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Abstract

Synchronized oscillation is very commonly observed in many neuronal systems and might play an important role in the
response properties of the system. We have studied how the spontaneous oscillatory activity affects the responsiveness of a
neuronal network, using a neural network model of the visual cortex built from Hodgkin-Huxley type excitatory (E-) and
inhibitory (I-) neurons. When the isotropic local E-I and I-E synaptic connections were sufficiently strong, the network
commonly generated gamma frequency oscillatory firing patterns in response to random feed-forward (FF) input spikes.
This spontaneous oscillatory network activity injects a periodic local current that could amplify a weak synaptic input and
enhance the network’s responsiveness. When E-E connections were added, we found that the strength of oscillation can be
modulated by varying the FF input strength without any changes in single neuron properties or interneuron connectivity.
The response modulation is proportional to the oscillation strength, which leads to self-regulation such that the cortical
network selectively amplifies various FF inputs according to its strength, without requiring any adaptation mechanism. We
show that this selective cortical amplification is controlled by E-E cell interactions. We also found that this response
amplification is spatially localized, which suggests that the responsiveness modulation may also be spatially selective. This
suggests a generalized mechanism by which neural oscillatory activity can enhance the selectivity of a neural network to FF
inputs.
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Introduction

Understanding the responsiveness of a cortical neural network is

a fundamental requirement for any study of sensory information

processing in the brain. Several experiments show that various

factors can affect the neuronal response property and information

flow in nervous systems: In the primary visual cortex, spiking

responses of neurons can be enhanced by slow cortical oscillation

[1]. The spike transfer function of thalamo-cortical neurons is

modulated by noisy synaptic background activity [2]. Gain of

neuronal responses is modulated by background synaptic input

[3]. Even at the single cell level, cellular responsiveness is

significantly influenced by the presence of voltage fluctuations

[4]. It was shown recently that neuronal oscillations can increase

response gain and decrease reaction time as a mechanism of

attention selection [5].

Cortical neurons commonly show synchronous or oscillatory

patterns of activity, which is thought to be important for cortical

functions of information flow [6]. In particular, synchronous

gamma frequency oscillations (30,70 Hz) have been observed in

various neural circuits [7,8,9], and they are thought to provide a

temporal structure for information processing in the brain [10].

This gamma-band synchronization can be generated within local

networks by coupling between GABAergic I- (inhibitory) inter-

neurons and E- (excitatory) neurons [11,12,13,14], and is related

to cognitive functions [15,16], and information delivery [15]. This

population activity also has been studied in numerical simulations

and mathematical models [12,17,18,19].

Previous analyses have shown that cortical oscillations are

generated in networks with appropriate connectivity and can be

correlated with the firing phases of E- and I- neurons, but the

effect of these oscillations on the neural network responsiveness to

external inputs remains elusive. In this research, using a large

network model of Hodgkin-Huxley type E- and I- neurons, we

study how spontaneous cortical oscillation - particularly in the

gamma frequency band - modulates the response property of a

neural network. We examine the cortical responsiveness to

external FF inputs at the single-spike level because the input-

output response function for a single input spike is a fundamental

feature of neural networks for information processing. A recent

study emphasizing the importance of single spike level analysis

showed that a significant amount of visual information can be

delivered by the very first spike emitted by a neural population

[20].

We found that spontaneous cortical oscillation activity notice-

ably changed the cortical input-output response function. For

example, weak inputs that are normally missed in the responses of

single neurons, were significantly enhanced by cortical oscillations

in the network. This response modulation was similar to the

observed effect of the membrane potential oscillation reported in a

previous experimental study [21]. More importantly, we found

that this cortical response modulation by the oscillation activity
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was controlled by external feed-forward (FF) input strength

variation. This means that the cortical network can self-regulate

by differentially amplifying its FF inputs according to their

strength, without physiological changes in single neuron properties

or structural modulation of interneuron connectivity. We show

that this ‘differential’ amplification results from the modulation of

gamma oscillation by cortical E-E neuron interaction. We suggest

that this is an important example in which the modulation of

gamma oscillation by cortical E-E interactions [12] can signifi-

cantly change the population responsiveness. We also found that

this cortical amplification effect was restricted spatially to an

‘oscillation active’ region, which enables the spatially-selective

tuning of responsiveness to given FF input. We find that this spatial

localization is determined by the range of anatomical interneuron

connectivity. This is consistent with recent experimental findings

concerning the effects of cortical oscillations [1,5,22], and points to

aspects of this oscillation which effectively enhance the response

selectivity of a neural network to FF inputs.

Results

Cortical Network Model
We examined a variety of neural network activity patterns

produced under different conditions. We used a cortical network

model in which E- and I- neurons interact with each other via

lateral synaptic connections. We constructed isotropic local

cortical connections, using physiological and earlier modeling

data [23,24]. We varied the strength of each type of cortical

interaction (E-E, E-I, I-E and I-I) in order to study different

cortical connectivity conditions. Artificially generated random

spikes were injected into the cells in the center area (diame-

ter,450 mm, ,500 neurons: E- 377, I- 113) of this network model

(1 mm by 1 mm, consisting of ,3300 neurons: E- 2500, I- 841) to

simulate localized FF spike input to the network. The actual spike

pattern for each neuron was generated by a Poisson process with

constant mean firing rate, and FF input strength (The amount of

intracellular conductance fluctuation caused by a single FF input

spike) was varied within the range 5,100 mS/cm2, as a control

parameter. By performing many simulations of different cortical

parameters with FF input rates in the range 5,40 spike/s, we

observed several different types of cortical activity patterns.

Cortical E- and I-Cells Activity: Generation of Gamma
Oscillation

Gamma oscillation can be generated by interactions among E-

and I- cells: The E- cells synchronize the I- cells, and the gamma-

modulated I- cells drive E- cells to generate gamma frequency

rhythms in the network [11,14,25]. Our simulations agreed with

earlier studies that gamma oscillations are generated by applying

E-I and I-E cortical connections; I- cells were synchronized by E-I

connections first (Figure 1A), then I-E connections generated

gamma rhythm in E-cells via periodic inhibitory activity

(Figure 1B) as in the PING model [11,14]. I- cells fire at higher

rate than E- cells, just as fast-spiking cells fire at higher rates than

regular-spiking cells [10]. The relative firing phase of E- and I- cell

(Figure 1A and 1B) also showed a similar phase relation as

reported in the previous experiments [25,26,27]. E- cells fire

3,5 ms before I- cells fire, with an approximately 70-degree

phase difference in a gamma cycle.

