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Abstract

The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support
various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the
maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI),
graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks
defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a
general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased
correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple
networks suggests that this is a general developmental principle for changes in functional connectivity that would extend
to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged
by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult
fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical
emphasis in children to a more ‘‘distributed’’ architecture in young adults. We argue that this ‘‘local to distributed’’
developmental characterization has important implications for understanding the development of neural systems
underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and
adult graphs, with both showing ‘‘small-world’’-like properties, while community detection by modularity optimization
reveals stable communities within the graphs that are clearly different between young children and young adults. These
observations suggest that early school age children and adults both have relatively efficient systems that may solve similar
information processing problems in divergent ways.
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Introduction

The mature human brain is both structurally and functionally

specialized, such that discrete areas of the cerebral cortex perform

distinct types of information processing. These areas are organized

into functional networks that flexibly interact to support various

cognitive functions. Studies of development often attempt to

identify the organizing principles that guide the maturation of

these functional networks. [1–6].

A major portion of the work investigating the nature of

functional human brain development is based on results from

functional magnetic resonance imaging (fMRI) studies. By examin-

ing the differences in the fMRI activation profile of a particular brain

region between children, adolescents, and adults, the developmental

trajectory of that region’s involvement in a cognitive task can be

outlined [3,5,7–10]. These experiments have been crucial to our

current understanding of typical and atypical brain development.

In addition to fMRI activation studies, the relatively new and

increasingly utilized method of resting state functional connectivity

MRI (rs-fcMRI) allows for a complementary examination of the

functional relationships between regions across development.

Resting state fcMRI is based on the discovery that spontaneous

low-frequency (,,0.1 Hz) blood oxygen level dependent (BOLD)

signal fluctuations in sometimes distant, but functionally-related

grey matter regions, show strong correlations at rest [11]. These

low frequency BOLD fluctuations appear to relate to spontaneous

neural activity [11–13]. In effect, rs-fcMRI evaluates regional

interactions that occur when a subject is not performing an explicit

task (i.e., subjects are ‘‘at rest’’) [11,12,14–23]. To date, rs-fcMRI

has been used in several domains to examine systems-level

organization of motor [11], memory [24,25], attention [26], and

task control systems [21,22,27].

In addition, because rs-fcMRI does not require active

engagement in a behavioral task, it unburdens experimental
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design, subject compliance, and training demands. Thus, rs-fcMRI

is becoming a frequently used tool for examining changes in

network structure in disease [28–31], in aging [24,29], and across

development [22,32–35].

Resting-state fcMRI identifies separable brain networks in
adults

In previous work regarding task-level control in adults, we

applied rs-fcMRI to a set of regions derived from an fMRI meta-

analysis that included studies of control-demanding tasks. This

analysis revealed that brain regions exhibiting different combinations

of control signals across many tasks are grouped into distinct ‘‘fronto-

parietal’’ and ‘‘cingulo-opercular’’ functional networks [21,36] (see

Table 1 and Figure 1). Based on functional activation profiles of

these regions characterized in the previous fMRI study, the fronto-

parietal network appears to act on a shorter timescale, initiating and

adjusting top-down control. In contrast, the cingulo-opercular

network operates on a longer timescale providing ‘‘set-initiation’’

and stable ‘‘set-maintenance’’ for the duration of task blocks [37].

Along with these two task control networks [21,36], a set of

cerebellar regions showing error-related activity across tasks [36]

formed a separate cerebellar network (Figure 1). In adults, the

cerebellar network is functionally connected with both the fronto-

parietal and cingulo-opercular networks [21,22]. These functional

connections may represent the pathways involved in task level

control that provide feedback information to both control

networks [22,36].

Another functional network, and one of the most prominent sets

of regions to be examined with rs-fcMRI, is the ‘‘default mode

network’’. The default mode network (frequently described as

being composed of the bilateral posterior cingulate/precuneus,

inferior parietal cortex, and ventromedial prefrontal cortex) was

first characterized by a consistent decrease in activity during goal-

directed tasks compared to baseline [38,39]. Resting-state fcMRI

analyses have repeatedly shown that these regions, along with

associated medial temporal regions, are correlated at rest in adults

[15,16,32,40]. While the distinct function of the default mode

network is often linked to internally directed mental activity [39],

this notion continues to be debated [25,32,41–44].

Spontaneous correlated activity within brain networks
develops over age

In two prior developmental studies, we used rs-fcMRI to

examine the development of the task control and cerebellar

functional networks [22] and, separately, the default mode network

[32]. The first study, addressing functional connectivity changes

within and between the two task control networks and the cerebellar

network [22], showed that the structure of these networks differed

between children and adults in several ways (see [22]). In general,

many of the specific changes showed trends of decreases in short-

range functional connections (i.e., correlations between regions close

in space) and increases in long-range functional connections (i.e.,

correlations between regions more distant in space). We suggested

that these global developmental processes support the maturation of

a dual-control system and its functional connections with the

cerebellar network [22]. These results have now been replicated in a

developmental resting connectivity study targeting sub-regions of the

anterior cingulate [34].

The development of the default mode network was indepen-

dently examined in a separate analysis [32]. In children, the

default mode network was only sparsely functionally connected.

Many regions were relatively isolated with few or no functional

connections to other default mode regions. Over age, correlations

within the default mode network increased and by adulthood it

had matured into a fully integrated system. Interestingly, as

opposed to the task-control and cerebellar networks, very few

short-range functional connections involving the default mode

network regions existed in children. Hence the numerous strong

short-range functional connections that decreased with age when

investigating the dual control networks were not seen within the

default network. In fact, some connections such as the functional

connection between the ventromedial prefrontal cortex (vmPFC;

23, 39, 22) and anterior medial prefrontal cortex (amPFC; 1, 54,

21) regions, which are fairly close in space (i.e., short-range at

,2.7 cm), had a substantial increase in correlation strength over

development [32].

The observation that different analyses suggested different

developmental features suggests a need for a more nuanced and

integrated characterization of the development of functional

networks. The goal of this manuscript is to employ several

different network analysis tools to provide such a characterization.

Visualization techniques such as spring embedding, and quanti-

tative measures, including ‘small world’ metrics and community

detection algorithms, will be applied to these networks in an

attempt to identify principles for the changes observed across

development.

Because of the overlapping and sometimes inconsistent use of

terminology between neuroscience and the computational scienc-

es, we will briefly define two terms for the purposes of this paper.

The term ‘‘networks’’ will be used in the typical cognitive

neuroscience formulation: a group of functionally related brain

regions (as described above). The overall collection of regions

(encompassing all four ‘‘networks’’) will be referred to as the

‘‘graph.’’

