2B

and S. baltica OS155 were downloaded from the NCBI Genebank

database.

Since most of the known bacterial regulatory motifs are located

in the mRNA leader sequences of the regulated transcription units

(operons), we focused on finding conserved RNA regulatory motifs

in the 59-UTRs of orthologous transcription units (TU). Because

our knowledge of the operon structures in S. oneidensis is limited, we

assumed that two adjacent genes in the same orientation whose

intergenic distance is less than 40 nt are in the same transcription

unit [54]. For each TU in S. oneidensis, we identified its first gene

and this gene’s orthologs in the other four Shewanella species, and

then retrieved 120,250 nt 59-UTR sequence upstream and 20 nt

downstream of the translation start codons of these genes as one

set of orthologous sequences for RNA secondary structure search.

We identified orthologous genes by comparing all protein

sequences between S. oneidensis (the anchor genome) and the other

species using the WU-BLAST program (version 2.0, Gish, W.,

http://blast.wustl.edu) [55]. Two genes were considered ortholo-

gous if all of the following conditions were met: (i) their protein
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sequences were reciprocal best BLASTP hits between the two

genomes; (ii) the BLASTP E-value was lower than 1.0610210; and

(iii) the BLASTP alignment covered $60% of the length of at least

one sequence.

In total we obtained 1002 sets of orthologous mRNA leader

sequences from the five Shewanella species. The mRNA leader

sequences obtained had a high AU content, with a base

composition of A 31%, U 29%, C 19% and G 21%.
Searching for regulatory RNA structures. We scanned

each orthologous UTR sequence set in three overlapping

windows, 2250,2100, 2200,250, and 2150,20 (1

corresponds to the translation start site). We first predicted the

common RNA structure for each window and generated

corresponding structural alignment using RNA Sampler, and

then provided the RNA Sampler output to the SVM classifier to

predict whether the window contains a regulatory RNA structure.

We also aligned sequences in the same window using ClustalW

and applied RNAz and QRNA to predict the existence of RNA

motifs. Because QRNA only takes two-sequence alignments as

input, for each aligned sequence window, we split the multiple-

sequence ClustalW alignment into pairwise alignments, each

consisting of the sequence from the anchor species and a sequence

from another species. We call that QRNA detected the RNA

motifs in the sequence window only if at least two of all the

pairwise alignments were predicted to contain an RNA motif by

QRNA.

Supporting Information

Dataset S1 Raw Data for ROC curves in Figure 1.

Found at: doi:10.1371/journal.pcbi.1000338.s001 (0.57 MB XLS)

Dataset S2 Raw Data for ROC curves in Figure S3.

Found at: doi:10.1371/journal.pcbi.1000338.s002 (0.50 MB XLS)

Figure S1 Cumulative distribution of sequence identities of the

sequence sets with predicted regulatory RNAs by RSSVM and/or

RNAz.

Found at: doi:10.1371/journal.pcbi.1000338.s003 (0.01 MB PDF)

Figure S2 The Receiver Operating Characteristic (ROC) curves

of RSSVM, RNAz, retrained RNAz on ClustalW alignments, and

retrained RNAz on RNA Sampler alignments. (A) On all test sets.

(B) On test sets with sequence identities lower than 70%. We

retrained RNAz using the same training sets for RSSVM.

Found at: doi:10.1371/journal.pcbi.1000338.s004 (0.02 MB PDF)

Figure S3 The Receiver Operating Characteristic (ROC) curves

of RSSVM and RNAz on real and shuffled sequence sets of

eukaryotic RNAs from Rfam. The curves of both programs on all

test sets (sequence identities range between 20–100%) and on test

sets of low identities (,70%) are drawn separately.

Found at: doi:10.1371/journal.pcbi.1000338.s005 (0.01 MB PDF)

Figure S4 Distribution of sequence identities and size of the

sequence sets studied. (A) Training sets. (B) Test sets. (C) Shewanella

sequence sets.

Found at: doi:10.1371/journal.pcbi.1000338.s006 (0.01 MB PDF)

Figure S5 Flow chart of the genome-wide identification of RNA

regulatory motifs/genes using RNA Sampler and RSSVM.

Found at: doi:10.1371/journal.pcbi.1000338.s007 (0.01 MB PDF)

Table S1 The prediction sensitivities and false positive rates of

RSSVM, RNAz, Dynalign+LIBSVM and QRNA on test sets with

different sequence identities. Different P-value cutoffs were used to

fairly compare prediction sensitivities of different SVM models at

the same FPR level. Numbers in bold fonts are the best results

given by all the programs for an identity range.

Found at: doi:10.1371/journal.pcbi.1000338.s008 (0.01 MB PDF)

Table S2 Top 166 predicted regulatory RNAs by RSSVM.

Found at: doi:10.1371/journal.pcbi.1000338.s009 (0.06 MB PDF)

Table S3 Comparisons between different RNA motif identifi-

cation algorithms.

Found at: doi:10.1371/journal.pcbi.1000338.s010 (0.01 MB PDF)
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