We extend the previous studies by also explicitly considering E-

E and I-I cortical connections. In ref. 25, Morita et al. showed that

gamma- modulated cortical excitation increases the firing rate of

E- cells and decreases the E-I firing phase difference. Based on

these observations, they predicted that the gamma- modulated E-E

cell interaction will suppress the cortical oscillation. In this study,

we found that the gamma- modulated E-E coupling does not

extinguish the cortical oscillation. When E-E connections were

turned on, the firing rate of E- cells was increased and the E-I

phase difference was diminished (Figure 1D and 1E), as shown in

ref. 25. But these changes did not actually suppress the cortical

oscillation. Instead, they caused a transition of operating ‘mode’

such that the oscillation frequency dropped to a low gamma or

near beta rhythm [28]. This transition could not be observed using

the methods reported in ref 25, because they have only ‘static’ data

of pre- and post- synaptic activities to examine ‘static’ equilibrium

conditions.

The approximately zero E-I firing phase difference is an

important feature of E-E coupling, and is distinguishable from that

of the case involving no or little E-E coupling (,70-degrees is

usually observed in experiments [26,27]), so we call the former

situation ‘E-E interaction modulated’ E-I phase, in contrast to the

‘normal’ gamma oscillation E-I phase. We will analyze below how

this phase modulation results from E-E coupling.

The difference between the firing rates of E- and I- cells is also

diminished to some degree by E-E interactions, and the population

oscillation frequency is also lowered [28,29]. We maintain this

non-zero E-E interaction throughout the following simulations.

We also allow I-I connections, which reduce the firing rate of I-

cells to some extent (Figure 1C and 1D). In this study, we do not

examine the role of I-I connection in detail, and the I-I connection

strength was not varied.

Control of Spontaneous Cortical Network Activity
Strength

When the cortical interactions (E-E, E-I, I-E and I-I) are

completely turned off and each neuron is driven by FF inputs only,

there is no correlated behavior in the network and the average

network firing rate simply follows the instantaneous input firing

rate (Figure 2A, FF). On the other hand, when cortical interactions

(E-E, E-I, I-E and I-I) are introduced, the network exhibits some

synchronized patterns depending on FF input and cortical

Author Summary

In the nervous system, information is delivered and
processed digitally via voltage spikes transmitted between
cells. A neural system is characterized by its input/output
spike signal patterns. Generally, a network of neurons
shows a very different response pattern than that of a
single neuron. In some cases, a neural network generates
interesting population activities, such as synchronized
oscillations, which are thought to modulate the response
properties of the network. However, the exact role of these
neural oscillations is unknown. We investigated the
relationship between the oscillatory activity and the
response modulation in neural networks using computa-
tional simulation modeling. We found that the response of
the system is significantly modified by the oscillations in
the network. In particular, the responsiveness to weak
inputs is remarkably enhanced. This suggests that the
oscillation can differentially amplify sensory information
depending on the input signal conditions. We conclude
that a neural network can dynamically modify its response
properties by the selective amplification of sensory signals
due to oscillation activity, which may explain some
experimental observations and help us to better under-
stand neural systems.

Neural Oscillation and Network Responsiveness
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connectivity parameters. For example, with a moderate FF input

strength (,35 mS/cm2) and rate (,40 spikes/s), the neural

population shows an oscillation pattern in its firing rate for a

broad range of cortical connectivity parameters. The cross-

correlogram among cortical spikes shows a clear oscillatory

pattern for both E- and I- cells in this case (Figure 2B, OA).

Generally, the amplitude of the instantaneous output firing rate of

the neural population depends on the FF input firing rate. The

frequency of the oscillation is somewhat affected by the FF input

strength and cortical connectivity parameters, but the oscillation

frequencies are mostly within the gamma band range (25,50 Hz),

as in earlier experimental observations and theoretical models

[8,9,30,31]. For some parameter range of cortical connections, this

gamma oscillation can be very small. When the FF input spike rate

was low (,10 spikes/s) with the other parameters unchanged, the

oscillating firing pattern in E- cells became barely detectable even

though the oscillation in I- cells was maintained to some extent

(Figure 2C, OI). We examined the phase of the firing pattern of

E-I cells in three cases (FF, OA, and OI). The E-I spike

correlogram in the OA network showed that the effect of

interactions among E-E cells is significant because the E- and I-

cells fire with little phase difference (Figure 2B (iii)), similar to

Figure 1D and 1E (‘E-E interaction modulated’ E-I phase), while

the other two cases (FF and OI) showed no clear phase relation

(Figure 2A (iii) and 2C (iii)). Since OA and OI networks have the

same parameters except for the FF input firing rate, we conclude

that FF input firing rate is a crucial factor in determining E-E

interaction strength.

Figure 1. Generation and modulation of spontaneous cortical oscillation. Instantaneous FF input rate and cortical output firing rate
(column 1 and 3). Spikes in each neuron were smoothed with a Gaussian function (s= 5 ms) and averaged across neurons. Cross-correlogram of
cortical output spikes (column 2, 4 and 5). This indicates the probability that cortical spikes from different neurons are separated in time by the
indicated x value. It was normalized so that the uncorrelated state is set to unity. (A) E- cells synchronize I- cells by cortical E-I connection. I-I
correlogram has a small peak at t = 0, and E-I correlogram shows that I- cells fire ,5 ms after E- cells fire. (B) The cortical gamma frequency rhythm is
generated by E-I and I-E connections. I- cells fire at higher average rate than E- cells, and E- and I- cells fire with a fixed time delay (,5 ms) and a fixed
firing phase difference (,70-degrees) in each cycle. (C) The I-I interaction reduces the firing rate of I- cells, but does not change the E-I firing phase (D)
The E-E interaction significantly changes the relative phase between the firing patterns of E- and I- cells. E- and I- cell spikes are almost in phase. (E)
With all four types of cortical connections, the difference between the firing rates of E- and I- cells diminished, and the cortical oscillation frequency
was lower than (B), (C). E- and I- cells fire almost in phase, or I- cells fire slightly before E- cells fire.
doi:10.1371/journal.pcbi.1000342.g001

Neural Oscillation and Network Responsiveness
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When E-E cortical connections are very strong, extremely sharp

cortical spike synchronization is generated, resulting in spatially

propagating waveform patterns [32,33,34]. The amplitude of the

instantaneous output firing rate was almost constant, independent

of FF input rate. In this case, the neural response was not

controlled very much by FF inputs at each moment but mostly by

the spatial cortical bursting pattern. We observed that the

frequency of this periodically propagating pattern is in the beta

oscillation range induced by E-E cortical interactions [28]. We do

not examine the generation or the effects of periodically

propagating patterns any further here. In the following simula-

tions, we chose cortical conditions such that the system didn’t

enter this phase for the FF input strengths tested.