Results

Spring-embedded visualization in combination with
functional connectivity suggests that regions are linked
more locally in childhood and are more distributed in
adulthood

Graph theory analyses were applied to 210 subjects, aged 7–31,

to investigate the emergence of temporal correlations in sponta-

Author Summary

The first two decades of life represent a period of
extraordinary developmental change in sensory, motor,
and cognitive abilities. One of the ultimate goals of
developmental cognitive neuroscience is to link the
complex behavioral milestones that occur throughout this
time period with the equally intricate functional and
structural changes of the underlying neural substrate.
Achieving this goal would not only give us a deeper
understanding of normal development but also a richer
insight into the nature of developmental disorders. In this
report, we use computational analyses, in combination
with a recently developed MRI technique that measures
spontaneous brain activity, to help us to understand the
principles that guide the maturation of the human brain.
We find that brain regions in children communicate with
other regions more locally but that over age communica-
tion becomes more distributed. Interestingly, the efficiency
of communication in children (measured as a ‘small world’
network) is comparable to that of the adult. We argue that
these findings have important implications for under-
standing both the maturation and the function of neural
systems in typical and atypical development.

Brain Develops from Being ‘‘Local to Distributed’’
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neous BOLD activity between regions of the default mode,

cerebellar, and two task-control networks. For this initial analysis,

average age-group matrices were created using a sliding boxcar

grouping of subjects in age-order (i.e., group1: subjects 1–60,

group2: subjects 2–61, group3: subjects 3–62, etc.). This generated

a series of groups with average ages ranging from 8.48 years to

25.58 years. Each of the groups’ average correlation matrices was

converted into a graph, with correlations between regions greater

than or equal to 0.1 considered as functionally connected.

In a first analysis, we used a visualization algorithm commonly

used in graph theoretic analyses known as spring embedding that

aids in the qualitative interpretation of graphs (Figure 2 and Video

S1) [45]. In spring embedding, the positions of the nodes (i.e.,

regions) in a graph are based solely on the strength and pattern of

functional connections instead of their anatomical locations. In this

procedure, each functional connection between a pair of nodes is

treated as a spring with a spring constant related to the strength of

the specific correlation. The entire system of pair-wise regional

functional connections is then iteratively allowed to relax to the

lowest global energetic state, i.e., groups of nodes that are strongly

interconnected will be placed close together even if anatomically

distant.

By creating spring embedded graphs for each of the sliding

boxcar groups in age-order, a movie representation can be made

that shows the development of the network relationships (from

average age 8.48 to 25.48 years) (Video S1). The panels in Figure 2

provide snapshots from child, adolescent, and adult average ages

in this movie. In both Figure 2 and Video S1, each node is color-

coded in two ways: the outer border represents the general

anatomical location (i.e., cerebral lobe) of the node; the inner core

Table 1. Regions, coordinates, and properties.

Regions of Interest (ROI) ROI Abbreviations Coordinates Functional Network Network Color

x y z

dorsolateral prefrontal cortex dlPFC 243 22 34 Fronto_Parietal Yellow

dorsolateral prefrontal cortex dlPFC 43 22 34 Fronto_Parietal Yellow

Frontal frontal 241 3 36 Fronto_Parietal Yellow

Frontal frontal 41 3 36 Fronto_Parietal Yellow

mid cingulate cortex mCC 0 229 30 Fronto_Parietal Yellow

inferior parietal lobule IPL 251 251 36 Fronto_Parietal Yellow

inferior parietal lobule IPL 51 247 42 Fronto_Parietal Yellow

intraparietal sulcus IPS 231 259 42 Fronto_Parietal Yellow

intraparietal sulcus IPS 30 261 39 Fronto_Parietal Yellow

Precuneus Precun 29 272 37 Fronto_Parietal Yellow

Precuneus Precun 10 269 39 Fronto_Parietal Yellow

anterior Prefrontal Cortex aPFC 228 51 15 Cingulo_Opercular Black

anterior Prefrontal Cortex aPFC 27 50 23 Cingulo_Opercular Black

anterior insula/frontal operculum aI/fO 235 14 5 Cingulo_Opercular Black

anterior insula/frontal operculum aI/fO 36 16 4 Cingulo_Opercular Black

dorsal anterior cingulate/medial superior frontal cortex dACC/msFC 21 10 46 Cingulo_Opercular Black

superior frontal cortex ant thal 212 215 7 Cingulo_Opercular Black

anterior thalamus ant thal 10 215 8 Cingulo_Opercular Black

anterior thalamus amPFC 1 54 21 Default Red

ventromedial prefrontal cortex vmPFC 23 39 22 Default Red

superior frontal cortex sup frontal 214 38 52 Default Red

superior frontal cortex sup frontal 17 37 52 Default Red

inferior temporal inf templ 261 233 215 Default Red

inferior temporal inf templ 65 217 215 Default Red

parahippocampal parahippo 222 226 216 Default Red

parahippocampal parahippo 25 226 214 Default Red

posterior cingulate cortex pCC 22 236 37 Default Red

lateral parietal latP 247 267 36 Default Red

lateral parietal latP 53 267 36 Default Red

retro splenial retro splen 3 251 8 Default Red

lateral cerebellum lat cereb 232 266 229 Cerebellar Blue

lateral cerebellum lat cereb 31 261 229 Cerebellar Blue

inferior cerebellum inf cereb 219 278 233 Cerebellar Blue

inferior cerebellum inf cereb 18 280 233 Cerebellar Blue

doi:10.1371/journal.pcbi.1000381.t001

Brain Develops from Being ‘‘Local to Distributed’’
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color represents the coding by ‘‘function’’ as defined by a large

number of fMRI studies.

One of the primary observations from the movie relates to this

anatomical-functional distinction. In children, regions appear to

be largely arranged by anatomical proximity. This arrangement

can be seen in Figure 2 and Video S1 where, in children, regions

can be readily grouped by cerebral lobe (outline colors of spheres

in Figure 2 and Video S1). Over age, as functional connections

mature, the node arrangements change such that anatomically

close regions are now largely distributed across the graph layout, in

a pattern more aligned with the mature networks’ functional

properties (core colors of spheres in Figure 2) [21,36–39]. Thus,

across development, local clusters of regions ‘‘segregate’’ from one

another and ‘‘integrate’’ into more distributed adult functional

relationships with more distant regions.

A group of regions in the frontal cortex provides a particularly

salient example of segregation. Frontal cortex contains regions

that, in adults, are members of each of the task-control networks

(e.g., dlPFC, frontal, dACC/msFC) and the default network (e.g.,

vmPFC, amPFC). As can be seen in Figure 2A (and Video S1),

extensive correlations exist between most of these frontal regions in

childhood (see blue cloud Figure 2A). Over the developmental

window afforded by the current dataset, some of these strong

‘‘frontal-frontal’’ correlations begin to weaken. With increasing

age, regions in the frontal cluster segregate into 3 separate

functional networks.

Accompanying this segregation is strong integration within the

functional networks. The default mode network provides the

clearest example. As illustrated in Figure 2B (and in Video S1),

correlations between regions of the default mode network are weak

(or absent) in children (red cloud, Figure 2B). Just as functional

connections between the set of frontal regions are related to their

anatomical proximity in children, the regions of the default mode

network are each functionally connected to anatomical neighbors,

and not to other members of the anatomically dispersed default

mode network. Over age, however, the functional connections

between default mode network regions mature and the network

integrates into a highly correlated system in adults (Figure 2B and

Video S1) (also see [32]). We note that these results were not

specific to the 60-subject boxcar, and persist with smaller subject

boxcars as well (see Video S2).

Quantitative modularity analysis confirms the qualitative
observations

The qualitative observations noted above can be quantified

using community structure detection tools. Using such an

approach is particularly important because of the bias inherent

in relying on qualitative methods for deciding whether groups of

regions that appear to be clustered are indeed clustered, and

because of the a priori definitions of each network. As stated by

Newman:

‘‘A good division of a graph into communities is not merely

one in which there are few edges between communities; it is

one in which there are fewer than expected edges between

communities. If the number of edges between two groups is

only what one would expect on the basis of random chance,

then few thoughtful observers would claim this constitutes

evidence of meaningful community structure. On the other

hand, if the number of edges between groups is significantly

less than we expect by chance, or equivalently if the number

within groups is significantly more, then it is reasonable to

conclude that something interesting is going on [46].’’

Among the many methods used to detect communities in

graphs, the modularity optimization algorithm of Newman is one

of the most efficient and accurate to date [46]. This method uses

modularity, a quantitative measure of the observed versus

expected intra-community connections, as a means to guide

Figure 1. Anatomical location of regions shown in Table 1. Regions are colored by network membership (red – default mode network; black –
cingulo-opercular network; yellow – fronto-parietal network; blue – cerebellar network) and shown on an inflated cortical surface represention.
doi:10.1371/journal.pcbi.1000381.g001

Brain Develops from Being ‘‘Local to Distributed’’
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assignments of nodes into communities. We applied the modular-

ity optimization algorithm to the group connectivity matrices

derived from the sliding boxcars described above.

Measures of modularity (Q) were high, and did not show large

changes across the age range (Figure 3A and Figure S1 and

Figure S2). This result was not dependent on any particular

threshold (Figure S1). Although comparable community struc-

ture was detected at all ages examined, the components of the

communities varied by age. As per our qualitative approach

described above, in children, region clusters were largely

arranged by cerebral lobe; while in adults, regions were largely

clustered by their adult functional properties (Figure 4A). Again,

this result was not unique to any particular threshold (Figure 4B

and 4C) or size of boxcar (Figure S3). We do note, however, that

limited data points (i.e., subjects) are available between the ages

of 16 and 19 years (see Materials and Methods) and that our

estimate of the specific transitions within this period should be

interpreted with care.

Over development, functional connections seem to
evolve progressively along a ‘‘local to distributed’’
organizational axis

As previously reported [22,34], the segregation of closely

apposed regions and the integration of distributed functional

networks is associated with a general decrease in correlation

strength between regions close in space and an increase in

correlation strength between many regions distant in space. This

trend is shown in Figure 5 and also Figure S4. Long-range

functional connections tend to be weak, but increase over time

(warm colors above the diagonal in Figure 5C and 5D and

Figure S4C and S4D), integrating distant regions into functional

networks. Short-range functional connections tend to be stronger

(i.e., higher correlation strength) in children, yet those regions

that do change predominantly become weaker over age (cool

colors below the diagonal in Figure 5A and 5B and Figure S4A

and S4B).

Figure 2. Over age the graph architecture matures from a ‘‘local’’ organization to a ‘‘distributed’’ organization. In this figure we show
the dynamic development and interaction of positive correlations between the two task control networks, the default network, and cerebellar
network using spring embedding. The figure highlights the segregation of local, anatomically clustered regions and the integration of functional
networks over development. A and B represent individual screen shots (at average ages 8.48, 13.21, and 25.48 years) of dynamic movies (Video S1) of
the transition in the network architecture from child to adult ages. Nodes are color coded by their adult network profile (core of the nodes) and also
by their anatomical location (node outlines). Black – cingulo-opercular network; Yellow – fronto-parietal network; Red – default network; Blue –
cerebellar network; Light blue – frontal cortex; Grey – parietal cortex; Green - temporal cortex, Pink – cerebellum, Light pink – thalamus. Connections
with r$0.1 were considered connected. (A) In children regions are largely organized by their anatomical location, but over age anatomically clustered
regions segregate. The cluster of frontal regions (highlighted in light blue) best demonstrates this segregation. (B) In children the more distributed
adult functional networks are in many ways disconnected. Over development the functional networks integrate. The isolated regions of the default
mode network in childhood (highlighted in light red) that coalesce into a highly correlated network best illustrate this integration. Over age node
organization shifts from the ‘‘local’’ arrangement in children to the ‘‘distributed’’ organization commonly observed in adults.
doi:10.1371/journal.pcbi.1000381.g002

Brain Develops from Being ‘‘Local to Distributed’’

PLoS Computational Biology | www.ploscompbiol.org 5 May 2009 | Volume 5 | Issue 5 | e1000381



However, there are some interesting nuances to this trend that

deserve mention. For instance, not all short-range functional

connections decrease in strength over age (Figure 5A and 5B and

Figure S4A and S4B). While few, some of the short-range functional

connections, typically those in the same network, increase in strength

over age (Figure 5A and Figure S4A). Similarly, although many long-

range functional connections increase in strength, many others do

not statistically change across development (Figure 5C and,5D and

Figure S4C and S4D, grey connections).

‘Small world’ network properties are present in both
children and adults

In a seminal 1998 paper, Watts and Strogatz noted that the

topology of many complex systems can be described as ‘‘small

world’’, a type of graph architecture that efficiently permits both

local and distributed processing. Graphs with a regular, lattice-like

structure have abundant short-range connections, but no long-

range connections. Local interactions are thus efficient, but

distributed processes involving distant nodes require the traversal

of many intermediate connections. Conversely, completely

randomly connected graphs are fairly efficient at transferring

distant or long-range signals across a network, but they are poor at

local, short-range information transfer.

Watts and Strogatz, and others, often describe ‘‘small world’’

properties with two metrics: the average clustering coefficient and

average path length of a graph. The clustering coefficient

measures how well connected the neighbors of a node are to

one another. The average path length measures the average

minimum number of steps needed to go between any two nodes.