To examine the responsiveness of the neural network, we chose

a range of parameters that provided moderate and stable

oscillatory behavior on application of FF input spikes. We tested

this condition using sinusoidal time-varying input rates with a peak

amplitude range of 0,60 spikes/s and peak frequency of

5,10 Hz. The network rapidly and reliably restored its oscillating

state whenever the FF input firing rate became greater than some

level (,20 spikes/s), and the oscillations diminished significantly

and very rapidly when the input rate fell below that level.

Throughout this research, we did not change any individual

neuronal property (e.g. ionic channel parameters).

Network Activity Increases the Cortical Response to Weak
FF Inputs and Modifies the Response Function

We compared the neural responsiveness for the following three

states of network activity: (i) network with no cortical connectivity

(and no spontaneous network activity) (FF), (ii) laterally connected

cortical network with spontaneous oscillation activity (OA) and (iii)

the same network as in (ii) but with little or no oscillation activity

(OI).

We generated random FF spike inputs by a Poisson process and

provided this input to the center area (diameter,450 mm) of the

1 mm by 1 mm network. All the response properties were

measured within this small center area in order to avoid finite

size effects from the network boundary. Neurons outside this area

received no FF input. FF input strength was varied from 5 to

100 mS/cm2, and FF spike rate was kept constant at 40 spikes/s

for (i) and (ii). For (iii) the oscillation inactive case, the FF input rate

was lowered to 10 spikes/s in order to maintain minimal

oscillations while still providing enough input spikes to allow

measurement of the network responsiveness.

Figure 3A shows FF input and cortical output spike trains, the

membrane voltage, and the internal current fluctuation of a

sample neuron with and without network oscillation activity. Each

FF input spike induces a synaptic conductance fluctuation in a

cortical neuron and the corresponding intracellular current

fluctuation. When cortical interactions are turned off, the response

of each neuron depends only on the direct FF input (FF network,

Figure 3A (i)). When the FF input strength is weak (25 mS/cm2), a

single spike input could not produce a large enough current

fluctuation to generate an output spike. Only when two or more

inputs are temporally paired within a short time interval

(,,10 ms), can the conductance fluctuations from each spike

overlap to generate an output spike (Figure 3A (i) ***), as found in

the measurements of correlated inputs in a previously reported

experiment [35]. In this case, there is a ‘threshold FF input

strength (Sthresh)’ that determines whether each ‘single’ FF input

spike can generate an output spike or not. We calculated the

responsiveness of network neurons, using a cross-correlation

method (Figure 3B) [35,36]. The responsiveness of the cortical

network was defined as (net peak integral)/(number of FF input

Figure 2. Various cortical activity states. Raster plot of cortical
output spikes, instantaneous FF input and cortical output firing rate,
and cross-correlogram of cortical output spikes. (A) (i), (ii) When cortical
synaptic connections are turned off, there is no correlated cortical
activity. The output firing rate directly follows the FF input rate pattern.
(iii) The E-I firing phase shows no correlation. (B) (i), (ii) When cortical
connections are turned on, both E- and I- network neurons show
oscillation patterns for a wide range of FF input and cortical parameters.
This spike raster plot shows grating-like patterns, and the output firing
rate oscillates with the gamma band frequency. The cross-correlogram
pattern also shows a clear oscillation pattern. (iii) In this case, the E- and
I- cells fire with little phase difference. This E-I firing pattern is different
from normal gamma oscillation in the E-I phase, indicating that the
contribution of the E-E interaction is significant in this case (see
Figure 1E). (C) (i), (ii) The oscillation-inactive state can be achieved
simply by lowering the FF input rate. The E-E cross-correlogram shows
hardly any oscillation pattern, even though cortical connectivity is kept
the same as in (B) and I- cells show oscillation patterns. The FF Input
rate was 40 spikes/s for (A) and (B), and 10 spikes/s for (C). (iii) The E-I
firing phase shows no clear correlation as in (A) (iii).
doi:10.1371/journal.pcbi.1000342.g002

Neural Oscillation and Network Responsiveness
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spikes), where net peak integral is the total area of the maximum

response peak above the background activity in each cross-

correlogram. Measuring this quantity at each FF input strength

produces the generalized response function of the network

(Figure 4A). Since any subthreshold single input produces no

response when cortical connections are turned off (Figure 3B

unpaired), the response to a single FF input spike is like a step

function, similar to the measured thalamo-cortical transfer

function in the absence of noisy background activity [2], providing

the cell with a simple spike relay capability with limited encoding

abilities. When the cortical connections are turned on, each

neuron receives cortical synaptic inputs from other neurons as well

as FF inputs. In the presence of the spontaneous network activity

of synchronized oscillating patterns, the cortical spike inputs that

each neuron receives are also oscillating (Figure 3A (ii)). The

current fluctuation due to cortical interactions is added to that by

FF inputs, and as a result, a single-spike sub-threshold FF input

can produce an output spike response with the help of this

additional cortical activity (Figure 3A (ii) *). This input

amplification depends on the phase of the cortical activity. When

FF input timing is out of phase with the cortical oscillation, it fails

to produce an output spike for lack of additional cortical current

(Figure 3A (ii) **) just as in the FF network. The general response

function of the network to a single ‘unpaired’ input spike is plotted

in (Figure 4A), as a function of FF input strength. Different from

the step-like FF case, the slope of the response function changes

more gradually, with a plateau near the FF threshold input

strength (Sthresh,30 mS/cm2). This broader and more gradual

change of response function can provide richer encoding

capabilities [2].

Next, we examine how responsiveness changes when the

oscillation is inactive while the connectivity of neural population

is kept the same. We lower the FF input rate to 10 spike/s, so that

the spontaneous oscillation is almost absent. All the other

parameters including cortical connectivity are kept the same so

that each synaptic interaction via spike delivery in the network can

give the same contribution as before. This time, neurons do not

exhibit enhanced responsiveness for weak inputs; each neuron still

experiences some conductance change by cortical interaction, but

its contribution is negligible. The network response character is

similar to that of the FF network (Figure 3A). Any ‘unpaired’ weak

inputs cannot generate a cortical response, losing its information.