Lattices, optimized for local processes, have high average

clustering coefficients but long average path lengths. Conversely,

random graphs, which have no preference for short-range

connections, have low average clustering coefficients and short

average path lengths, making them well suited for communication

between distant nodes. One of Watts & Strogatz’s key insights was

that by randomly rewiring a relatively small number of

connections in a lattice graph (i.e., introducing a few long-range

connections), a graph could retain its high average clustering

coefficient, but dramatically reduce its average path length,

thereby enabling efficient short- and long-range processes. It is

this hybrid graph topology (i.e., high clustering coefficients and

short path lengths) that matches the observed ‘‘small world’’

networks in many complex systems [47].

As previously reported [21,48,49], relative to comparable lattice

and completely random graphs, the adult graph architecture

showed high clustering coefficients and short path lengths,

consistent with the ‘small world’ architecture (Figure 3B and

3C). Interestingly for these networks, in children (i.e., as early as

age 8), these metrics were quite similar to adults (Figure 3B and

3C), and over age there was very little change in path lengths and

Figure 3. Modularity and ‘small world’ topology remain constant over age. In this figure a modularity optimization algorithm is applied,
and average clustering coefficients and average path lengths are calculated for each average matrix of the ‘sliding boxcar’ across age (see Materials
and Methods). A threshold of r$0.1 was applied to the matrices before calculations were performed and denotes connected versus non-connected
region pairs (see Materials and Methods). (A) From childhood through adulthood modularity (Q) remains high and constant. This result is not
dependent on a specific threshold as shown in Figure S1. (Note: All age graphs to the right the asterisk show 100% graph connectedness, meaning
there is a path between every node in the network. Graphs to the left of the asterisk are 78% graph connected, on average. For details see Materials
and Methods and Figure S1). (B) Relative to equivalent lattice and random networks, average clustering coefficients remain high across age and do
not appear to be different between children and adults. (C) Relative to equivalent lattice and random networks, average path lengths remain low
across age and do not appear to be different between children and adults. High clustering coefficients and short path lengths suggest a ‘small world’
organization that does not change across the age range studied here. 95% confidence intervals are also plotted for clustering coefficients and path
lengths for the generated random graphs.
doi:10.1371/journal.pcbi.1000381.g003

Brain Develops from Being ‘‘Local to Distributed’’
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clustering coefficients relative to comparable random and lattice

graphs. It was originally anticipated that path lengths would

decrease over age as long-range anatomical connections were

added. Yet even at the youngest ages examined, path length was

already quite short, near those of random graphs. Importantly,

these results were not dependent on any particular threshold

(Figure S5). We note that while the results shown here are largely

descriptive, the error bars provided in Figure 3B and 3C

constructed from random graphs underscores the difference

between random configurations and the observed trends.

Figure 4. Despite high modularity in both children and adults, community assignments change over age. As in Figure 3, a modularity
algorithm was applied to each matrix of the sliding boxcar across age (A) and with varying thresholds (B, C). Region legends are color coded by
anatomy on the left and by adult functional network on the right (colors match Figure 2). (A) The left side of the box represents the community
assignments for the youngest subjects (i.e., subjects 1–60), and the right side of the box represents the community assignments for the oldest
subjects (i.e., subjects 151–210) - an age scale is presented at the top. As can be seen in the left of panel A, the modularity algorithm divided regions
into communities arranged by anatomical proximity. Over age this organization transitions into modules arranged by adult functional properties. For
this central panel a threshold of r$0.1 was used to denote connected versus non-connected region pairs. (B) Community assignments of the
youngest boxcar (subjects 1–60), at thresholds ranging from 0 to 0.20. Regardless of threshold regions are largely organized by anatomical proximity
in this youngest age group. (C) Community assignments of the oldest boxcar (subjects 151–210), at thresholds ranging from 0 to 0.20. Regardless of
threshold regions are largely organized by adult function in this oldest group.
doi:10.1371/journal.pcbi.1000381.g004

Figure 5. The ‘‘local to distributed’’ maturation is supported by a general decrease in functional connections between regions close
in space, an increase in functional connection between regions distant in space, and the maintenance of several short and long-
range connections that do not change with age. In this figure, functional connections are divided based on distance. Short-range functional
connections are in (A,B), long-range functional connections (C,D) (y-axis, adult r-values; x-axis child r-values). Warm colors represent functional
connections that are significantly greater in adults than children. Cool colors represent functional connections that are significantly greater in children
than adults. Functional connections that do not significantly change with age are plotted in grey. As can be seen in (A,B), the majority of short-range
functional connections that significantly change with age tend to decrease. The majority of long-range functional connections (C,D) that significantly
change with age increase over time. However, many long and short-range functional connections do not significantly change over age (grey). In
addition, while few, some long and short-range functional connections go against the general trend of short-range connections ‘‘growing down’’ and
long-range functional connections ‘‘growing up.’’ See Figure S2 for an extended version of this figure, which includes a visualization of these
functional connections on a semi-transparent brain.
doi:10.1371/journal.pcbi.1000381.g005
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Discussion

The combination of graph theoretic analyses and rs-fcMRI

allowed for the examination of the dynamic relationships

between multiple networks over development. In the current

manuscript, we examined four networks - the cingulo-opercular,

fronto-parietal, cerebellar, and default mode networks. As

illustrated by qualitative observations in Figure 2 (and Video

S1) and modularity analysis in Figure 4, locally organized groups

of regions ‘‘segregate’’ over development into multiple distrib-

uted adult functional networks, while the functional networks

themselves ‘‘integrate.’’ These results support the hypothesis that

functional brain development proceeds from a ‘‘local’’ to

‘‘distributed’’ organization. However, despite the ‘‘local to

distributed’’ developmental trend, ‘small world’ organizational

properties are present in both 7–9 year old child and adult graph

architecture.

In the following section, these results are discussed considering

two postulates: (1) the temporal pattern of spontaneous activity

measured by rs-fcMRI represents a history of repeated co-

activation between regions, and (2) the brain attempts to use the

most efficient processing pathways available when faced with

specific processing demands.

rs-fcMRI may reflect an interaction between the maturing
neural substrate and the use of efficient pathways for
general task completion

As early as 1875 spontaneous synchronized neural activity has

been used to study various aspects of adult brain organization [50–

53]. However, despite the passing of over 130 years since its initial

use, there remains uncertainty as to the role of intrinsic

spontaneous brain activity in brain function. In adults, spontane-

ous correlated activity has been suggested to be important for

gating information flow [54], building internal representations

[43,44,54], and maintaining mature network relationships

[43,44,54]. Much less work has been done in regards to

development, but there are suggestions that spontaneous activity

is important for the establishment of early cortical patterns (e.g.,

ocular dominance columns) [55–58] and may over time represent

(in a Hebbian sense) a history of repeated co-activation between

regions [21,22,27,32,34,59,60]. Within this framework, the

changes in the correlation structure of spontaneous activity over

development seen in this report may provide insight regarding the

arrangement by which brain regions are communicating in

children compared to adults.

If we consider the previously mentioned postulates, our results

suggest that, typically, the most efficient way for children to

respond to processing demands is to utilize more ‘‘local’’ level

interactions as compared to adulthood. That is, in childhood there

is, relatively greater co-activation of anatomically proximal regions

than for adults with similar processing demands. A clear example

of this is seen in Brown et al. [3], where identical task performance

on lexical processing tests strongly activates a large set of visual

regions in children, but strong visual activation is much more

restricted in adults. These relationships may be reflected in

correlated spontaneous activity measured via rs-fcMRI. The

correlations in our youngest children would then represent the

anatomical and spontaneous activity-defined initial regional

relationships plus 7 years of experience-dependent Hebbian

processes tuning these developing connections.

Changes in the neural substrate occur concurrently with

changes in resting state functional connectivity. If the

correlations we find in children already represent 7 years of

experience-driven tuning, why should additional experience lead

to a distributed solution? Under the current proposal, it is not clear

then why resting state functional connectivity would change so

dramatically over the reported age range. One could argue that

the general experiential environment and processing demands

systematically change to encourage increasing use of long-range,

distributed processing relationships. We believe, however, that at

least part of the explanation lies in the interaction of these

‘‘environmental demands’’ with maturational changes of the

neural substrate.

By approximately 9 months of age the elaboration of most, if

not all, short and long-range axonal connections between brain

regions is thought to be complete [61]. However, synapse

formation, the tuning of synaptic weights, synaptic pruning, and

myelination all have unique developmental timecourses that

extend further into development. For instance, from approxi-

mately 30 weeks gestation through the first two postnatal years

there is substantial growth in the number of synaptic contacts

throughout the cortex [62]. This growth is followed by a

protracted period of synaptic pruning that reaches adult levels in

the late second decade of life [63–65]. Importantly, pruning is

selective, not random. Pruning is also largely activity dependent,

and is considered critical in the differentiation of distinct functional

areas [56,66,67].

Another commonly referenced postnatal event is myelination.

As with synaptic pruning, myelination continues to occur through

young adulthood. Increased myelination is thought to proceed

from primary sensory and motor regions to association areas [68–

71], roughly following the hierarchical organization introduced by

Felleman and Van Essen [72] (Note that while the most frequently

referenced neuroanatomical changes that occur throughout

development have been highlighted here, there are several others

that deserve consideration [62,73–75]).

Changes in the neural substrate over development may

lead to more efficient neural pathways for general task

completion. Considering the continually changing nature of

the neural substrate over development, a context for changes in rs-

fcMRI can be created. For instance, as previously mentioned,

increased signal propagation through the addition of a myelin

sheath likely allows for more efficient communication between

distant regions [22,32,34,76]. Such facilitated communication may

promote interactions between brain regions that, previously, had

substantially less efficient communication, allowing for a more

effective ‘‘solution’’ to any particular set of processing demands. In

addition, as new, more efficient, pathways become prominent,

older inefficient connections likely decrease in use, leading to

experience/activity-dependent decreases of specific area-area

connection strengths.

In other words, as myelination continues through development

and allows for more effective long-distance neural pathways,

repeated co-activation becomes more prevalent between many

distant regions, and less so between many locally aligned regions,

thus changing synaptic efficiencies. The statistical histories of such

interactions, stored as relative synaptic weights, are then revealed

via rs-fcMRI, and would lead to the ‘‘local to distributed’’

organization principle seen here.

It is important to note, however, that improved communication

between distant regions (via myelination) would not necessarily

cause a wholesale decrease in connections that were originally

organized locally. Many of these local connections likely continue

to contribute to the most efficient ‘‘solution’’ for any particular task

and remain in use. In fact, the change in dynamics may actually

contribute to distinct local connections increasing with time. This

possibility may underlie the increases in strength of specific short-

range connections seen in Figure 5 and Figure S2.
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Along the same lines, as Fuster [77] has pointed out, we note

that myelination is not an indispensable property of utilized axons.

Unmyelinated axonal connections are still quite capable of

transmitting information. For this reason, the first 7 years of

experience dependent statistical learning may indeed result in

increases in long distance functional connections well before

mature myelination is in place, an idea consistent with the short

average path lengths found in even the youngest networks we

examined (Figure 3). Thus, it is not surprising that some long-

distant functional connections are present in children and do not

statistically change with age (Figure 5 and Figure S2).

We note that recent results in the aging literature suggest that

many of the trajectories observed in the current manuscript

continue inversely with advancing age [24,78]. That is, with aging,

the functional organization, revealed via rs-fcMRI, becomes less

distributed and more local. Thus the dynamic interactions we

describe here likely continue as part of normal senescence [78].

The results presented here are consistent with other
views of functional brain development

The ‘‘local to distributed’’ organizing principle resonates with

recent suggestions that perceptual and cognitive development

involve the simultaneous segregation and integration of informa-

tion processing streams [1,22,76,79,80]. For instance, the

‘‘interactive specialization’’ hypothesis advanced by Johnson and

colleagues, is consistent with these findings [1,81–83]. Johnson

points out that cortical regions and pathways have biased

information processing properties at birth due to anatomic

connectivity, yet they are much less selective than in adults (i.e.,

they are ‘‘broadly tuned’’).

Interactive specialization predicts that shortly after birth, large

sets of regions and pathways will be partially active during specific

task conditions, However, as these pathways interact and compete

with each other throughout development, selected regions will

come online, be maintained, or become selectively activated or

‘‘tuned’’ as particular pathways dominate for specific task

demands. Thus, regional specialization relies on the evolving

and continuous interactions with other brain regions over

development. If one extends this framework to the network level,

the increases, decreases, and maintenance of correlation strengths

seen between regions may reflect ‘‘specialization’’ of specific neural

pathways to form the functional networks seen in adults.

Graph analysis suggests that small world properties are
present in late childhood

The ‘‘local to distributed’’ developmental trajectory, discussed

above, seems to be driven by an abundance of local, short range

connections that generally decrease in strength over age as well as

distant, long range connections that generally increase in strength

over age. Given the more prevalent short-range connections in

children, we expected a more lattice-like structure, with high

clustering coefficients and relatively high path lengths. The results,

however, clearly indicated that path lengths were near those of

equivalent random graphs, and that the child functional networks

are already organized as small world networks.

This result can be explained in the context of the re-wiring

procedure discussed by Watts and Strogatz [47]. Randomly

rewiring a small percentage of local connections in a lattice has a

mild linear effect on clustering coefficients, but a highly non-linear

effect on path lengths. This is to say, that by rewiring a small

fraction of a lattice’s connections, substantial drops in path lengths

can be seen, with almost no change in the clustering coefficient. In

late childhood, as shown in Figure 5 and Figure S2, there are

already a significant number of long-range short cuts present.