We found the response function of neurons is almost the same as

that of the FF network (Figure 4A) when the cortical connections

are turned off.

Oscillation Strength is Self-Modifiable: Cortical
Modulation Is Controlled by FF Input Strengths

In Figure 4A, the absolute difference in responsiveness between

the oscillatory network and the FF network is large when FF input

strength is weak (near the FF response threshold, Sinput,30 mS/

cm2). This difference becomes smaller as the FF input strength

increases. Finally the two response functions become equal at very

strong inputs (Sinput.80 mS/cm2). In other words, the cortical

amplification due to oscillation activity is large for weak FF inputs,

and becomes insignificant as inputs become strong. We examined

Figure 3. Responsiveness to weak FF inputs is enhanced by spontaneous cortical gamma frequency oscillation. (A) (i) Cortical
connections are turned off (FF). Neurons receive only FF inputs. Each weak (,30 mS/cm2) FF input raises some current and voltage fluctuation but
cannot cause a cortical output spike unless two or more inputs are closely paired (***). (ii) Cortical connections are turned on (OA). In the presence of
cortical gamma oscillation, each neuron receives cortical spikes from nearby neurons. Since cortical activity has the gamma frequency oscillation
pattern, each neuron is provided with a periodic current fluctuation. This cortical current amplifies weak FF inputs to drive output spikes (*). This
response enhancement depends on the phase of oscillation, so a FF input at an oscillation node is not amplified (**). (B) The response probability of
entire (paired+unpaired) and single (unpaired) FF inputs (weak input strength ,25 mS/cm2) for different cortical activity states. In both cases (paired
and unpaired), input spikes were chosen only if there were no other spikes within 20 ms before each input. Paired inputs have another input within
20 ms after each input. Cortical output spikes were counted as is their relative timing to each input spike were 0 ms). All three cases show a non-zero
response peak for the entire input. For unpaired input, only the OA network can respond. In each correlogram, response probability was normalized
by the number of proper (entire or unpaired) FF input spikes. For the responsiveness calculation (Figure 3A), each peak area was measured above
background activity level (dashed line). Background activities were measured within a window from 210 ms to 0 ms.
doi:10.1371/journal.pcbi.1000342.g003
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how this cortical response modulation is related to the change of

oscillation strength. Figure 5A shows values of the network

oscillation as a function of FF input strength. For weak FF inputs

(Sinput = 25, 35 mS/cm2), the cortical oscillation is strong but it

becomes weaker for a medium input strength (Sinput = 50 mS/cm2),

and almost disappears for a strong input (Sinput = 80 mS/cm2).

This change in the oscillation strength is almost proportional to the

extent of the cortical response modulation which can be roughly

defined as the difference between the response function and that of

the FF network (Figure 5B).

As shown by examining the E-I firing phase pattern (Figure 5A

(iii)), the oscillation modulation is significantly affected by the E-E

cell interaction. When the FF input is strong, the E-I spike

correlogram shows ‘normal’ E-I phase difference of the gamma

oscillation (Figure 5A ***). On the other hand, when the FF input

is weak, the relative E-I firing phase is near zero (‘E-E interaction

modulated’), showing that the network is affected by strong E-E

interaction (Figure 5A (iii), Sinput = 25, 35 mS/cm2). For some

range of FF input strength, two different peaks coexist in the E-I

correlerogram (Figure 5A * and **). Whenever the E-I firing phase

is significantly affected by the E-E interaction (,70-degreesR,0-

degrees), the cortical oscillation becomes strong and the respon-

siveness of the network to weak FF input is enhanced. When the E-

E connections were turned off (Figure 6), there was no E-I firing

phase modulation (Figure 6 (iii)), and the cortical oscillation was far

less affected by the FF input strength (Figure 6 (i)). For weak FF

input, the cortical oscillation almost disappeared (Figure 6 (i) input

strength 25 mS/cm2) and consequently the responsiveness did not

exhibit any enhancement.

We examined how the E-I firing phase is modulated from ,70-

degrees to ,0-degrees by the excitatory interactions in the E-E

couplings. We turned on only excitatory cortical connections (E-E

and E-I) and measured the firing patterns of E- and I- cells

(Figure 7). In this condition, the network generated the

periodically propagating waves near beta rhythm that we observed

in the earlier part of this study (when E-E connections were

relatively stronger than other types of connections). In each wave

cycle, a small number of E- cells fired due to the FF inputs

(Figure 7A i). Then they excited nearby E- and I- cells through the

E-E and the E-I connections. The stimulated E- and I- cells fired

almost simultaneously, or I- cells fired slightly before E- cells fire

(Figure 7A ii and iii) because E-I connections are stronger than E-

E connections. The firing of the E- cells continued for a while due

to the ‘chain reaction’ of E-E couplings and the I- cells

occasionally produced ‘spike doublets’ by this sustained excitation

(Figure 7A iv and 7B). These inhibitory spike doublets are

frequently observed during long range synchronization processes

in neural networks [9], usually along with the ‘delayed’ excitation

from distant cells. In our study the ERERI route could provide

the ‘delayed’ or ‘sustained’ excitation. As a result of these E- and I-

firing patterns, the E-I firing phase was ,0-degrees on average.

When the average excitation to each I- cell is strong enough to

produce I- spike doublets, the E-I phase correlogram has two

peaks around 0-degrees (Figure 5A * and **). If the excitation to I-

cells is not enough, or the inhibition of E- cells is strong so that the

sustained E- cell activity cannot drive I- cells to produce the second

spike of spike doublets, the E-I phase correlogram does not show

clear peak separation (Figure 5A (iii) input strength 25 mS/cm2). In

any case, the average E-I phase difference is close to 0-degrees,

clearly different from ,70-degrees ‘normal’ gamma phase

distribution.