These long-range functional connections are likely responsible for

the relatively short path lengths in the child group. We anticipate

that if the developmental trajectory of short and long-range

functional connections were extended to younger ages, fewer long-

range ‘short-cut’ functional connections would be present, and

more short-range functional connections would exist. Hence, the

path lengths at these younger ages (,7 years old) would likely be

longer. Nevertheless, by 8 years old, the networks already display

‘small world’ properties similar to those of adult networks,

indicating that efficient graph structures are already in place for

both local and distant processing, though they are organized

differently than in later development.

While we identified small world properties in both child and

adult graphs, the size of the graph is relatively small with only 34

nodes. Therefore, it is possible that with an increased number of

nodes the specific results identified here will change, a possibility

that will be addressed in further studies.

Need for generalization to other regions and modalities
The regions used in the present analyses were all derived from

adult imaging studies. It seems likely that additional regions may

be included in one or more of these networks in childhood. In

addition, individual differences with regards to the regions and

networks chosen likely exist. Future work that includes regions

derived from studies using a child population and obtaining the

functional connections within subjects from individually defined

functional areas may refine the networks and developmental

timecourses presented here [84].

Of note, resting-state functional connectivity has been reported

to be constrained by anatomical distance (i.e., correlations between

regions decrease as a function of distance following an inverse square

law) [85]. Thus, if a shift in this general bias occurred with

development, then it is feasible that some of the changes seen here

could be related to such a shift. With this said, the specificity of the

connection changes observed over age, the number of connections

that run opposite to the general trends, and the similarity of the

distance relationship in connectivity between children and adults

when plotting all possible connections (see Figure S6), all suggest that

the majority of changes observed here are not related to changes in

this bias. In addition, while there are now reports suggesting that

changes observed over development with blood oxygen level

dependent (BOLD) fMRI are not the product of changes in

hemodynamic response mechanisms over age [86,87], differences in

the hemodynamic response function between children and adults

could conceivably affect our results [88].

A limitation of rs-fcMRI in general is the restricted frequency

distribution that can be examined. rs-fcMRI is used to measure

correlations in a very low frequency range, typically below 0.1 Hz.

Dynamic changes in correlations in other frequency distributions

could exist (for example see [89]). It is also possible that there are

undetected developmental changes in power across frequency

bands orthogonal to the changes visualized here. The combination

of other imaging and psychometric techniques with rs-fcMRI will

likely help address these considerations. Characterizing additional

networks and how these changes map onto behavior will also help

further characterize functional brain development. Specifically,

future work that demonstrates a direct relationship between

behavior and the developmental trajectory seen here with rs-

fcMRI, is presently needed to confirm (or reject) many of the

theories presented here and elsewhere. Importantly, consideration

of these issues need not be limited to developmental studies, but

should be considered whenever investigators compare groups with

rs-fcMRI.
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Nonetheless, the general results presented here represent a

strong set of hypotheses to be tested in broader domains and

larger-scale brain graphs. First, that by age 8 years, regional

relationships, as defined by rs-fcMRI, are organized as small-

world-like networks, which, relative to adults, emphasize local

connections. Second, that for the same regions, adult networks

show similar network metrics but with regional relationships that

have a longer-range, more distributed structure reflecting adult

functional histories. In other words, the modular structure of large-

scale brain networks will change with age, but even school age

children will show relatively efficient processing architecture.

Materials and Methods

Subjects
Subjects were recruited from Washington University and the

local community. Participants were screened with a questionnaire

to ensure that they had no history of neurological/psychiatric

diagnoses or drug abuse. Informed consent was obtained from all

subjects in accordance with the guidelines and approval of the

Washington University Human Studies Committee.

Data acquisition and pre-processing
fMRI data were acquired on a Siemens 1.5 Tesla MAGNE-

TOM Vision system (Erlangen, Germany). Structural images were

obtained using a sagittal magnetization-prepared rapid gradient

echo (MP-RAGE) three-dimensional T1-weighted sequence

(TE = 4 ms, TR = 9.7 ms, TI = 300 ms, flip angle = 12 deg, 128

slices with 1.256161 mm voxels). Functional images were

obtained using an asymmetric spin echo echo-planar sequence

sensitive to blood oxygen level-dependent (BOLD) contrast

(volume TR = 2.5 sec, T2* evolution time = 50 ms, a= 90u, in-

plane resolution 3.7563.75 mm). Whole brain coverage was

obtained with 16 contiguous interleaved 8 mm axial slices

acquired parallel to the plane transecting the anterior and

posterior commissure (AC-PC plane). Steady state magnetization

was assumed after 4 frames (,10 s).

Functional images were first processed to reduce artifacts

[23,90]. These steps included: (i) removal of a central spike caused

by MR signal offset, (ii) correction of odd vs. even slice intensity

differences attributable to interleaved acquisition without gaps, (iii)

correction for head movement within and across runs and (iv)

within run intensity normalization to a whole brain mode value of

1000. Atlas transformation of the functional data was computed

for each individual via the MP-RAGE scan. Each run then was

resampled in atlas space (Talairach and Tournoux, 1988) on an

isotropic 3 mm grid combining movement correction and atlas

transformation in one interpolation [91,92]. All subsequent

operations were performed on the atlas-transformed volumetric

timeseries.

rs-fcMRI pre-processing
For rs-fcMRI analyses as previously described [16,23], several

additional preprocessing steps were used to reduce spurious

variance unlikely to reflect neuronal activity (e.g., heart rate and

respiration). These steps included: (1) a temporal band-pass filter

(0.009 Hz,f,0.08 Hz) and spatial smoothing (6 mm full width at

half maximum), (2) regression of six parameters obtained by rigid

body head motion correction, (3) regression of the whole brain

signal averaged over the whole brain, (4) regression of ventricular

signal averaged from ventricular regions of interest (ROIs), and (5)

regression of white matter signal averaged from white matter

ROIs. Regression of first order derivative terms for the whole

brain, ventricular, and white matter signals were also included in

the correlation preprocessing. These pre-processing steps likely

decrease or remove developmental changes in correlations driven

by changes in respiration and heart rate over age.