The cortical response modification caused by this oscillation can

be explained as an effect of membrane potential oscillations [21]. In

addition, the modulation of the E-E interaction by the FF input

strength can be understood as follows: as shown in Figure 3A, when

the FF input strength is weak, each E- neuron can respond to

individual FF input only with the help of the collective cortical

activity of E- cells whose contribution is intrinsically periodic

(oscillatory). The probability of a cortical response to an FF input

spike strongly depends on the phase of oscillation of the E- cells

(Figure 3A * and **), and this dependence is significantly

strengthened by the E-E coupling loop. In the beginning of a

gamma oscillation cycle, only a small number of E- cells fire together,

but they trigger an E-E coupling loop which drives more E- cells to

fire simultaneously. As a result, the peak firing rate of E- cells in a

gamma cycle is quite high, causing much higher spiking probability

near the oscillation peak. Therefore, (i) the cortical responsiveness is

dependent on the oscillation phase, and (ii) the gain or the cortical

amplification is proportional to the oscillation strength.

Figure 4. Responsiveness and response delay of each cortical
state. (A) The FF network has a step-like shape response function, with
a threshold value of ,30 mS/cm2. The OA network shows a more
gradual change in its response function with a plateau near the FF
response threshold. Its responsiveness for weak FF inputs is much
stronger than for the other two cases. The OI network shows little
difference in its response function from that of the FF network. (B) The
cortical response to a single FF input spike is fastest in the OA network
for all input strengths. For weak FF inputs, the average response delay is
much shorter in the OA network than in other network states. As the FF
input strength increases, the difference between OA and OI networks
becomes smaller. The FF network always shows the largest delay time,
even for very strong FF inputs.
doi:10.1371/journal.pcbi.1000342.g004

Neural Oscillation and Network Responsiveness
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When an FF input is strong enough to produce an output spike

in each E- cell, there is no significant dependence of the E- cell

response on the periodic cortical activity and E-E couplings, and

each individual E- cell responds directly to its FF input pattern,

independently of the network activity. Since the FF input spike

train was generated by a random Poisson process, the cortical

response pattern is also random and not oscillatory. Although the

average output firing rate generally increases with increasing FF

input strength, the cortical response modulation actually decreas-

es. The oscillations are depressed by increasing the FF input

strength while keeping the FF input rate constant. The average

number of FF input spikes does not decrease but the oscillation is

depressed, and the response function converges to the FF result.

Although cortical oscillation is initially established by the E-I and

the I-E interactions, the E-E cell interaction is crucial for

responsiveness modulation because its strength strongly depends

on the FF input strength. Since the cortical response modulation is

controlled by the FF input strength in the system via the self

modification of network oscillation, this seems to be a very

effective automatic gain control system that does not require any

synaptic adaptation or learning mechanism [37].

Next, we examine how the oscillation activity affects the

response delay of the network. Generally, the response time (time

interval between an FF input spike and a corresponding output

spike) is relatively long (,10 ms) for weak inputs and becomes

shorter as input strength increased for all cortical states (Figure 4B).

But there is a significant difference in the average response time

depending on the network activity state. Figure 4B shows that the

average response delay is shorter during spontaneous oscillations

than for the other two cortical activity states considered, especially

when the FF input is weak. As input strength increases, the

response of the oscillating network becomes similar to that of the

oscillation inactive network, but still faster than that of the FF

network. For a sufficiently strong FF input, the response time delay

Figure 5. Modification of oscillation strength by various FF input strengths. (A) Cross-correlograms of cortical spikes. (i), (ii) In the OA
network, the relative strength of gamma oscillation changes according to the FF input strength. The oscillation is strongest when FF input strength is
35,40 mS/cm2, and gradually diminishes as input strength increases. (iii) The E-I firing pattern shows that cortical oscillation is significantly
modulated by the E-E interaction, and two different peaks coexist (‘spike doublets’, * and **). For a stronger FF input (50 mS/cm2), the E-I firing pattern
shows only the normal gamma phase feature (***). Cortical oscillation is almost disappears for very strong FF input (80 mS/cm2). (B) The
responsiveness difference between the OA network and the FF network changes from positive (for weak FF inputs,Sthresh) to negative (for moderate
FF inputs.Sthresh), and becomes zero (for strong FF inputs). Its absolute value (or cortical response modulation) is almost proportional to the strength
of the gamma oscillation at each input strength (except at the FF response threshold, ,30 mS/cm2, where the difference changes from positive to
negative). Also the difference in response delay between the OA network and the FF network is proportional to the strength of the gamma
oscillation, which is controlled by the FF input strength.
doi:10.1371/journal.pcbi.1000342.g005
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curve of the oscillating network and the oscillation depressed

network were almost the same, with a delay of about 4 ms,

agreeing with the experimentally known value for monosynaptic

connections [35]. This is still faster than that measured for the

FF network. Cortical interaction adds some positive current to

each neuron, and this additional current causes the membrane

voltage to reach the action potential threshold faster. In the

presence of cortical oscillation, the amount of cortical current

added is larger in the positive phase of the oscillation and on

average, the larger the oscillation, the greater the average

positive current that is added to the cell. That leads to faster

responses than observed for the simple FF network. As the FF

input strength increases above 35 mS/cm2, the oscillation

amplitude decreases (Figure 5A), and the net average positive

current added is less. The response time difference between

oscillatory and FF networks decreases accordingly (Figure 5B). E-

E cell interactions control the cortical oscillation strength, and

the extent of response delay modulation and the response

modulation of the network are in turn proportional to the

cortical oscillation strength.

Cortical Response Modification Is Localized: The FF Input
Can Be Selectively Amplified in Particular Regions

To examine the spatial localization of the cortical gain resulting

from the spontaneous oscillation of network activity we used a

network model four times the size (2 mm by 2 mm, 13000

neurons) of that used in the studies described above. In the center

region (diameter,450 mm, including ,500 neurons, Figure 8A

G1), the cells were activated as before with a FF input rate of 40

spikes/s, a rate that was also used to set up the spontaneous

network activity oscillations for the simulations described above.

The surrounding neurons (Figure 8A G2,G11) received a signal

with an FF input rate of 10 spikes/s, a rate at which spontaneous

oscillations are hardly evident previously. The cortical neural

connectivity is the same everywhere so that the center and the

surrounding neurons could interact with each other. There are

differences in the responsiveness of the network between the

central region that shows strong spontaneous oscillations and the

surrounding regions with little to no oscillations. In other words,

the responsiveness modification by the spontaneous oscillation can

be localized. A control simulation where all cortical neurons

received an FF input of 10 spike/s in both the center and the

surrounding regions is an approximation of the neuronal property

at infinite distance from the center region (region G‘ in Figure 8A).

For measurement purposes the network is divided into circular

annuli (Figure 8A G2,G11). Each annulus contained 400 to 500

neurons. Figure 8A shows the network response function and the

response delay time for single unpaired FF spike inputs in each

region. Figure 8B shows the measured values in all the regions for

FF input strengths of 25 and 35 mS/cm2 which are slightly smaller

and slightly larger, respectively, than the FF response threshold

value (Sthresh = 30 mS/cm2, Figure 4A). When the FF input

strength was weaker than Sthresh, the responsiveness and the

response delay pattern gradually moved from the oscillation-active

center region (G1) to approach the control oscillation suppressed

case (G‘). Subsets of the Figure 8A graphs show that the quantities

measured in the surrounding regions G2,G6 are continuously

distributed in the interval between the values obtained for G1 and

G‘. Values measured in surrounding regions G7,G11 showed

negligible differences from those measured for G‘, and are not

plotted in the figure. The effect of oscillatory network activity is

restricted to a central local region about 500 mm in radius. When

the FF input strength is larger than Sthresh but not very large

(30 mS/cm2,Sinput,50 mS/cm2), the spatial attenuation of the

Figure 6. Oscillation modulation without E-E interaction. (i) (ii) The cortical oscillation strength is weaker, and far less modified by the FF input,
compared with Figure 5A. The oscillation pattern in E- cells disappears for both weak and strong FF inputs. (iii) The relative E-I firing phase does not
change for weak inputs in this case, unlike that shown in Figure 5A (iii).
doi:10.1371/journal.pcbi.1000342.g006
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cortical activity effect is more apparent (Figure 5B, Sinput = 35 mS/

cm2). In this case, all surrounding regions, even including the

nearest region G2, are clearly separated from G1, and are close to

G‘. In this case, the cortical oscillation activity effect is restricted

to the central activated region (G1). For very strong FF inputs

(50 mS/cm2,Sinput), all response properties converge to control

group (G‘) behavior as expected since under that condition

oscillatory behavior is barely evident even in the central region.

It seems reasonable to expect that the spatial localization of

gamma oscillation is dependent upon the range of single neuron

synaptic connectivity so that the shorter synaptic connection

range, the smaller the surrounding area that is affected by the

oscillation in the center. To verify this expectation, we reduced the

excitatory and the inhibitory synaptic interaction range from the

initial value (radius of 200 mm for E- cells, 100 mm for I- cells),

keeping the ratio of E- and I- range the same. In Figure 8C, the

range of oscillation effect is proportional to the single cell synaptic

connection range, as expected. This suggests that the effective

range of gamma oscillations is strongly dependent upon the details

of the anatomical connectivity of neurons in experimental

observations.

Thus the effect of cortical oscillation is fairly well localized for

weak and moderate FF input strengths. Neural response properties

are modified only within or near the area in which spontaneous

oscillation is activated. This suggests that spatially selective cortical

response modification is possible. Spontaneous cortical oscillations

can be locally induced by spatially localized thalamic inputs, and

the cortical response character can also be selectively tuned within

a limited region.

Discussion

As shown above, cortical responsiveness to a single unpaired

FF input spike is enhanced by synchronized gamma frequency

oscillations with the help of E-E neuronal interaction, particu-

larly for weak FF input strengths. The cortical response

modulation is proportional to the oscillation strength which is

controlled by the network itself depending on FF input strengths.

This cortical effect is spatially localized fairly tightly depending

upon the range of cell connectivity, suggesting that each cortical

area can be tuned selectively by well localized FF inputs. These

findings are relevant to previous experimental and simulational

results, and improve our understanding of the response character

of the visual pathway.

Gamma Oscillation with E-E Cells Interaction
It was previously thought that cortical E-E activity interaction is

not essential for gamma rhythm generation but can modify the

oscillation frequency and the phase of cell firing pattern

[11,28,29]. A recent experimental study showed that gamma

rhythms in E-E cells activity can change the E- and I- cells firing

phase distribution, and suggested that it may suppress the gamma

oscillation [25]. We have shown that recurrent E-E interaction

significantly modulates the oscillation frequency, the firing phase

distribution of E- and I- cells, and the oscillation strength, without

extinguishing the cortical oscillation. Moderate levels of E-E

interaction generally strengthen the oscillation, causing the ,0-

degrees E-I firing phase and the lower oscillation frequency (near

beta range). As a result, it modulates the cortical response function

that is clearly relevant to encoding/decoding of information. The

fact that the effect of E-E interaction is self regulatory for FF input

strength variation suggests a useful mechanism for the cortical gain

control, without neuronal feedback loops from the visual cortex to

earlier visual stages.

This suggests a general mechanism by which the same types of

neurons in different cortical layers can have different properties

due to the different coupling within each layer. In previous studies,

it was reported that the upper and the lower layers of the cortex

can have different oscillation characters and phase response

properties [38,39,40]. Our observations about the phase and the

frequency modulation of cortical oscillation by E-E coupling,

suggest that different neuronal properties in different cortical

layers may originate from the different lateral connectivity

(especially E-E coupling) strength in each layer. For example,

neurons in the different hippocampus regions (CA1 and CA3)

show noticeably different firing phase distribution and correlation

activity patterns in gamma oscillations [27]. Considering that the

E-E couplings are significant in CA3 [41] while they are sparse in

CA1 [42], this may be a situation in which the E-E coupling

property plays an important role in the modulation of neural

activity, as suggested above.

Figure 7. The E-I firing phase modulation by E-E coupling.
Raster plot of E- and I- cells spikes (A) and spike trains in sample E- and
I- cells (B). Only excitatory connections (E-E and E-I) are turned on, while
inhibitory connections (I-E and I-I) are turned off. (A) At first, a small
number of E- cells fire by FF input (i). These E- spikes stimulate nearby E-
and I- cells by E-E and E-I connections respectively. Since the E-I
connection is stronger than the E-E connection in this model, I- cells fire
(ii) before E- cells fire (iii) in this cortical drive. The E- cells firing by
means of the E-E interactions continues for a while, due to the self-
feedback in the E-E interaction loop. As a result of this ‘lagged’
synchronization, the oscillation frequency is reduced. This duration of
excitation causes the second firing of I- cells (iv) to make a ‘spike
doublet’. The interval between the two spikes in a spike doublet is
determined by the refractory period of I- cells. The first spike of a
doublet forms the ‘E-E interaction modulated phase’ in the E-I firing
phase, while the second spike forms the ‘normal’ gamma E-I phase. (B) I-
cells occasionally produce ‘spike doublets’. The first I- spike in a doublet
usually fires before nearby E- cells spike, while the second I- spike
usually follows the E- spike. If inhibitory connections (I-E and I-I) are
turned on, E- cells fire less than once in each cycle, and I- spike doublets
appear less frequently.
doi:10.1371/journal.pcbi.1000342.g007
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Responsiveness Tuning with Fast and Slow Cortical
Oscillations