Extraction of resting state timeseries
Resting state (fixation) data from 210 subjects (66 aged 7–9; 53

aged 10–15; 91 aged 19–31) were included in the analyses. For

each subject at least 555 seconds (9.25 minutes) of resting state

BOLD data were collected. 34 previously published regions

comprising 4 functional networks (i.e., cingulo-opercular, fronto-

parietal, cerebellar, and default networks; see Table 1 and Figure 1)

were used in this analysis [16,21,22,37]. For each region, a resting

state timeseries was extracted separately for each individual. For

10 adult subjects, resting data was continuous. For the remaining

200 subjects, resting periods were extracted from between task

periods in blocked or mixed blocked/event-related design studies

[22]. These concatenated-extracted rest periods were shown to be

equivalent to continuous resting data in a recent study describing

this method [23]. In addition, several previous findings using this

technique [21,22,32] have now been replicated using continuous

resting blocks [27,33,34] and other continuous resting data [89].

Generation of average group correlation matrices across
development

To examine the functional connections within and between the

large set of regions used in this manuscript we chose to use graph

theory. Graph theory is particularly well suited to study large-scale

systems organization across development, but requires the data be

organized into specific correlation matrices. To do this, for each of

the 210 subjects, the resting state BOLD timeseries from each

region was correlated with the timeseries from every other region,

creating 210 square correlation matrices (34634). Average group

matrices were then created using a sliding boxcar grouping of

subjects in age-order (i.e., group1: subjects 1–60, group2: subjects

2–61, group3: subjects 3–62, … group151: subjects 151–210), thus

generating a series of groups with average ages ranging from 8.48

years old to 25.48 years old with each group composed of 60

subjects. Average correlation coefficients (r) for each group were

generated from the subjects’ individual matrices using the

Schmidt-Hunter method for meta-analyses of r-values

[21,85,93]. In cases when the terms ‘‘child’’ or ‘‘adult’’ are used,

the matrices or results referred to are the first and last of the sliding

boxcar groups respectively, i.e., the child group is the youngest 60

subjects, with an average age of 8.48 years old, and the adult

group is the oldest 60 subjects, with an average age of 25.48 years

old.

Spring-embedded graph theoretic layout and
visualization

To generate a dynamic representation of the functional

connections between regions across development, each of the

groups’ correlation matrices was converted into a thresholded

graph, such that correlations higher than r$0.1 were considered

connections, while correlations lower than the threshold were not

connections.

For our initial analyses [21,22,32] graphs in child and adult

groups were presented in either a pseudo-anatomical fashion or in

their actual 3D positions (in Talairach space). Here we add

another representation often used in graph theory - spring

embedding. In this procedure, a spring constant is added to all

of the connections in the network allowing for the pairwise

regional connections to relax to their lowest energetic state. The

algorithm applied in the present analysis is known as Kamada-
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Kawai [45] - one of the most commonly used strategies for

displaying graph network data. In brief, each functional

connection between a pair of nodes is treated as a spring with a

spring constant related to the strength of the specific correlation.

The nodes are then randomly placed in a plane, which places high

strain on the ‘‘spring-loaded’’ connections. The algorithm then

iteratively adjusts the positions of each node to reduce the total

energy of the system to a minimum. As the pair-wise connections

relax to their lowest energetic states the ‘‘natural’’ configuration of

the network is revealed. By observing multiple ‘‘spring embedded’’

graphs across the subjects in age-order, approximately represent-

ing a 6 month temporal sliding box car (i.e., group1: subjects 1–60,

group2: subjects 2–61, etc.), a movie representation can be made

that shows the development of the full system (see Video S1). The

interpolations, algorithm application, and movie production were

performed using MATLAB (The Mathworks, Natick, MA) and

SoNIA (Social Network Image Animator) [94].

Modularity analysis
Communities for our graph were detected with the modularity

optimization method of Newman [46]. The modularity, or Q, of a

graph is a quantitative measure of the number of edges found

within communities versus the number predicted in a random

graph with equivalent degree distribution. A positive Q indicates

that the number of intra-community edges exceeds those predicted

statistically. A wide range of Q may be found for a graph,

depending on how nodes are assigned to communities. The set of

node assignments that returns the highest Q is the optimal

community structure sought by the modularity optimization

algorithm, which follows a recursive two-step process. First, a

modularity matrix similar to a Laplacian is constructed from the

nodes in question, comparing observed versus expected edges. If

this matrix has a positive eigenvalue, the eigenvector of the largest

eigenvalue is used to split the nodes into two subgraphs, and Q is

calculated. Second, nodes are swapped individually between the

two subgraphs to see if an increase in Q can be found. Once a

maximal Q is found from these swaps, the process is repeated on

the subgraphs. At any point in this process, if the matrix has no

positive eigenvalues, or if a proposed split does not increase Q, the

subgraph is set aside, and defines a community. To detect

communities in our networks over a range of ages, we used the

sliding boxcar group average correlation matrices described above

in ‘‘Generation of average group correlation matrices across

development.’’ With weights retained, the modularity optimization

algorithm was applied to each matrix along the sliding boxcar. A

range of thresholds was explored to define connections for these

calculations (see Figure 4 and Figure S1). Any particular threshold

did not change the conclusions presented in the main manuscript.

A threshold of 0.10 was chosen to display in the main manuscript

because it balances two principles: (1) eliminating a multitude of

weak correlations, which may obscure more physiologically

relevant correlations, and (2) retaining high graph connectedness,

so that communities arise from partitioning and not thresholding.

Graph connectedness captures the extent of nodes fragmented

from the main graph due to increasing thresholds. It is defined for

a graph of N nodes as the mean of an NxN matrix, where cell i,j is

1 if a path exists between node i and node j (self-connections are

allowed), and is 0 otherwise. A graph in which all nodes can reach

each other has 100% graph connectedness, whereas a fragmented

network in which some nodes cannot reach the rest has a lower

connectedness. The modularity optimization analysis returned a

set of community assignments for the nodes, as well as the Q of the

graph with those assignments. The group assignments for the

nodes were converted to colors and are displayed in Figure 4. The

robustness of the community assignments was also tested using a

different information theoretic procedure implemented by Meila,

[95], which utilizes the measure ‘variation of information (VOI)’

(see Figure S7 and also [96]). All calculations were performed in

MATLAB (The Mathworks, Inc., Natick, MA).

Characterization of connection length versus the change
in correlation strength over development

To characterize the relationship between connection length and

the change in correlation strength over development, we split all

561 possible connections into 4 groups based on vector distance.

Since using vector distance as an approximate for connectional

distance is much more inconsistent when comparing ROIs across

the midline, only intrahemispheric connections or connections to

midline structures (i.e., within 5 mm of the midline) were

examined. These connections were then sorted by connection

length and plotted on a graph where the x-axis corresponds to the

child correlation strengths and the y-axis corresponds to the adult

correlation strengths (Figure 5 and Figure S2). On both the graphs

(Figure 5) and the cortical surfaces (Figure S2), the color of the

lines denotes the strength of correlation. Significant differences

seen in Figure 5 and Figure S2 were obtained via direct

comparison between children (the youngest 60 children out of

210 total subjects; age 7.01–9.67; average age 8.48) and adults (the

oldest 60 adults out of 210 total subjects; age 22.47–31.39; average

age 25.48). Two-sample two-tailed t-tests (assuming unequal

variance; p#0.05) were performed on all potential connections

that passed the above criteria. Fischer z transformation was

applied to the correlation coefficients to improve normality for the

random effects analysis. To account for multiple comparisons the

Benjamini and Hochberg False Discovery Rate [97] was applied.