Previous experimental work has shown that (i) the visual

responsiveness of the cortical network is significantly enhanced by

slow cortical oscillation [1] and (ii) the phase of slow theta rhythm

(4,8 Hz) oscillation modulates the high frequency gamma

(80,150 Hz) band oscillation power [22]. Here we provide a

clue to a mechanism for modification of neural response properties

by various types of synchronized cortical network activities. As

shown above in the results section, when the gamma frequency

oscillation is generated, it enhances the neuronal responsiveness to

weak FF input. If this gamma power is modulated by slower (theta

or lower frequency) rhythm, then the network responsiveness

could depend on the phase of this slow oscillation. This suggests a

simple and consistent basis for the modulation of high frequency

oscillation power by lower frequency activity. Some previous

experimental work has shown that the power and the frequency of

gamma oscillations can be modulated by various factors such as

the operation of fast spiking interneurons and some neuromod-

ulators [10]. In our simulation, the strength of the gamma

oscillations can be significantly modified by changing the strength

or rate of the FF input, with the help of E-E interactions but

without changing any individual neuronal properties or network

connectivity features. In addition, our results on the gamma

oscillation modulation mechanism do not require modifying the

FF input correlation pattern, learning/adaptation behaviors [37]

in cortical synapses, or cortico-thalamic feedbacks [43]. If the slow

frequency oscillations affect the FF input strength or the input rate

locally within the network, the gamma oscillations will be readily

modulated. The consequent modulation of the responsiveness will

depend on the phase of the low frequency oscillation [1].

Controlled and Selective Responsiveness Modification
This proposed responsiveness tuning mechanism does not

require any accompanied background activity control. Therefore

it is simpler than those gain control models suggested in the

Figure 8. Localization of the oscillation activity effect in large cortical network (2 mm by 2 mm). (A) In the center region (G1), cortical
gamma oscillation is activated by the higher FF input rate (40 spikes/s). Surrounding neurons are divided into groups (G2,G11) by their distance
from the center, and spontaneous oscillation is inactivated due to the lower FF input rate (10 spikes/s). The control group (G‘) property was
separately achieved by a uniformly low FF input rate (10 spikes/s) network, as an approximation of infinitely distant neurons. Responsiveness and
response delay measurements show that the properties of surrounding neurons (G2,G6) are continuously distributed between G1 to G‘ (insets), and
distant groups (G7,G11) show almost the same property as G‘. (B) For FF inputs weaker than the FF response threshold (,30 mS/cm2),
responsiveness and response delay changes gradually with the distance from the G1 boundary. The G2 property is very similar to that of G1, while
G11 properties are almost the same as G‘ properties. For stronger inputs (.30 mS/cm2), surrounding regions are not much influenced by G1
oscillation. Most surrounding group properties are similar to those of G‘, showing clear localization of oscillation effect. For all FF input strength, the
influence of oscillation is certainly restricted within local area. (C) The gamma oscillation effect localization is determined by the range of single
neuron synaptic connections. The E- and I- synaptic connections of each single neuron are varied from their initial value (100%, radius of 200 mm for
E- cells, 100 mm for I- cells), to 50% (100 mm for E- cells, 50 mm for I- cells). The ratio of E- to I- connections range (2:1) was kept the same in all cases.
The area of surrounding regions affected by the oscillation in the center region shrinks, as the E- and I- synaptic connection range is reduced. For
comparisons, cortical responsiveness is normalized to the value of the center region in each case.
doi:10.1371/journal.pcbi.1000342.g008
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previous reports [2,3,4] that are mostly dependent on the

modulation of the background activity. An important advantage

of the present model is that the response modification can be

‘dynamically selective’ according to the FF input strength and the

FF input projection range variation. Since the cortical gain is

modulated by FF input strength, the cortical amplification is

selective to FF input strength. The system effectively determines

the ‘optimized’ gain via modulations of oscillation power

spontaneously, and can avoid unnecessary adjustments even

without any delayed feedbacks to thalamus or thalamo-cortical

neurons. Moreover, the tuning is spatially localized to distances of

less than about 500 mm for weak FF inputs, and less than 50 mm

for strong inputs. This is comparable or even smaller than the size

of the receptive field of single neuron in the mammalian primary

visual cortex [44]. Therefore responsiveness modulation can be

spatially selective, and this is more effective than mechanisms

proposed in previous studies [2,3,4] where the cortical modula-

tions were generally global and the gain optimization could not be

achieved easily. We also suggest that this mechanism might be

applicable to the functional modulation of the relative weight

between thalamic inputs versus cortical inputs to the visual cortex

neurons [45].

Attended or Awake State Animal Behavior with
Oscillations

In some experiments with monkeys, when attention is directed,

visual sensitivity increased due to the increased synchronization

between the visually evoked potentials and the stimulus [46]. In

another report, neurons activated by the attended stimulus showed

increased gamma frequency synchronization [47]. Considering the

response enhancement by gamma oscillation in our model

together with these experimental measurements, spontaneous

gamma band activity seems to play an important role for

regulating the information flow in the visual nervous system, as

suggested previously [6,16]. Our findings support these experi-

mental observations, and may suggest a new mechanism for

attention modulation that is different from that of other models

[48,49,50].

Methods

Cortical Neural Network Modeling
This neural network model consists of a two-dimensional layer

of coupled neurons, each modeled as a Hodgkin-Huxley neuron

with Na+, K+ and Cl2 ion channels and E- and I- synaptic

conductance channels. 75% of the neurons are E- and 25% are I-

as suggested by experimental data [51], and adopted in other

publications [24]. We used networks of two sizes in this research:

(i) 1 mm by 1 mm, including ,3300 neurons for responsiveness

simulation and (ii) 2 mm by 2 mm, including ,13400 neurons for

locality simulations.