Connections that were significantly different between groups, but

r,0.1 in both groups, were not displayed.

‘Small world’ characterization
The small-world metrics were calculated according to descrip-

tions by Watts and Strogatz [47]. In the main manuscript,

calculations were performed on the group average correlation

matrices thresholded at 0.10 and converted to binary matrices (for

analysis across varying thresholds see Figure S3). For each matrix

across age, the average clustering coefficient and average path

lengths were compared to those values in lattices with equivalent N

(number of nodes) and K (number of connections). To ensure that

our matrices also differed from random graphs, 100 random

graphs with equivalent degree distributions were also created.

From these graphs mean average path lengths and clustering

coefficients were calculated. These metrics are presented in

Figure 3 and Figure S3. All calculations were performed in

MATLAB (The Mathworks, Natick, MA).

Supporting Information

Figure S1 Modularity remains relatively high across age and

does not differ between children and adults across differing

thresholds. Blue dots represent modularity and red dots represent

graph connectedness. A graph in which there is a path between all

nodes represents 100% graph connectedness, whereas a fragment-

ed network in which some nodes cannot reach the rest has a lower

graph connectedness (see Materials and Methods for details). (A)

Modularity across age as presented in Figure 3 of the main

manuscript. (B) Modularity across thresholds for children. (C)

Modularity across thresholds for adults.

Found at: doi:10.1371/journal.pcbi.1000381.s001 (0.50 MB TIF)
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Figure S2 Scatterplot of modularity as a function of age. Each

point in the graph represents the modularity calculated for each

individual subject. A threshold of r$0.1 was applied to each

subject’s matrices before calculations were performed and denotes

connected versus non-connected region pairs (see Materials and

Methods).

Found at: doi:10.1371/journal.pcbi.1000381.s002 (0.35 MB TIF)

Figure S3 Reducing the boxcar size does not substantially alter

community assignments over age. The same procedure as

presented in Figure 4 with the boxcar reduced to (A) 40 subjects

and (B) 20 subjects.

Found at: doi:10.1371/journal.pcbi.1000381.s003 (4.65 MB TIF)

Figure S4 An extended version of Figure 5, which includes a

visualization of these connections represented on a semi-

transparent brain.

Found at: doi:10.1371/journal.pcbi.1000381.s004 (4.69 MB TIF)

Figure S5 Clustering coefficients and path lengths do not differ

between children and adults across differing thresholds with

respect to comparable lattice and random graphs. For children all

parameters across thresholds were calculated from the first 60

subjects in age order (i.e., subjects 1–60, average age 8.48). For

adults, all parameters across thresholds were calculated from the

last 60 subjects in age order (i.e., subjects 151–210, average age

25.48. (A) Clustering Coefficients across thresholds for children

compared to equivalent lattice and random networks. (B) Path

lengths across thresholds for children compared to equivalent

lattice and random graphs. (C) Clustering Coefficients across

thresholds for adults compared to equivalent lattice and random

graphs. (D) Path lengths across thresholds for adults compared to

equivalent lattice and random graphs. At all thresholds examined,

both children and adults show relatively high clustering coefficients

and low path lengths, consistent with ‘small world’ topology.

Found at: doi:10.1371/journal.pcbi.1000381.s005 (0.59 MB TIF)

Figure S6 Connection strength as a function of distance for all

possible connections is similar between children and adults. The

relationship of correlation as a function of distance is described by

the inverse square law, r,1/D2, as reported in [85] for all possible

connections in children (blue) and adults (red).

Found at: doi:10.1371/journal.pcbi.1000381.s006 (0.71 MB TIF)

Figure S7 Variation of information (VOI) in observed and

equivalent random networks subjected to perturbation alpha. VOI

is a measure of how much information is not shared between two

sets of community assignments and allows for the quantification of

network robustness (see [95] and [96]). Values of 0 indicate

identical community assignments, and values of 1 indicate

maximally different community assignments. To assess the stability

of community assignments, the edges of a network are randomized

with probability alpha to perturb the network, and the VOI

between the original and perturbed networks are calculated over a

range of alpha. An equivalent random network was generated for

comparison. The entire perturbation process was repeated 50

times to obtain mean VOI values and standard errors of the

means, which are plotted as error bars. (A) VOI over a range of

alpha in the youngest boxcar and equivalent random graphs. (B)

VOI over a range of alpha in the oldest boxcar and equivalent

random graphs. Compared to random graphs the community

assignments in both children and adults are significantly robust.

Found at: doi:10.1371/journal.pcbi.1000381.s007 (0.43 MB TIF)

Video S1 Over age, the graph architecture matures from a

‘‘local’’ organization to a ‘‘distributed’’ organization. This movie

shows the dynamic development and interaction of positive

correlations between the two task control networks, the default

network, and cerebellar network using spring embedding. The

figure highlights the segregation of local, anatomically clustered

regions and the integration of functional networks over develop-

ment. This is the full movie that Figure 3 is based on in the main

text. Nodes are color coded by there adult network profile (core of

the nodes) and also by there anatomical location (node outlines).

Black - cingulo-opercular network; Yellow - fronto-parietal

network; Red - default network; Blue - cerebellar; Light blue -

frontal cortex; Grey - parietal cortex; Green - temporal cortex,

Pink - cerebellum, Light pink - thalamus. At the beginning of the

movie (i.e. in children) regions are largely organized by their

anatomical location, but over age anatomically clustered regions

segregate. The cluster of frontal regions (light blue outlines) best

demonstrates this segregation. In addition, at the beginning of the

movie (i.e., in children) the more distributed adult functional

networks (core colors of nodes) are in many ways disconnected;

however, over development the functional networks integrate. The

isolated regions of the default network in childhood (Red) that

coalesce into a highly correlated network best illustrate this

integration. Over age node organization shifts from the ‘‘local’’

arrangement in children to the ‘‘distributed’’ organization

commonly observed in adults.

Found at: doi:10.1371/journal.pcbi.1000381.s008 (9.68 MB

MP4)

Video S2 Reducing the boxcar size to 40 subjects does not

change qualitative patterns observed with the 60 subject boxcar.

The same procedure as presented in Figure 3 and Video S1 is

presented here with the boxcar reduced to 40 subjects.

Found at: doi:10.1371/journal.pcbi.1000381.s009 (9.62 MB

MPG)
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