The membrane potential of the jth neuron, vj , is determined by

C
dvj

s

dt
~{gL vj

s{VL

� �
{GNa vj

s{VNa

� �
{GK vj

s{VK

� �

{g
j
sE tð Þ vj

s{VE

� �
{g

j
sI tð Þ vj

s{VI

� �
,

where s is E or I depending upon whether the neuron is E- or I-,

respectively, C is the membrane capacitance, and gL is the leakage

conductance. gj
sE is the synaptic conductance of the jth neuron, E-

or I- as specified by s, providing the cortical inputs from the

neurons in its spatial neighborhood, and gj
sI is the synaptic

conductance of the jth neuron providing the I- input from the

neurons in its spatial neighborhood. We used the commonly

accepted biophysical parameters [52,53]: the capacitance

C = 1026 Fcm22, the leakage reversal potential VL = 270 mV,

the Na+ equilibrium potential VNa = 55 mV, the K+ equilibrium

potential VK = 280 mV, the E- reversal potential Vexc = 0 mV,

the I- reversal potential Vinh = 280 mV, the leakage conductance

gL = 50*1026 Scm22, and Hodgkin-Huxley Na+ and K+ conduc-

tances gNa = 120*1023 Scm22, gK = 36 *1023 Scm22.

The Hodgkin-Huxley ion channel conductance takes the form

[54]:

GNa~gNam3h, GK~gK n4

where m, h and n denote the channel activation variables.

dj

dt
~aj vj

� �
1{jð Þ{bj vj

� �
j, j~m, h, n

The rate constants aj vð Þ, bj vð Þ take empirically known forms

[55]:

an vð Þ~0:01 10{vð Þ
�
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10{v

10
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� �
,

bn vð Þ~0:125 exp {v=80ð Þ
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�

exp
25{v

10

� �
{1

� �
, bm vð Þ~4 exp {v=18ð Þ

ah vð Þ~0:07 exp {v=20ð Þ, bh vð Þ~1

�
exp

30{v
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� �
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A jth neuron’s synaptic conductance is given by:

g
j
sE tð Þ~g

j
input tð ÞzWsE

X
k

D
j,k
sE

X
l

GE t{tk
l

� �

g
j
sI tð Þ~WsI

X
k

D
j,k
sI

X
l

GI t{tk
l

� �

D
j,k
ss’, GE t{tk

l

� �
and GI t{tk

l

� �
are the spatial, the E- temporal,

and the I- temporal kernels of cortical interaction, respectively,

which describe the contribution of lth spike from kth neuron to the

jth neuron.

For cortico-cortical connection, the spatial kernel in the synaptic

conductance equation takes the form:

Dj,k
ss’~Css’ exp {~rrj{~rrk

�� ���ls’
� �

where ~rrj and ~rrk are the jth and kth neurons’ spatial positions

respectively. The decay constant, lE is 200 mm (for E-

connections) and lI is 100 mm (for I-). The temporal kernel in

the equation is set to be
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Gs t{tk
l

� �
~

Cts’

t1{t2
exp {t=t1ð Þ{exp {t=t2ð Þ½ �

and the time constants t1, t2ð Þ in milliseconds were chosen as (3,

1) for E- and (7, 1) for I- synapses where Css9 and Cts9 are

normalization constants chosen so that that the sum of the

contributions of the two kernels would sum to unity.

We assume spatially isotropic local connections with a range of

200 mm in radius for E- and 100 mm in radius for I- synapses.

Wss9 are strengths of synaptic connections for the neuron pair of

type (s, s9). If all Wss9 = 0, the network is then equivalent to the

simple FF model. When the cortical synaptic connections were

turned on, these values ratios were set to (WEE, WIE, WEI,

WII) = (0.03: 0.06: 0.12: 0.12) throughout the simulation. This

condition was achieved from the parameter search simulations

shown in the first part of results section.

The contribution to the E- conductance by the FF input spikes

was given by:

g
j
input tð Þ~Sinput

X
l

GE t{t
j
l

� 	

Sinput is the weighting factor for FF input synaptic strength and

gj
input was varied within 5,100 mS/cm2, throughout the simula-

tions reported here. The temporal kernel GE t{t
j
l

� 	
has the same

form as the E- temporal cortical kernel given above. The spike

timings, t
j
l , of input were generated by Poisson processes.

Computer Simulation and Data Analysis Techniques
All of our simulations were coded using the GENESIS 2.3

environment [55], and performed with a Pentium IV PC system.

Simulation outputs were analyzed using Matlab R2006b scripts.
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14. Bögers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and

attention in cortical local circuits: a computational study. Proc Natl Acad
Sci U S A 102: 7002–7007.

15. Womelsdorf T, et al. (2007) Modulation of neuronal interactions through
neuronal synchronization. Science 316: 1609–1612.

16. Schoffelen J, et al. (2005) Neuronal coherence as a mechanism of effective
corticospinal interaction. Science 308: 111–113.

17. Tiesinga PHE, Fellous JM, José JV, Sejnowski TJ (2001) Computational model
of carbachol-induced delta, theta, and gamma oscillations in the hippocampus.

Hippocampus 11: 251–274.

18. Bojak I, Liley DTJ (2007) Self-organized 40 Hz synchronization in a

physiological theory of EEG. Neurocomputing 70: 2085–2090.

19. Coombes S, et al. (2007) Modeling electrocortical activity through improved

local approximations of integral neural field equations. Phys Rev E 76: 051901.

20. Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative
spike latencies. Science 319: 1108–1111.

21. Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge

patterns of neocortical neurons by induced oscillations of the membrane
potential. Neuroscience 83: 15–25.

22. Canolty RT, et al. (2006) High gamma power is phase-locked to theta
oscillations in human neocortex. Science 313: 1626–1628.

23. Yoshioka T, Blasdel G, Lebitt J, Lund J (1996) Relation between patterns of

intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-

reactive regions in macaque monkey striate cortex. Cereb Cortex 6: 297–310.

24. McLaughlin D, Shapley R, Shelley M, Wielaard DJ (2000) A Neuronal network

model of macaque primary visual cortex (V1): orientation selectivity and
dynamics in the input layer 4Calpha. Proc Natl Acad Sci U S A 97: 8087–8092.

25. Morita K, Kalra R, Aihara K, Robinson HPC (2008) Recurrent synaptic input

and the timing of gamma-frequency-modulated firing of pyramidal cells during

neocortical ‘‘UP’’ states. J Neurosci 28: 1871–1881.

26. Hasenstaub A, et al. (2005) Inhibitory postsynaptic potentials carry synchronized
frequency information in active cortical networks. Neuron 47: 423–435.

27. Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma
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